
1
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Process Modelling



2

Implementation

Control Flow

Process Models

Role of Process Modelling

Overview

Table of Contents



3

Implementation

Control Flow

Process Models

Role of Process Modelling

Overview

Table of contents



4

Structure and Behaviour Modelling

 Structural
o Static

oWhole and part, components

o Connections

 Behavioural
o Dynamic

o Timeliness

o State, Process

o Reaction to the environment (context)

 Modelling does not cover all aspects, aspects 
cannot be separated…

The main components of the robot 
vacuum cleaner are the control unit, 
the roller gear and the vacuum cleaner.

For the command „to right” 
changes the roller gear its 
operational mode to „turn”.



5

Main Questions of the Behavioural Models

 What the system „does”?

 What are the properties of the system now, and 
how is it changing?

Event based model

Process based model

State based models

…



6

Definition: Process
Process: series of steps that achieve purpose when executed in 
the right order 



7

Implementation

Control Flow

Process Models

Role of Process Modelling

Overview

Table of Contents



8

Role of Process Modelling

 Specification

 Design

 Implementation

o Executable models

o Code generation

 Model verification

o Simulation

o Monitoring

o Automated model checking

 Documentation



9

Example: How Does the Product Arrive?



10

Example: HW Delivery

omg.org, BPMN 2.0 by Example



11

Example: HW Delivery

Order of execution

Összetartozó
vezérlési elemek

“Parallel” (independent) 
execution (“AND”)

Optional execution

Decision points (“XOR”)

Paired
control elements



12

Modelling aspects

 What is the goal/output of the process?

 Who are the participants?

 What are the main activities?

 What are the decision points?



15

Core aspects

 Idea in system/software design: 

o Use existing elementary activities

o Describe how the complex system operates

 Basic activities can vary

owebform validation, sending email, database
operation, remote web service, human interaction, 
sending text message, drawing diagram, etc.

 What is derived from the control logic?

o Program code directly (C/C++, C#, Java, …)

o Input of an execution environment

• “Execute this process for me”



18

Other Uses of Process Models

 Operating IT systems

o ITIL, UK Gov. initiative

 Protocol specification

o Cooperation between elements of a complex system

o Roles of components

 Designing executable processes

o Order evaluation, credit assessment preparation, …

 Data processing/analysing processes



19

Example: Managing Health Data

http://wiki.directproject.org/Abstract+Model+Examples

Several parties communicating
with each other

Internal sequential
dependencies

Internal and external
events
Presumptions can’t be 

automated



20

Example: Agile Development, as a Process

http://www.eclipse.org/epf/

Roles, products

Steps of teamwork



21

Examples

 Modelling banking processes

o What activities are executed closing time?

o Could the bank switch to transferring multiple times a day?

 Modelling manufacturing process

o Optimal production scheduling: convert or fabricate?

o What happens in the factory?

o (see the lecture on Simulation)

 Modelling business transactions

o Where are recurring communication patterns?

o Model based data processing



22

Example: Data Processing

Steps: reading, data filtering,  
graph generation, …

States of steps can be tracked:
is the result produced?



23

Example: Testing, as a Process (factory)

Supplimenting existing
configuration

Fabricating new machine

Converting



24

Example: Banking Process

Which are the truly independent steps? Which steps are critical? 
Where is manual debugging needed?



25

Basic concepts of designing processes
 Process description languages

o BPMN, jPDL, XPDL, BPEL, UML AD, …

 Process model

o Control, dataflow

o Data structures can be linked to a process model

o Definition of steps to execute

o Timings, resources

 Process (template) vs. process instance

o E.g. „Booking tickets” as a process

o „László Gönczy books a ticket to Lisbon” is an instance



26

Implementation

Control Flow

Process Models

Role of Process Modeling

Overview

Table of contents



27

Elementary Activity (Task)

t

Compile

Execution starts Execution ends

Compile



28

Definition: Elementary Activity
An elementary activity is an activity that

 has a positive temporal duration

 is not modelled beyond its start and end.

Compile



29

Sequence, Control Flow

t

Compile Link

Compile Link



30

Definition: Sequence
Sequence defines the order of execution of activities.

Compile Link



31

Guard Condition, Branches

 Semantics:

o Only one branch is executed

o Possibility of nondeterminism

• Overlapping guard conditions

• Or simply no guard conditions

[source modified]

[source unmodified]

Compile Merge

Decision



32

Definition: Control Element
A control element is a junction of the process choosing one or 
more activities to execute.

[source modified]

[source unmodified]

Compile



33

Definition: Decision-Merge
Decision-Merge is a control structure

 consisting of a Decision and a Merge control element, where

 the decision node has at least two outputs from which we 
choose where to put the control token by evaluating the 
guard conditions, 

 the chosen output (branch) can contain an arbitrary number 
of elements, and

 each branch leads to the merge node.

 Here we use branch as an exclusive or (XOR gate), which means that as a result
of an evaluation only one of the decision branch is chosen. 

 A branch can be multiple or binary, in the course we use binary decisions (two
outputs).



35

Loop

[no syntax errors]

[syntax errors]

Compile

Edit

t

Compile Link Compile … 



36

Definition: Loop
A loop is a control structure that defines multiple execution. The 
loop

 consists of a Merge and a Decision element, where

 one of the branches of the decision node leads back to the 
merge node.

 Note: this corresponds to a repeat – until loop

[no syntax errors]

[syntax errors]

Compile

Edit



37

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c



38

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c



39

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c



40

Fork / Join

Compile
source1.c

Compile
source2.c

Join

Fork

t

Compile
source2.c

Compile
source1.c



41

Fork / Join

 Semantics:

o Execution sequence is not specified

o Parallel/ overlapped execution is possible

 See: Computer architectures course

Compile
source1.c

Compile
source2.c

Join

Fork



42

Definition: Parallel Execution
Parallel execution (Fork-Join)

 contains a Fork and a Join control element, where

 the fork can have an arbitrary number of outputs (branches).

 branches can be executed concurrently,

 all branches  lead to the join node, and

 parallel execution ends, when all branches terminate. 

Two activities are concurrent if the order of their execution is 
not controlled. 

 Note: we are going to work with two parallel branches.

 NOT equivalent to Decision-Merge!



43

Flow Begin / Flow End

Build



44

Definition: Flow Begin/End
Process starts with a Flow Begin control element and ends with a 
Flow End element.

 The begin node is the first node of the process, with exactly 
one output.

 The end node is the last node of the process with exactly one 
input.

 Note: we do not model what causes the process to start



45

Build

Hierarchy

Compile Link

t

Compile Link

Build



46

Definition: Hierarchy
Hierarchical process model:

 Instead of an atomic activity it can contain a submodel
described by a process model (hierarchical refinement).



47

Build

References / Calls

Compile Link

t

Compile Link

Build

Build



48

Build

References / Calls

Compile Link

t

Compile Link

Build

Build

Elementary task? 
Actually a subprocess!

Can be embedded into the main process if the refinement is valid:
• The steps combined produce the same thing as the process
• No unhandled case on caller level

(Input/output consistency)



49

Well Structured Process

 Building from control blocks

o One entry point, one exit

o Sequence, decision-merge and fork-join blocks, loop, 
elementary activity, (empty control section)

 Analogy: structured programming

o Control structures instead of goto

 Example of a non-well-structured process

A B C



50

Well Structured Process

 Some formalisms enforce it

o eg. BPEL (business process over web services)

o eg. Structogram (Nassi-Shneiderman)

o programming languages without goto, break, etc.

while a ≠ b do

a > b

b := b - aa := a - b

return a

true false



51

Repetition: Coffee Machine (State Based Model)



52

Example: Coffee Making Process



53

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START



54

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START



55

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START



56

Comparison

 State machine  Process

Cup placedTank filled Pod placed

Fill tank Place cup

START

Place pod

Tank empty No podNo cup
Fill LEFT 
reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Plug in and press
LEFT side START



57

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT 
side START

Plug in



58

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT 
side START

Plug in

[not plugged in]

[plugged in]



59

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT 
side START

Plug in

[not plugged in]

[plugged in]



60

Example: Coffee Making Process

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side

Press LEFT 
side START

Plug in

[not plugged in]

[plugged in]



61

Example: Coffee Making Process

Press LEFT 
side START

Plug in

[not plugged in]

Prepare
LEFT side

[plugged in]



62

Example: Coffee Making Process

Press LEFT 
side START

Plug in

[not plugged in]

[plugged in]

Prepare
LEFT side



63

Example: Coffee Making Process

Press LEFT 
side START

[not plugged in]

[plugged in]

Prepare
LEFT side

Press RIGHT 
side START

Prepare
RIGHT side

Plug in



64

Making coffee

Press LEFT 
side START

[not plugged in]

[plugged in]

Prepare
LEFT side

Press RIGHT 
side START

Prepare
RIGHT side

Plug in

Fill
LEFT reservoir

Place cup on
LEFT side

Place pod in
LEFT side



65

Modeling based on different aspects



66

What happens to a car?

Assemble
Cari

Paint
Cari

Polish
Cari



67

What happens on the production line?

Assemble
Cars

Paint
Cars

Polish
Cars

Assemble
Car1

…
Assemble

Carn



68

Modeling based on different aspects

Assemble
Car1

…
Assemble

Carn

Assemble
Cari

Paint
Cari

Polish
Cari

Assemble
Cars

Paint
Cars

Polish
Cars



69

Joint View

 Includes everything but not very practical

Assemble
Car1

Paint
Car1

Polish
Car1

Assemble
Car2

Paint
Car2

Polish
Car2

Assemble
Carn

Paint
Carn

Polish
Carn

…

…

…



70

Joint View

 Includes everything but not very practical

Assemble
Car1

Paint
Car1

Polish
Car1

Assemble
Car2

Paint
Car2

Polish
Car2

Assemble
Carn

Paint
Carn

Polish
Carn

…

…

…

This dependency doesn’t come from the
process logic
(resource, physical space, etc.  configuration)
Don’t illustrate it in the process logic…
(see future lectures: resource reservation)



71

Joint View

 2D fork-join net isn’t very practical

o Different processes for different aspects (car’s and 
machine’s lifetime)

 Multiple fork-join pairs in a compact way?
 PERT chart

o Program Evaluation and Review Technique

• For analyzing execution time

• (No branching here)
3

4

1

3

3

2



72

Implementations

Control Process

Process Models

Role of the Process Modeling

Overview

Table of contents



73

Flowchart

http://xkcd.com/518/



74

Flowchart

 Flowchart / decision diagram

o Describes a train of thought for decision making

• Leads to a conclusion

o No temporal sequence

 Special case: decision tree
Describing decision points
and their order is difficult

for real problems



75

Example: Erroneous Decision Process

(Monty Python, 
picture: graphjam.com)

• Inconsistent decision
points

• Non mutually exclusive
alternatives

• Decision branches don’t
cover all the possibilities..



76

Decisions vs. Activities?

http://www.cardboardrepublic.com/cr_reviews/munchkin

Understandable but not precise…
What is the decision, what is other
activity?
What is state, what is action/event?
Deficient model…



77

Decisions in Processes? 

 „Inside” of an atomic step

 Eg. Decision Model Notation (omg.org)



78

Control Flow

<statement1>
<statement2>

statement2

statement1



79

Control Flow

if (<expression>)

<statement>

statement

[expression holds]

[expression fails]



80

Control Flow

if (<expression>)

<statement1>

else

<statement2> 

statement1

[expression fails][expression holds]

statement2



81

Control Flow

while (<expression>)

<statement>

statement

[expression fails]

[expression holds]



82

Control Flow

do

<statement>

while (<expression>)

statement

[expression fails]



83

Control Flow - Example

while (a != b) {

if (a > b) {

a = a - b;

} else {

b = b - a;

}

}

return a;



84

Control Flow - Example

while (a != b) {

if (a > b) {

a = a – b;

} else {

b = b – a;

}

}

return a;



85

Control Flow - Example

while (a != b) {

if (a > b) {

a = a – b;

} else {

b = b – a;

}

}

return a



86

Control Flow - Example

if (a > b) {

a = a – b;

} else {

b = b – a;

}

[a != b]

[a == b]

return a



87

Control Flow - Example

return a

[a == b]

[a > b] [a <= b]

a = a – b b = b – a

[a != b]



88

Control Flow - Complexity

return a

[a == b]

[a > b] [a <= b]

a = a – b b = b – a

[a != b]

Cyclomatic complexity
M = E – N + 2



89

Control Flow - Recursion

int fact(int n) {

return

(n == 0) ? 1 : n * fact(n - 1); 

}



90

Control Flow - Recursion
int fact(int n) {

int tmp1;

if (n == 0) {

tmp1 = 1;

} else {

int tmp2 = fact(n - 1);

tmp1 = n * tmp2;

}

return tmp1;

}



91

Control Flow - Recursion

tmp1 = 1

tmp2 = fact(n - 1)

tmp1 = n * tmp2

return tmp1

fact(n)

[n == 0] [n != 0]



93

Example: n choose k
int choose(int n, int k) {

if (k < 0 || k > n) {

return 0; 

} else if (k == 0 && n == 0) {

return 1;

} else {

int x = spawn choose(n – 1, k);

int y = spawn choose(n – 1, k - 1);

sync;

return x + y;

}

}

𝑛
𝑘

= 𝑛−1
𝑘

+ 𝑛−1
𝑘−1

0
0

=1



94

Example: n choose k

choose(n, k)

return 0

return 1

x = choose(n – 1, k)

y = choose(n – 1, k - 1)

return x + y

[k < 0 || k > n]

[k == 0 || n == 0]

[else]



95

EXECUTION OF
BUSINESS PROCESSES



96

The Semantics of Processes

 The modelling perspective

 The intended execution



97

Process Execution

 Token flow

 The states of the process



98

States of an Elementary Activity

t

start of execution end of execution

T

T
under execution

T
before execution

T
completed



99

States of an Elementary Activity

t

T
before execution

T
under execution

T
completed

T
under execution

T
before execution

T
completed

start of execution end of execution



100

States of a Process

t

T1

under execution
T1

before execution
T1

completed

T1 T2

T2

before execution

T2

under execution
T2

completed



101

Background: Mathematical Model

 Allen’s interval algebra (1983)

o Used among others at testing, 13 (6 + 1 + 6) cases

James F. Allen: Maintaining knowledge about temporal intervals. 
In: Communications of the ACM. 26 November 1983. ACM Press. pp. 832–843, ISSN 0001-0782



102

Háttér: matematikai modell

 Allen’s interval algebra (1983)

o Used among others at testing, 13 (6 + 1 + 6) cases

James F. Allen: Maintaining knowledge about temporal intervals. 
In: Communications of the ACM. 26 November 1983. ACM Press. pp. 832–843, ISSN 0001-0782

X BEFORE y

X MEETS y

X OVERLAPS y

X STARTS y

X FINISHES y

X DURING y

X EQUALS y n intervallum:
1,1,13,409, 23917… eset



103

What Can Be Checked?

 The execution is not based on the given process

o Satisfaction of assumptions (order, independence)?

 What is the „process” behind system/execution?

o Workflow mining

 If e.g. the execution environment is permissive

o Steps can be skipped, ….

o Are the requirements still satisfied?

 Tooling: formal methods

o (Temporal )Logics, Petri nets, model checking, etc.


