
Systemmodellierung

Dr. PATARICZA András HUSZERL Gábor

Budapest University of Technology and Economics Fault Tolerant Systems Research Group

Die Lehrveranstaltung

- Lehrveranstaltung (VIMIAA00)
 - 3 in 1 (auf ungarisch/deutsch/englisch)

- Dr. PATARICZA András
 - Verantwortlicher Professor
- GÖNCZY László, BERGMANN Gábor
 - Operative Leitung, Organisatorische Fragen

- HUSZERL Gábor (huszerl@mit.bme.hu)
 - o deutschsprachige Vorlesung, ...

Die Deutschsprachige Lehrveranstaltung

- Vorlesungen und Leitung
 - HUSZERL Gábor
- Übungen
 - ERDŐS Szilvia
 - TFMFSVÁRI Fanni

- Weitere HiWis
 - SOMOGYI Gábor
 - o SZŰCS Cintia

https://inf.mit.bme.hu/edu/courses/remo-de

Die Lehrveranstaltung

- 13 Vorlesungen
 - Mittwochs 10-12 Uhr, I.L405 (20. April fällt weg)
- 6 Übungen
 - Freitags 12-14 Uhr (in ungeraden Wochen), I.L405
 - Tests (<u>keine</u> Eingangstests!), Anwesenheitspflicht
- 1 Hausaufgabe
 - mit mündlicher Verteidigung
- 2 Klausuren
 - 11. April (Montag) 17-19 Uhr
 - o 19. Mai (Donnerstag) 8-10 Uhr
 - mit Eingangstest

Bewertung

- Klausuren (mit Eingangstest): 35%+35% der Endnote
- Hausaufgabe (mit Verteidigung): 30% der Endnote
 - o alle drei Teile mit mindestens 40% der Punkte
 - o eine Klausur und die Hausaufgabe kann nachgeholt werden

- Optionale Zusatzpunkte:
 - Übungsvorbereitungen (mind. 5 Tests aus den 6): +5%
 - o optionale Zusatzaufgaben für zusätzliche Punkte

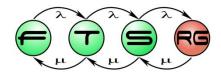
Hausaufgabe

- Abgabepflicht, Verteidigungspflicht
- Persönliche Aufgabe
- Wichtige Termine
 - Ausgabe der Aufgaben:
 - Erste Abgabe (optional):
 - Abgabe:
- Elektronische Abgabe
- Mündliche Verteidigung

- 3. Semesterwoche
- 5. Semesterwoche
- 12. Semesterwoche

Thematik

- Visuelle Datenanalyse
- Strukturmodelle
- Verhaltensmodelle
 - Zustandsmodelle, Prozessmodelle
- Entwicklung von Modellen
- Überprüfung von Modellen
- Leistungsmodellierung
- Simulation
- Benchmarking, Kodegenerierung



Grundlagen der Modellierung

Dr. PATARICZA András HUSZERL Gábor

Budapest University of Technology and Economics Fault Tolerant Systems Research Group

Inhalt

Modelle und Modellierung Wofür werden Modelle benutzt?

Grundbegriffe

Illustrative Beispiele

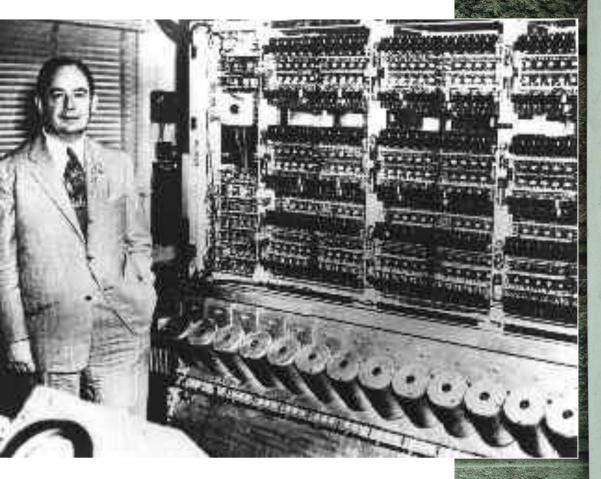
Inhalt

Modelle und Modellierung Wofür werden Modelle benutzt?

Grundbegriffe

Illustrative Beispiele

Modelle und Modellierung



Was ist ein Modell?

- "The sciences
 - do not try to explain,
 - they hardly even try to interpret,
 - they mainly make models.
- By a model is meant
 - o a mathematical construct which,
 - with the addition of certain verbal interpretations,
 - describes observed phenomena.
- The justification of such a mathematical construct is solely and precisely that it is expected to work.,,
 János von Neumann

E HÁZBAN SZÜLETETT ÉS ÉLT 18 ÉVES KORÁIG

NEUMANN JÁNOS

1903 - 1957

A XX. SZÁZAD EGYIK LEGKIVÁLÓBB MATEMATIKUSA. AKI 1951 — 1952 — BEN

AZ AMERIKAI MATEMATIKAI TÁRSULAT ELNÖKE VOLT.

AZ EMLÉKTÁBLÁT SZÜLETÉSÉNEK 100. ÉVFORDULÓJÁRA A BOLYAI JÁNOS MATEMATIKAI TÁRSULAT ÉS

AZ AMERIKAI MATEMATIKAI TÁRSULAT KÖZÖSEN ÁLLÍTOTTA.

IN THIS HOUSE WAS BORN AND LIVED UNTIL HE WAS 18

JOHN VON NEUMANN 1903 — 1957

ONE OF THE MOST OUTSTANDING MATHEMATICIANS OF THE 20TH CENTURY. PRESIDENT OF THE AMERICAN MATHEMATICAL SOCIETY IN 1951 — 1952.

THIS MEMORIAL PLAQUE WAS
ERECTED JOINTLY BY THE
JÁNOS BOLYAI MATHEMATICAL
SOCIETY AND THE AMERICAN
MATHEMATICAL SOCIETY ON THE
100TH ANNIVERSARY OF HIS BIRTH.

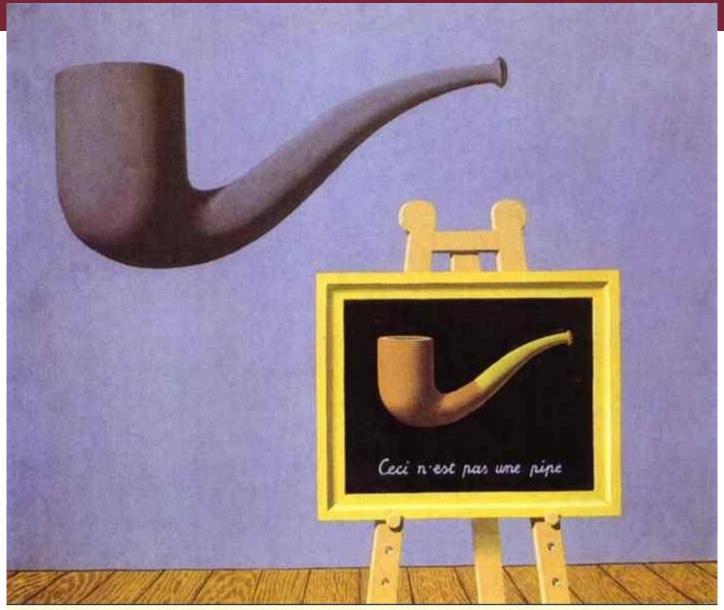
Was ist ein Modell?

- Vereinfachtes Bild eines Teiles einer realen oder hypothetischen Welt ("des Systems"), das das System in bestimmten Überlegungen ersetzen kann
- Entscheidungen:
 - O Welches Teil der Welt?
 - O Was wird vernachlässigen?
 - Wie kann es der Welt entsprechend gemacht werden?

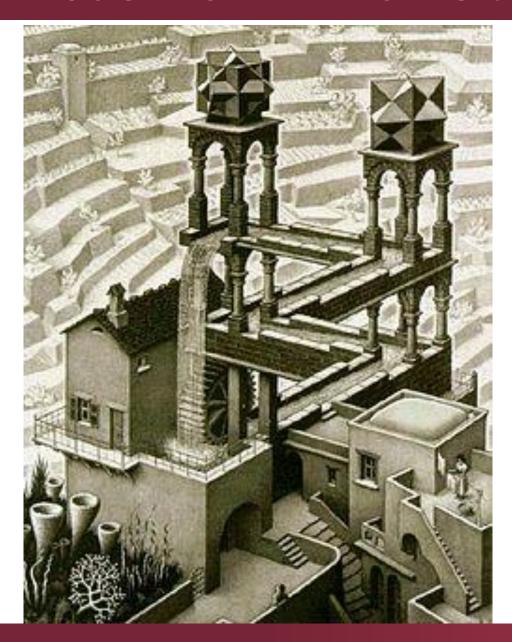
Wann kann es verwendet werden und wann lohnt es sich?

- Vorteile
 - kleiner (endlich)
 - o übersichtlicher

Was ist KEIN Modell?


Das Modell ist nicht die Wirklichkeit!

- Das Modell ist nicht das Diagramm
 - o nur eine Sicht



abcgallery.com - Internet's biggest art collection

Modell vs. Wirklichkeit

Mathematisches Modell vs. Wirklichkeit

- Jedes Modell: eine geschlossene Welt
 - Effekte, Faktoren
 - Parameter
 - Gültigkeit
- Das Modell funktioniert außer dieser Welt unsicher
- Nicht alles kann im Voraus ausgedrückt werden
 - menschliche Entscheidung
 - generierte Modelle
- Validation der Lösung
- Für Beantwortung von Fragen gebaut

- Normale Funktion
 - Randbedingungen
 - Genug Material steht zur Verfügung
 - Jede Bestellung termingerecht
 - O Zielfunktion:
 - Kosteneffizienz
- Außerordentlicher Fall
 - Randbedingung
 - Materialmangel
 - O Zielfunktion:
 - 1. Möglichst viele Bestellung termingerecht
 - 2. Kosteneffizienz

Beispiel: Sicherheitskritische SW

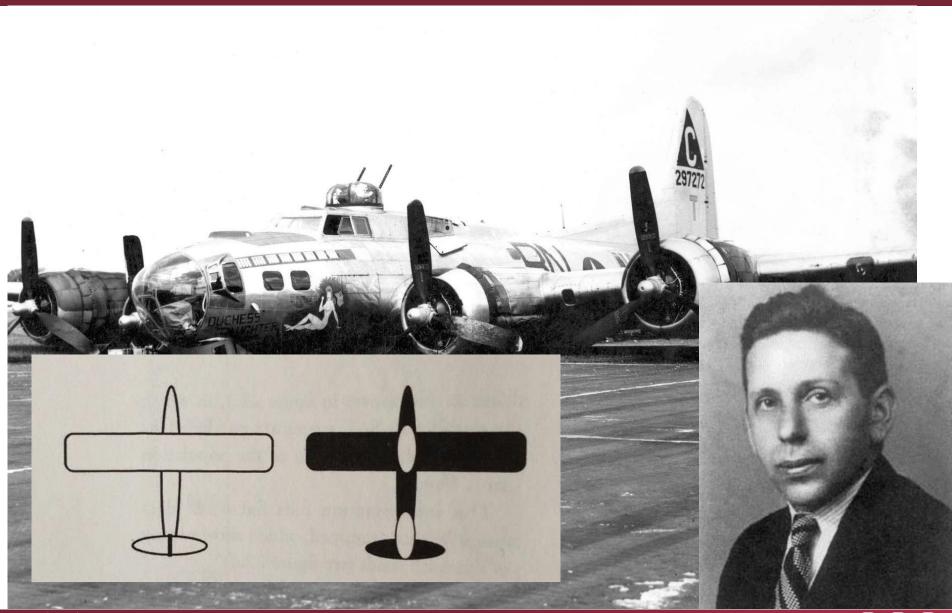
Bremsen von Flugzeugen: Radbremse + Schub

1993 Warschau: Lufthansa 2904

(SW) Sicherung: Wheel in the air (load on both weels) Wheel sliding (one wheel is rotating fast) \rightarrow (plane on the ground) → (PILOT CAN BRAKE)

Qualität der Modelle

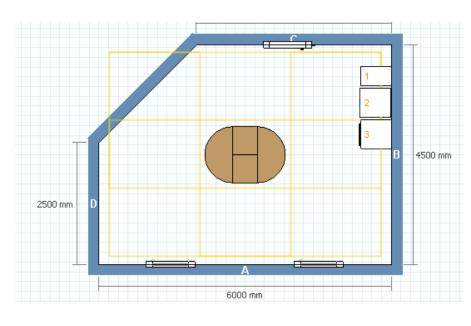
■ Realität: eine offene Welt ←→
Modell: eine geschlossene Welt


- "Treue" eines Modells:
 - o für wahrscheinliche Fälle
 - o für kritische Fälle

 Die Umsetzung eines schlechten Modells kann tödlich sein ...

Wald Ábrahám

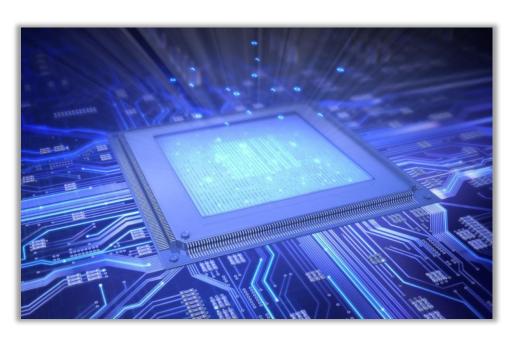
Welchen Sinn hat die Modellierung?


- Ich schreibe Software. Soll ich auch modellieren?
 - Ou machst es schon!
 - (Der Quellenkode der Software ist auch ein Modell)
 - Was wichtiger sind: mentale Modelle
 - Wann müssen diese Modelle ausdrücklich dokumentiert werden?
 - Hauptfunktion der Modelle: Kommunikation
 - Mensch → Mensch
 - Mensch → Maschine
 - Maschine → Maschine
 - Mensch → er selbst, wenig später
 - z. B. sollte man sich jahrelang auf die Gründe der Entwurfsentscheidungen erinnern



Modellierung in der praktischen Welt?

z.B.: webbasierter Küchenplaner [einer schwedischen Firma]



Auch das ist eine Modellierungssprache! ©

VHDL, Verilog – Fachgebietspezifische
 Hardwarebeschreibungssprachen

```
ARCHITECTURE Struct OF MyLogic IS
 5
       COMPONENT And2 IS
           PORT (x, y: IN std logic;
 6
                 f: OUT std logic);
 8
       END COMPONENT:
9
10
       COMPONENT CustomHW IS
11
           PORT (x: IN std logic;
12
                 f: OUT std logic);
13
       END COMPONENT:
14
       SIGNAL n1, n2: std logic;
15
16
17
    BEGIN
18
           And2 1: And2 PORT MAP (
          And2 2: And2 PORT MAP (
19
          CustHW: CustomHW PORT MAP (
20
21
    END Struct:
22
```


Modellierungssprachen

- Das Ziel ist die Kommunikation
 - Verständnis des Modells ist nötig
 - Modellierungssprachen (Wann brauchen wir sie?)
- Syntax
 - "mathematische Struktur": abstrakte Syntax
 - Darstellung: konkrete Syntax
 - graphische Symbole / Textformat
- Semantik
- Randbedingungen, Einschränkungen
 - Syntaktische Korrektheit, Wohlgeformtheit
 - Entwurfskonventionen (jede Gruppe hat ihre eigene)

Inhalt

Modelle und Modellierung Wofür werden Modelle benutzt?

Grundbegriffe

Illustrative Beispiele

WOFÜR WERDEN MODELLE BENUTZT?

Modelle in der Ingenieurarbeit

Ingenieurarbeit

(Architekten, Maschinenbauingenieure, Elektroingenieure, ..., Landschaftsarchitekten, ...)

- Konzeptentwurf
- Beschreibung
 - Verfeinerung
- Dimensionierung
- Überprüfung
- o Bau

- → Zeichnung von Modellen
- → Modellverfeinerung
- → Modellverfeinerung
- → Modellanalyse u. Simulation
- → Implementation, Ableitung

Es ist die altbewährte Ingenieurmethode: Planung

Systemplanung als Prozess

Management

- Besorgung, Versorgung
- Planung, Führung, Bewertung

ANSI/EIA 632 Standard

Systemplanung

- Definition der Anforderungen
- Definition der Lösung

Ingenieuraufgaben

Produkt Herstellung

- Implementation
- Benutzbarkeit

Diese werden typischerweise mit Modellen unterstützt

Auswertung

- Systemanalyse
- Anforderungsvalidation
- Systemsverifikation
- Endproduktvalidation

Systemplanung als Prozess - Analogie

Management

Systemplanung

PORTAL 2

ngenieuraufgaben

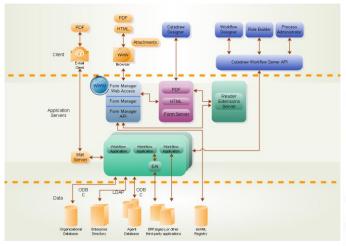
Herstellung der Produkt

Validation: Bauen wir das

richtige Produkt?

Verifikation: Bauen wir das

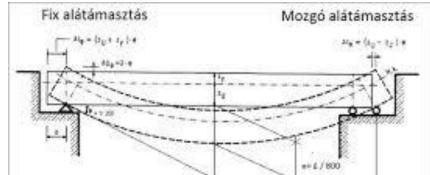
Produkt richtig?



Anwendung – Dokumentation

- Das Modell ist einfacher
 - leichter kommunizierbar, als die ganze Wirklichkeit
 - ständig verfeinerbar (siehe später ...)
- Kommunikation,Veranschaulichung
 - Demonstration (siehe später ...)
 - verständliche textuelle Sprache
 - o anschauliches Diagramm

- Unterstützung für Konzept- und Produktentwicklung
 - die Aspekte sind ähnlich
 - "Selbstkommunikation"



Anwendung – Analyse

- Manuell oder (teilweise)
 Ziel automatisiert
- Methode
 - Oberflächliche, statische Analyse
 - Mit dynamischer
 Zustandsraumexploration –
 Modellprüfung (model checking)
 - Mit Beweis von formalen Aussagen

- O Untersuchung, Fehlersuche (best effort)
- Bestätigung von
 Dienstleistungszuverlässlichkeitskriterien (stärker!)
- Charakteristiken rechnen/planen (z.B. Zeitplanerstellung)

Anwendung – Ableitung

- Manuell oder (teilweise) automatisiert
- Ergebnis
 - Generierung von Programmkode, analysierbarer Sprache, usw.
 - Anderes Modell
 - Verfeinerung, nächste Entwurfsphase
 - Teilaspekte
 - Integration der Modelle
- Es kann eigenschaftserhaltend sein

Anwendung – Simulation

- Demonstration
 - Als Mittel der Kommunikation
- Validation
 - o "Ich habe es richtig erbaut …, aber habe ich das Richtige gebaut?"

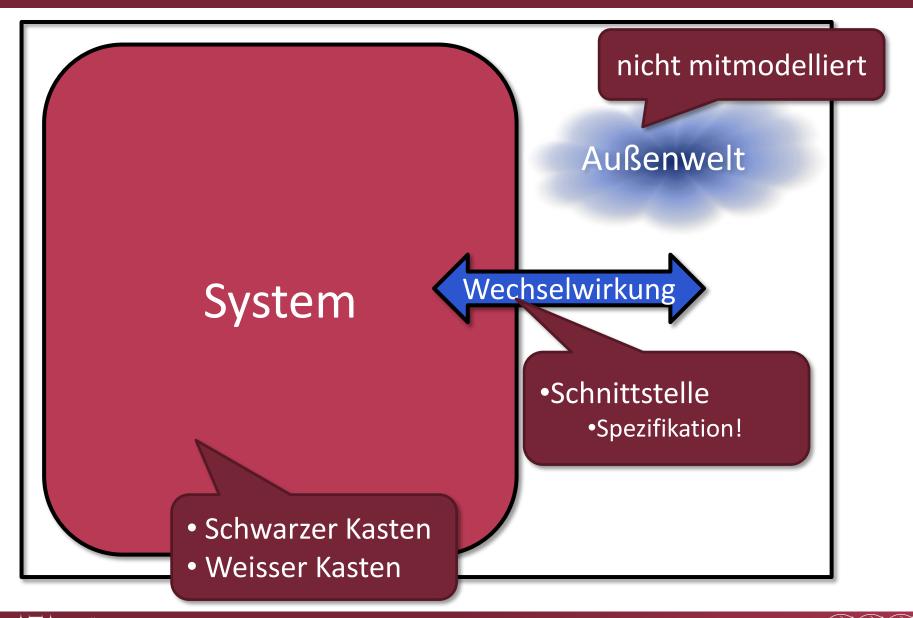
Experimente

- Überprüfung von bestimmten erwünschten Eigenschaften
- Messung von quantitativen Eigenschaften
- Ersatz für in der Wirklichkeit kostspielige Versuche
- für Eigenschaften, die auf dem theoretischen Weg nicht zu bestimmen sind

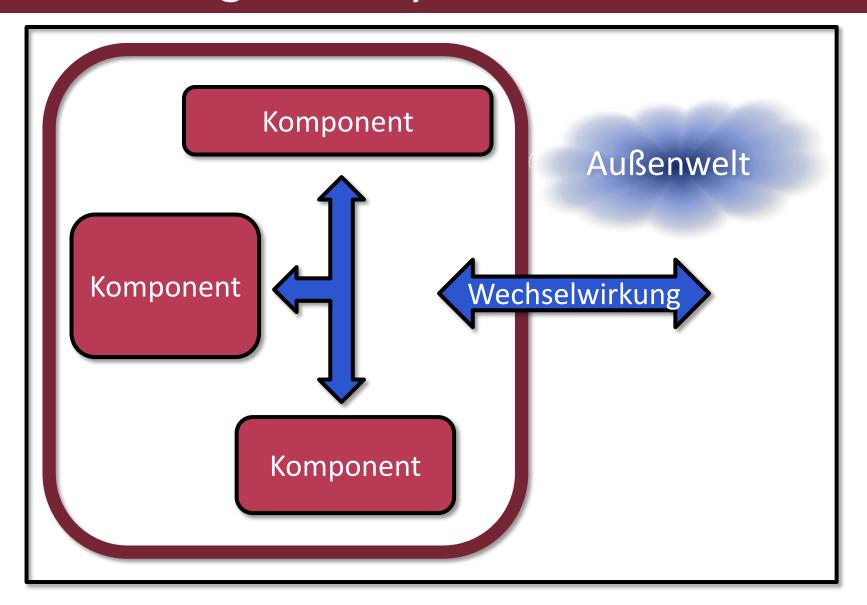
Inhalt

Modelle und Modellierung Wofür werden Modelle benutzt?

Grundbegriffe


Illustrative Beispiele

Grundbegriffe der Modellierung

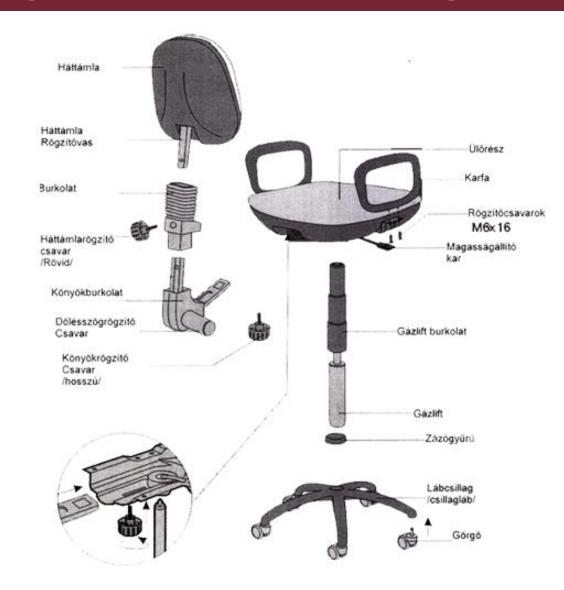

Grundbegriffe – System und Außenwelt

Grundbegriffe – System und Außenwelt

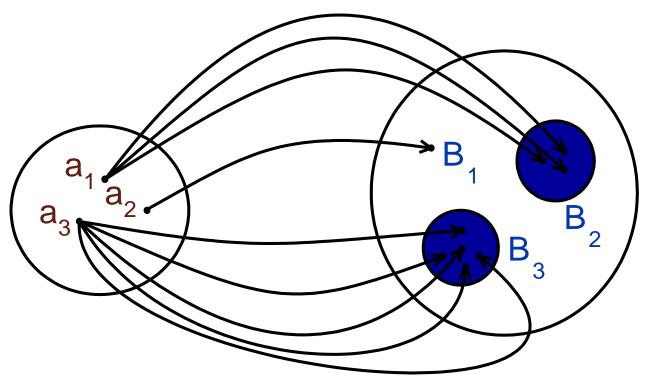
Grundbegriffe – Verfeinerung/Abstraktion

- Verfeinerung:
 Bereicherung des Modells mit Einzelheiten
 - ... so dass die originale Modellabstraktion erhalten bleibt
 - Auf die vorigen Folie wurde eine hierarchische Verfeinerung
 - "Kasten auspacken"
- (vertikale) Abstraktion: Inverse der Verfeinerung
- Nicht nur die Struktur kann verfeinert werden ...
 - o z.B. Mengenverfeinerung: Wertemengen von Variablen
 - anstatt gut / schlecht
 - schnell / durchschnittlich /langsam/ mangelhaft / gefährlich

Grundbegriffe – Verfeinerung



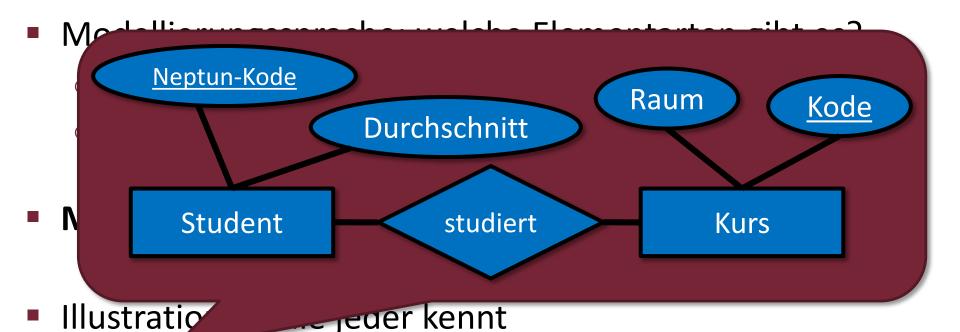
Grundbegriffe – Verfeinerung



Mengenverfeinerung

Zuordnung disjunkter Teilmengen zu den Elementen

 $\forall a_i \in A, R(a_i) \subset B \text{ so, dass } R(a_i) \cap R(a_j) = \emptyset \ \forall i, j$


Grundbegriffe - Metamodellierung

- Modellierungssprache: welche Elementarten gibt es?
 - ... was für Relationen kann es unter diesen Elementen geben?
 - o ... wie sind die Relationen zwischen diesen Elementarten?
- Metamodell = das Modell einer Modellierungssprache

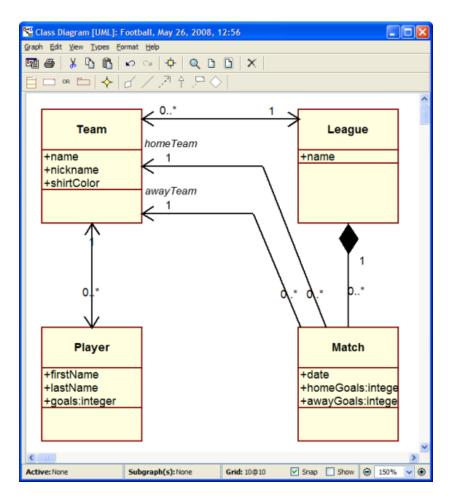
Grundbegriffe - Metamodellierung

- Individuum-Verbindung (ER) Modell
- UML Class Diagramm → Klassendiagramm
- Datenbankplatte → Datenbankschema mit Relationen
- \circ XML Dokument \rightarrow XML Schema (oder DTD)
- O ...

Inhalt

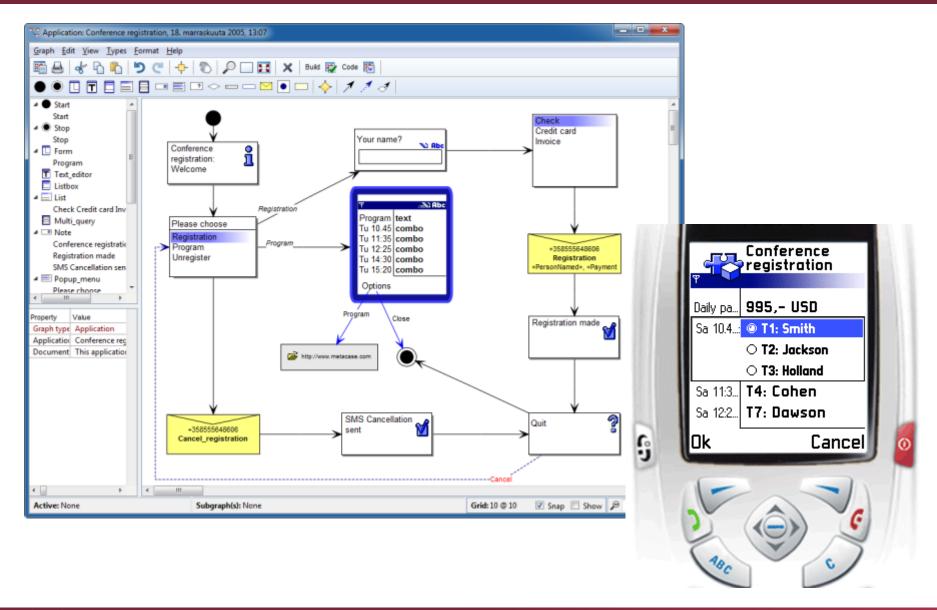
Modelle und Modellierung Wofür werden Modelle benutzt?

Grundbegriffe

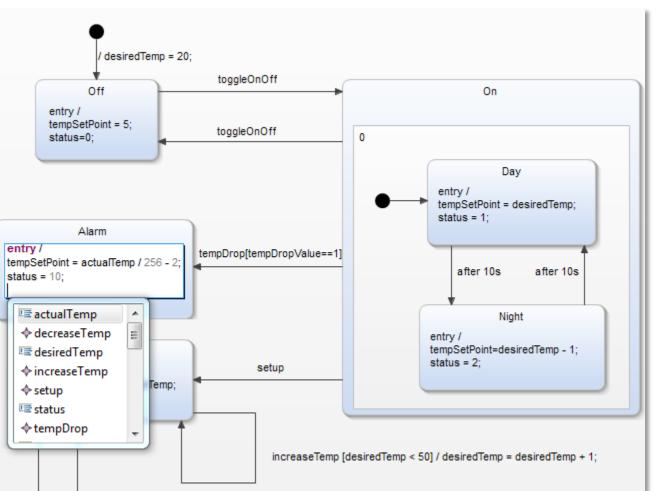

Illustrative Beispiele

Illustration

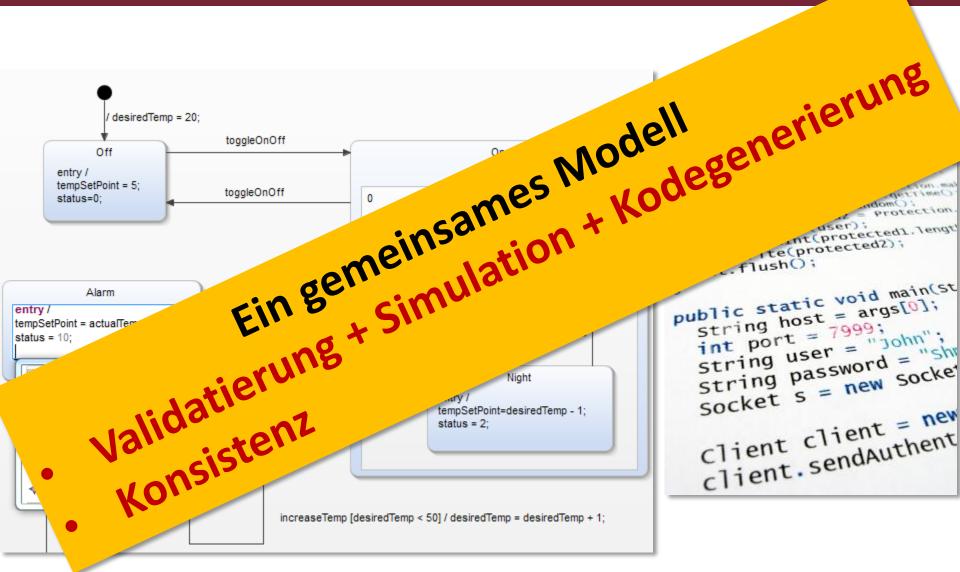
Entwicklung einer Webanwendung



U League [Gears] - Mozilla Firefox	
<u>File Edit View History Bookmarks Tools H</u> elp	0
League [Gears]	
Enter a League to store in the database:	
name	
ОК	
Teams New name View All	
Matches New date View All	
New date View All	
4 most recently edited League entries:	
name	
Edit Premiership Delete	
New View All Delete All	
Back to top page of Football application.	
This page uses Gears to record your entries on the local disk. If you away and revisit this page, all your data will still be here. Try it!	navigate


Entwicklung einer Smartphone-Anwendung

Yakindu - Zustandsdiagramm




```
ublic class client (
public void sendAuthenticat
  Outputstream outstream) throws
  DataOutputStream out -
   long tl = (new Date()) . getTime()
  double q1 = Math.random()
  byte[] protected1 = Protection.
  long t2 = (new Date()) .getTime(
  double q2 = Math.random();
  byte[] protected2 = Protection
  out, writeUTF(user);
  out.writeInt(protected).lengt
  out.write(protected2);
  out.flush();
public static void main(st
  string host = args[0];
  int port = 7999;
  string user = "john";
  string password = "shi
  socket s = new socke
  client client = new
   client.sendAuthent
```

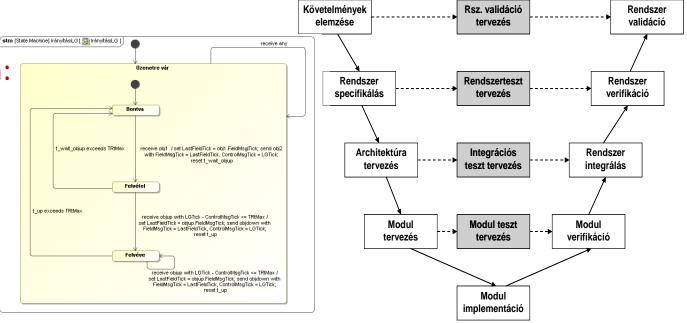

Yakindu - Zustandsdiagramm

KOMPLEXE FALLSTUDIEN

Ausblick

- Entwicklung von Bahnsicherheitssysteme
- Entwicklung von Flugzeugsysteme
- Robotik
- "Wolken" Rechentechnik

Entwicklung von Bahnsoftware


Zu lösendes Problem:

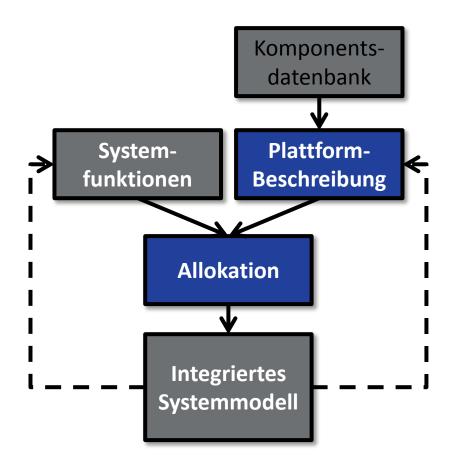
Überprüfung der Entwicklungsphasen einer SIL-4 Bahnsignalvermittlungsanwendung und dessen Ergebnissen aufgrund des für die Software in Bahnwesen geltende Standardes (EN50128)

Entsprechen die Ergebnisse den Vorschriften des Standardes?

Herausforderungen:

- systematische Überprüfung
- Modellierung und formale Verifikation

Prozess → Modell → Qualitätssicherung



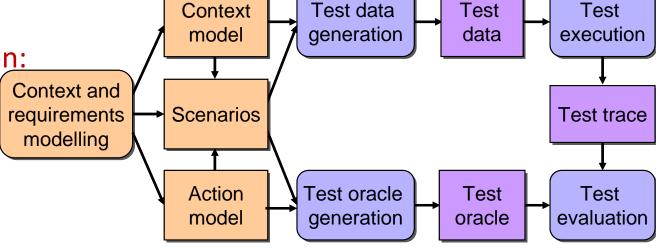
Planung von Flugzeug

 Zu lösendes Problem: Allokation von Softwarekomponenten auf eine individuell geplante integrierte modulare Flugzeugplattform (Komptabilität mit dem Standard ARINC 653)

Herausforderungen:

- Unterstützung von existierenden
 Komponentsdatenbänken
- Generierung der Kommunikationsarchitektur
- Nachweisbarkeit
- MATLAB Simulink Eclipse Integration

Entwicklung von autonomen Robotern


 Zu lösendes Problem: Testen der robusten und sicheren Funktion von umgebungabhängigen, adaptiven, autonomen Robotern

 In welcher Umgebung verletzt das Verhalten die Sicherheitsanforderungen?

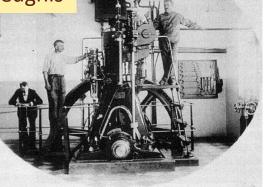
Herausforderungen:

Systematische
 Generierung der
 Testkonfigurationen
 (Umgebungen)

 Automatisierung der Testauswertung

Modell=Spezifikation → Test

"Wolken" Rechentechnik


Anfang: Verbraucher produziert Energie selbst

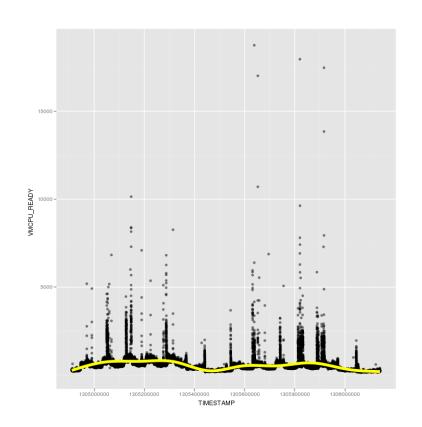
> Individuelle Infrastruktur

zum

Spitzenerzeugnis

Die Wolken Rechentechnik ist das selbe:

- Energie = Rechenleistung
- Kraftwerk = Server
- Fernleitung = Internet
- Verteilung, Schut, Messung, Regelung



Eine Weltfirma

- Zu lösendes Problem: In einem auf privater Wolke basierten Mehrbenutzersystem "schlucken" manchmal die Rechner der Benutzer
- Ist die Kapazität auch statisch zu wenig, oder ist nur die Dynamik der Verteilung falsch?

Herausforderungen

- Datensatz: 180 Million
 x 20 000
 BIG DATA
- 6000 davon verwiest auf Fehler ANALYSIS SELTENER EREIGNISSE
- Messungsfehler DATENREINIGUNG

Einige repräsentative Projekte

R3COP (EU ARTEMIS)

- Automated testing of robots
- Robostusness and securtiy analysis
- ARTEMIS Innovation Award 2012
- Altogether: 15 EU projects

TRANS-IMA (Embraer)

- Eclipse based development tooling
- HW-SW allocation: avionics architecture
- Integration to the distributed
 Embraer simulator
- (1st time in Europe)

Data Storage Systems (IBM)

- Supply-chain simulation and optimization
- Prediction of order data
- IBM Vác: Data Storage Systems
- Supply Chain Technology Award 2012

VCL: Virtual Computing Lab

- Open source cloud infrastructure
- Apache project
- Education: lab courses" (BYOD)
- First time in Hungary
- Tempus Award

