
Budapest University of Technology and Economics
Department of Measurement and Information Systems

V&V: Model-based testing

Systems Engineering BSc Course



Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional 
model

Platform 
model

Architecture 
model

Config. model
Component 

behav. model

Source code Config. file

Binary code

Compiler 
Linker

HW/SW 
allocation

code generationcode generation

HW library

Requirements

Fault tolerance 
& safety

2



Learning Objectives

Model-based testing

• Recall what is model-based testing

• List how models can be used in testing

Test modeling

• Explain the concepts in UML Testing Profile

• Apply UTP to specify configurations and 
scenarios in test models

3



Introduction to MBT



What is model-based testing?

“Testing based on or involving models” [ISTQB]

▪ Not just test generation

▪ Not just automatic execution

▪ Not just for model-driven engineering

5

Source of definition: ISTQB. “Foundation Level Certified Model-Based Tester Syllabus”, Version 2015



6

Landscape of MBT goals

more informal more formal

Software and Systems Verification

Shared 
under-

standing

Checking 
specifications

Simulation
Test data 
creation

Executable 
tests



Using models in testing (examples)

7

Test sequences

Test configurationBehavior of SUT

timer t; 
t.start(5.0); 
alt { 
[] i.receive("coffee") { 
Count := Count+1; } 
[] t.timeout { } 
}

Source: OMG UTP

Test sequences

http://utp.omg.org/


Benefits of using models

▪ Close communication with stakeholders

o Understanding of domain and requirements

▪ Early testing: modeling/simulation/generation

▪ Higher abstraction level (manage complexity)

▪ Automation (different artefacts)

8



Reuse: Development and Test modeling

What if I have existing design models?

9

A. Pretschner, J. Philipps. „Methodological Issues in Model-Based Testing”, Model-Based Testing of Reactive Systems, 2005.

Problem: what do we 
test here?

Approach: separate dev. 
and test models



MBT User Survey

10

- “approx. 80h needed to become proficient”
- MBT is effective
- Lots of other details!

Source: https://www.cftl.fr/wp-content/uploads/2020/02/2019-MBT-User-Survey-Results.pdf

https://www.cftl.fr/wp-content/uploads/2020/02/2019-MBT-User-Survey-Results.pdf


Recap: Tests in finite state machines

▪ (System modeling VIMIAA00 course)

▪ Sequence of input events and expected actions

▪ Model coverage

o State coverage

o Transition coverage

▪ Selecting tests to achieve coverage goals

11



Note

In the current course we will mainly work on 
test modeling and not automated test 

generation (see MSc courses on that topic)

12



UML Testing Profile (UTP)



UML Testing Profile (UTP)

▪ UML profile by OMG

▪ Capture information for functional black-box testing 
(specification of test artifacts)
o Mapping rules to TTCN-3, JUnit

▪ Language (notation) and not a method (how to test)

▪ Defines stereotypes

14



Packages (concept groups)

• Elements and relationship involved in test

• Importing the UML design model of the SUT

Test 
Architecture

• Structures and values to be processed in a 
testTest Data

• Observations and activities during testingTest Behavior

• Timer (start, stop, read, timeout), TimeZone 
(synchronized)

Time 
Concepts

16



Packages (concept groups)

• Elements and relationship involved in test

• Importing the UML design model of the SUT

Test 
Architecture

• Structures and values to be processed in a 
testTest Data

• Observations and activities during testingTest Behavior

• Timer (start, stop, read, timeout), TimeZone 
(synchronized)

Time 
Concepts

17



Overview of test architecture

18

Source: OMG UTP

Driving the SUT; 
evaluate response Controlling test 

execution

Black box; 
different levels

How SUT and 
test components 

are connected

Supplying 
test data

MIL / SIL / 
HIL / PIL…

Connecting 
to imple-

mentation 

http://utp.omg.org/


UTP Test Architecture package

Identification of main components:
▪ SUT: System Under Test

o Characterized by interfaces to control and observation

o System, subsystem, component, class, object

▪ Test Component: part of the test system (e.g., simulator)
o Realizes the behavior of a test case

▪ Test Context: collaboration of test architecture elements
o Initial test configuration (test components)

o Test control (decision on execution, e.g., if a test fails)

▪ Scheduler: controls the execution of test components 
o Creation and destruction of test components

▪ Arbiter: calculation of final test results
o E.g., threshold on the basis of test component verdicts

19



Example: UTP Test Architecture

20

Source: OMG UTP

http://utp.omg.org/


Packages (concept groups)

• Elements and relationship involved in test

• Importing the UML design model of the SUT

Test 
Architecture

• Structures and values to be processed in a 
testTest Data

• Observations and activities during testingTest Behavior

• Timer (start, stop, read, timeout), TimeZone 
(synchronized)

Time 
Concepts

21



UTP Test Data package

Identification of types and values for test 
(sent and received data)

▪ Test Parameter (Stimulus and observation)

▪ Abstract test data

o Wildcards (* or ?)

o Data Partition: Equivalence class for a given type

▪ Concrete test data

o Instances with concrete values

o Data Selector: Retrieving data out of a data pool

22



Example: UTP Test Data

23

Equivalence 
classes (abstract)

Concrete values 
usable in tests

Source: UML Testing Profile Tutorial

http://www.model-based-testing.de/mbtuc11/presentations/Wendland_etal-UTP-Tutorial_1.pdf


Packages (concept groups)

• Elements and relationship involved in test

• Importing the UML design model of the SUT

Test 
Architecture

• Structures and values to be processed in a 
testTest Data

• Observations and activities during testingTest Behavior

• Timer (start, stop, read, timeout), TimeZone 
(synchronized)

Time 
Concepts

24



UTP Test Behavior package

▪ Specification of default/expected behavior

▪ Identification of behavioral elements:
o Test Stimulus: test data sent to SUT

o Test Observation: reactions from the SUT

o Verdict: pass, fail, error, inconclusive values

o Actions: Validation Action (inform Arbiter), Log Action

▪ Test Case: Specifies one case to test the SUT
o Test Objective: named element

o Test Trace: result of test execution
• Messages exchanged

o Verdict

25



Example: UTP Test Behavior

26

Data partition

Stimulus

Observation
Timer

Duration

Verdict

Source: OMG UTP

http://utp.omg.org/


Summary of UTP concepts

Test Architecture Test Behavior Test Data Time

SUT Test objective Wildcards Timer

Test components Test case Logical partition Time zone

Test suite Defaults Coding rules

Test configuration Verdicts

Test control Validation action

Arbiter Test trace

Utility part Log action

27



Recommended method for using UTP

1. Define a new package for tests

2. Use interfaces and data types from design model

3. Define test objectives and focus of test

4. Test architecture

1. Assign SUT to tested component/system

2. Define test components

3. Specify test configurations (instances)

5. Test behavior

1. Design test cases (manually)

2. Specify defaults and test data

28



Case study: UTP Test models 
for Bluetooth roaming

Source: Zhen Ru Dai et al. “From Design to Test with UML: Applied to a 
Roaming Algorithm for Bluetooth Devices”, TestCom 2004, pp 22-49

http://dx.doi.org/10.1007/978-3-540-24704-3_3


About the case study

▪ Bluetooth: short-range wireless communication

▪ Standard: HW (radio, baseband) + SW (protocol)

▪ Roaming algorithm:

o Master devices connected to LAN

o Slave devices move, may loose connection to master

o Roaming:

• Check periodically the quality of link to master

• Select a new master if necessary

30



Components and protocol stack

Test objective:

▪ Slave Roaming Layer functionality
o Monitoring link quality

o Connecting to a different master

31



Possible test levels and setups (1)

32

Test component

Test component

Component/module test with software



Possible test levels and setups (2)

33

Test component / 
emulator

Test component

Integration test with software



Possible test levels and setups (3)

34

Emulator

Test component

Integration test with software

Test component



Possible test levels and setups (4)

35

Moving physical devices or wireless test chamber…

Test component

System test with hardware

Test component



Refining test objective

Slave Roaming Layer functionality

1. “Is the Slave Roaming layer able to choose a new 
master by looking up its roaming list when the 
connection with its current master gets weak?”

2. “Does the Slave Roaming layer request a connection 
establishment to the chosen master?”

3. “Does the Slave Roaming layer wait for a connection 
confirmation of the master when the connection has 
been established?”

4. “Does the Slave Roaming layer send a warning to the 
environment, when no master can be found and the 
roaming list is empty?”

36



Selected test configuration

37

SUT

Multiple 
masters



UTP Test architecture: components

Test package Test context

38



UTP Test architecture: configuration

Test configuration

39



Test behavior

Selecting test scenarios for test objectives

▪ Objective: 
o Choosing new master when the connection with its 

current master gets weak

▪ Scenario 1: 
o “After the exchange of two data packages, the link 

quality between Slave and its current master m1 
becomes bad. The first alternative master in the 
roaming list m2 cannot be reached since the link 
quality is also weak. Thus, after at most two seconds, a 
further master m3 is chosen from the roaming list and 
the connection is established successfully.”

40



Test
scenario

41



Test scenarios (details)

Sequence diagrams

Default behaviors specified
to catch the observations
that lead to verdicts
• Here: Processing timer events

42



Summary

43


