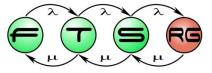
Performance Modelling 2

Budapest University of Technology and Economics Fault Tolerant Systems Research Group



Budapest University of Technology and Economics Department of Measurement and Information Systems

Reminder

Stable state:

- \odot Calculating with average values
- $\circ \lambda = X$ (arrival rate = throughput)

• Maximum throughput (*X*^{max}):

Opper bound of the reachable throughput

$$\circ X^{max} = \frac{K}{T}$$
 (in case of K resource instances)

Utilization (U):

Ratio of the actual and maximum throughputs

$$D U = \frac{X}{K} \times T$$
 (in case of K resource instances)

Little's law

Zip's law

Changes in Workload

CONTENT

Little's law

Zip's law

Changes in Workload

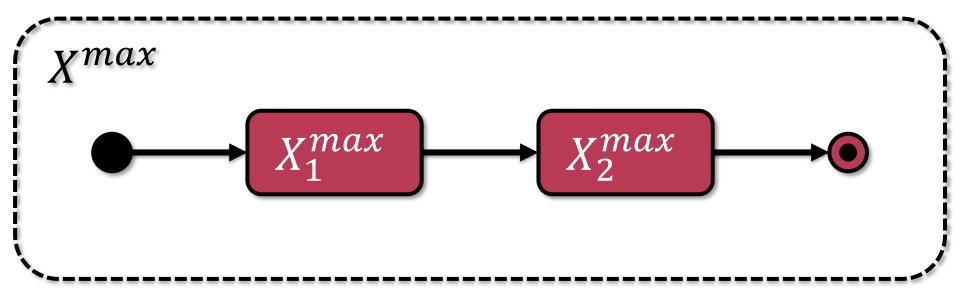
VISITATION NUMBER

Definition: Visitation Number

The **visitation number** indicates the average number of times a given activity/subprocess runs in a single execution of the whole process.

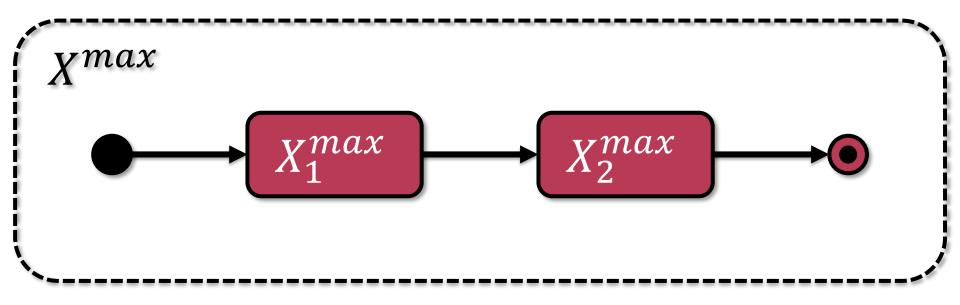
- How many times the process visits/repeats the given activity during a single execution?
- During a single execution of a process one of its activities can run not at all, or once, or several times. (Decisions, loops!)
 - If a choice between different outputs is described with probabilities, then these probabilities also play a role in determining the visitation numbers.

Sequential Composition



Each activity will be visited once.

Sequential Composition

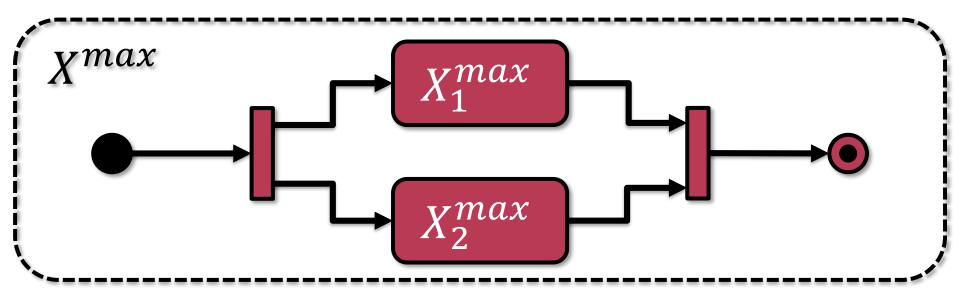


$X^{max} = min(X_1^{max}, X_2^{max})$

Bottleneck:

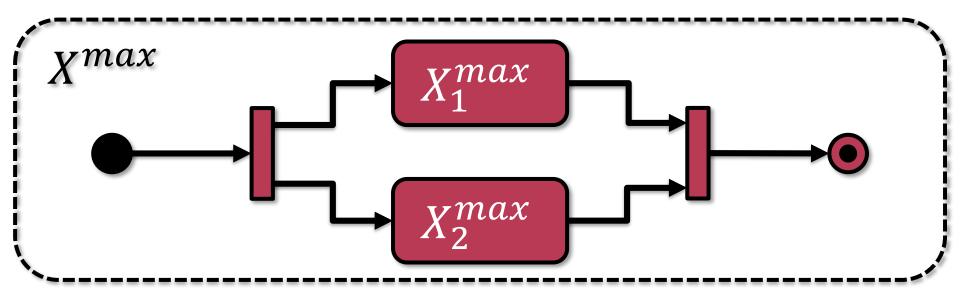
The component with the minimum throughput (or the corresponding resource).

Parallel Composition



Each activity will be visited once.

Parallel Composition

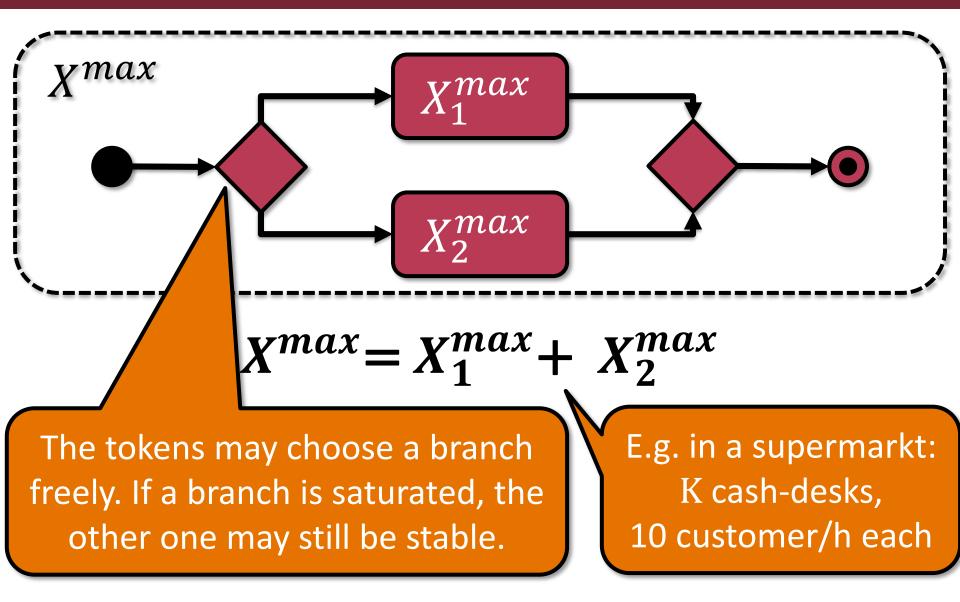


$X^{max} = min(X_1^{max}, X_2^{max})$

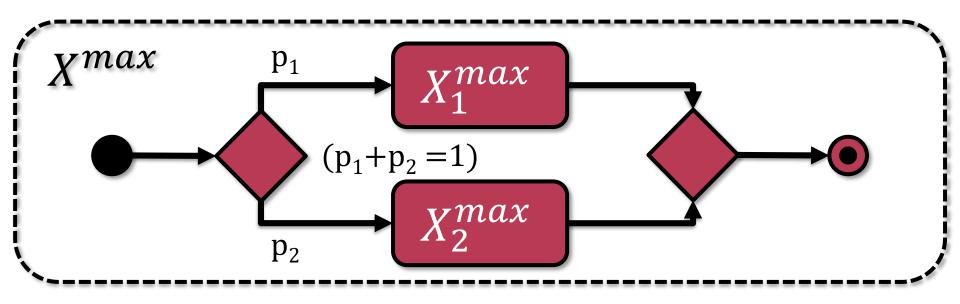
Bottleneck:

The component with the minimum throughput (or the corresponding resource).

Composition of Free Choice

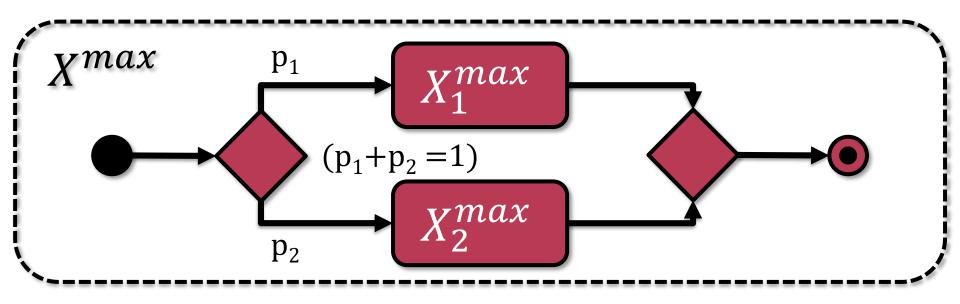


Composition of Stochastic Choice



Activity X_1 will be visited p_1 times in average, activity X_2 will be visited p_2 times in average.

Composition of Stochastic Choice



$$X^{max} = min(\frac{1}{p_1} \times X_1^{max}, \frac{1}{p_2} \times X_2^{max})$$

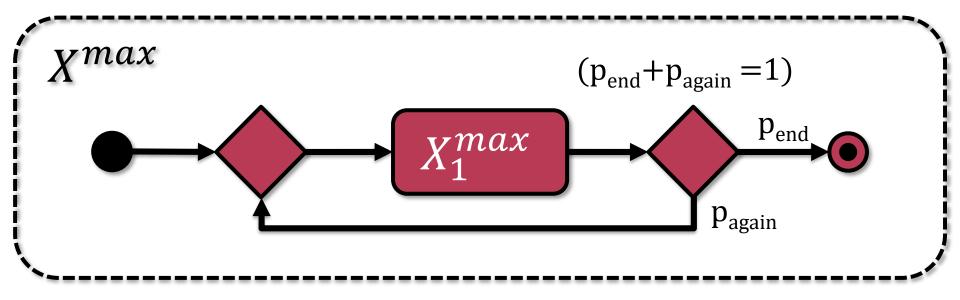
Bottleneck:

The component with the minimum throughput (or the corresponding resource).

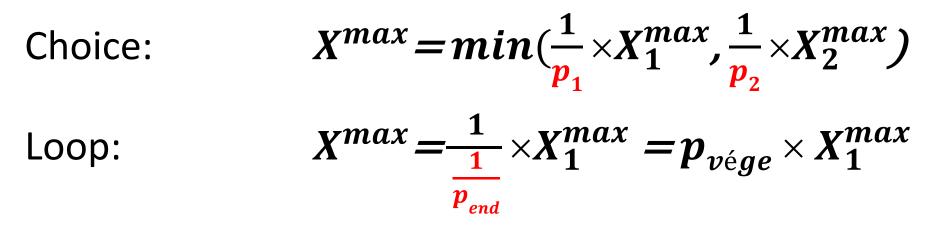
erererereren en in in in die beseter

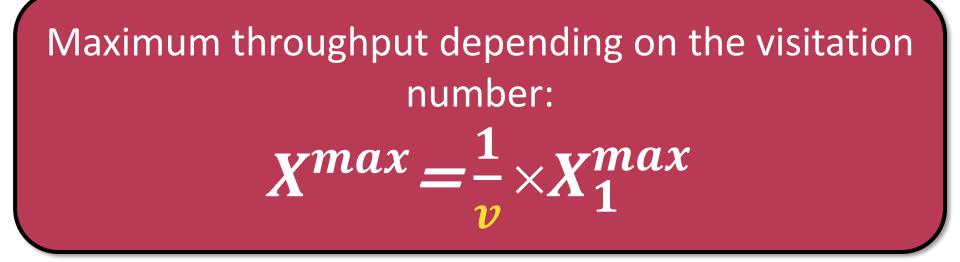
EGYETEM 1

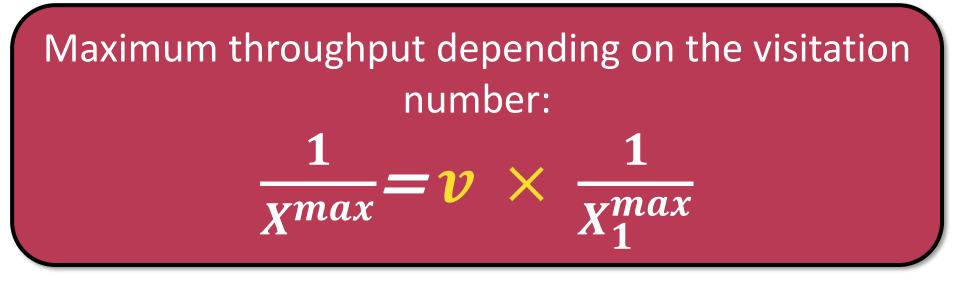
Composition of Loop



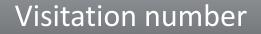
Activity X_1 will be visited $\frac{1}{p_{end}}$ times in average.







Execution time depending on visitation number: $T_{process} = v \times T_{task}$



Little's law

Zip's law

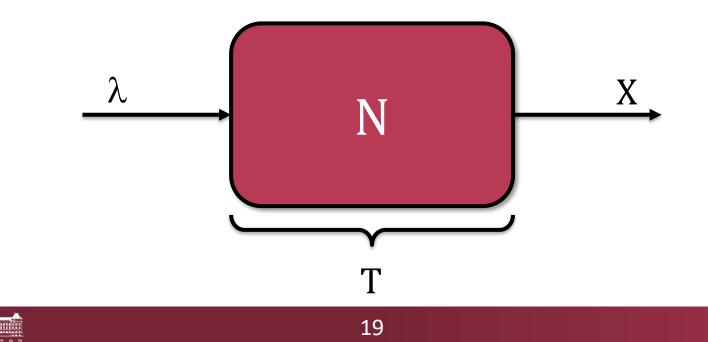
Changes in Workload

LITTLE'S LAW

The basic formula

Little's Law

- λ : arrival rate $\left[\frac{1}{s}\right]$ X: throughput $\left[\frac{1}{s}\right]$
- T: time spent in system [s]
- N: number of tokens in system [1]



Little's Law

• In stable state ($\lambda = X$) Little's law holds:

$N = X \times T$

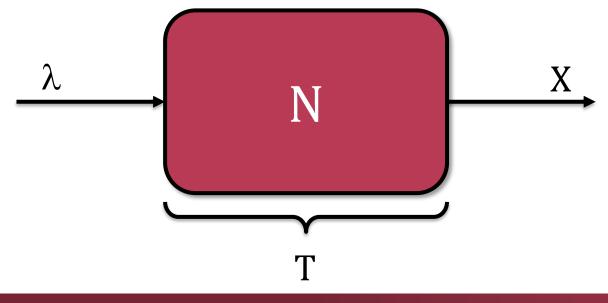
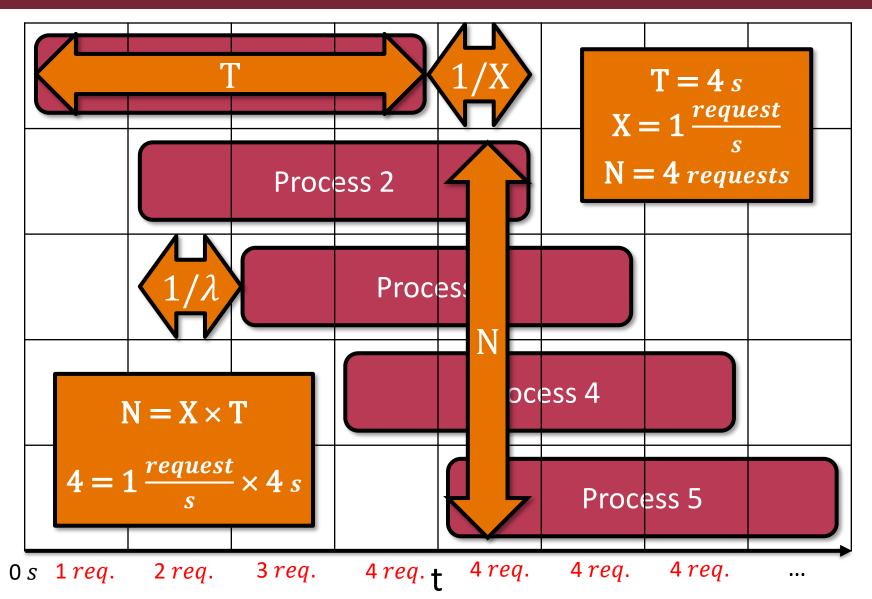
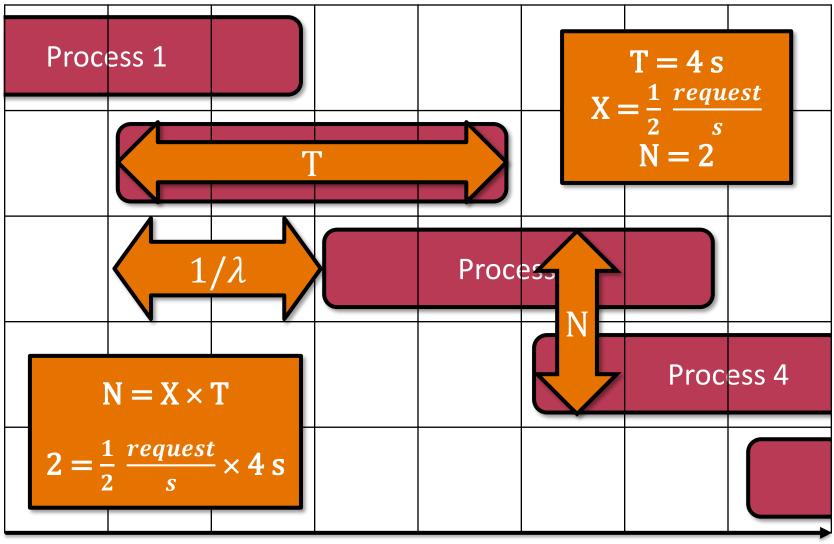


Illustration of Little's Law



MÜEGYETEM 17

Illustration of Little's Law

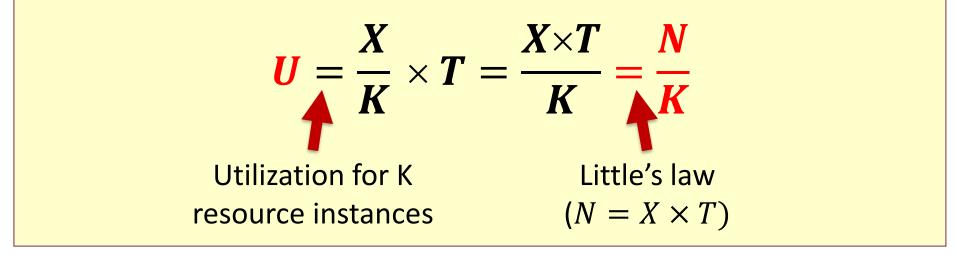


0 *s*

 22

Utilization and Little's Law

- K resource instances: maximum K process instances under execution at the same time
- Little's law: number of process instances under execution (N)
- Average utilization can be derived as follows:



Little's law

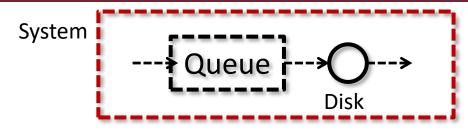
Zip's law

Changes in Workload

LITTLE'S LAW: PRACTICAL EXAMPLES

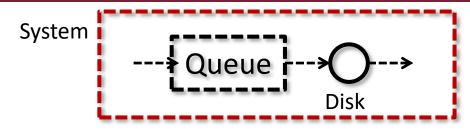
- Resource: disk
- Serves 40 requests per second (no overlap)
- Serving 1 request takes up 0,0225 seconds on average
- How much is the utilization?

$$U = X \times T_{disk} = 40 \frac{request}{s} \times 0,0225 \ s = 0,9 = 90\%$$



- Queuing before disk
- Disk: 40 request/s
- Average requests in system: 4

Average time a request spends in the system? (T_{system})



- Queuing before disk
- Disk: 40 request/s
- Average requests in system: 4

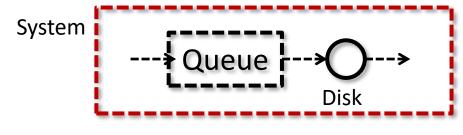
Queuing plus disk serving time

 $0,1\,s$

Average queuing time
$$(T_{system} - T_{disk}) = (0, 1 s - 0, 0225 s) = 0,0775 s$$

System

 $N = X \times T \rightarrow T_{system} = 4 \ requests / 40 \ \frac{request}{2}$



- Queuing before disk
- Disk: 40 request/s. In average 0,9 request
- Average requests in system: 4

Average number of requests in queue? $(N_{system} - N_{disk})$ 4 requests- 0,9 request= 3,1 requests

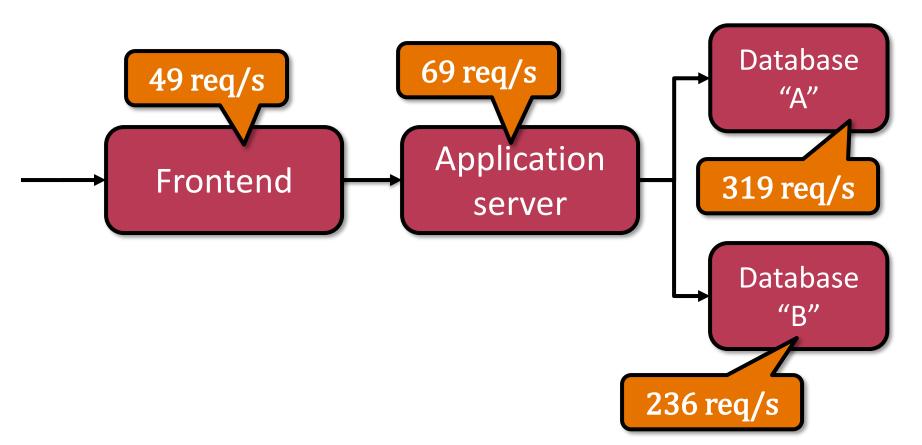
Little's Law in Practice

Simulation

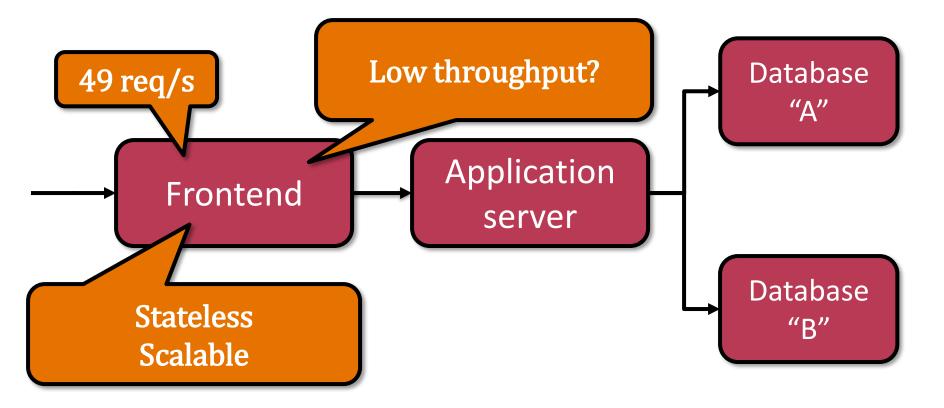
- Dobson&Shumsky
- https://youtu.be/UjzXQPGBaNA
- Why it is taught
 - http://pubsonline.informs.org/doi/pdf/10.1287/ited.7.1.106

Examples

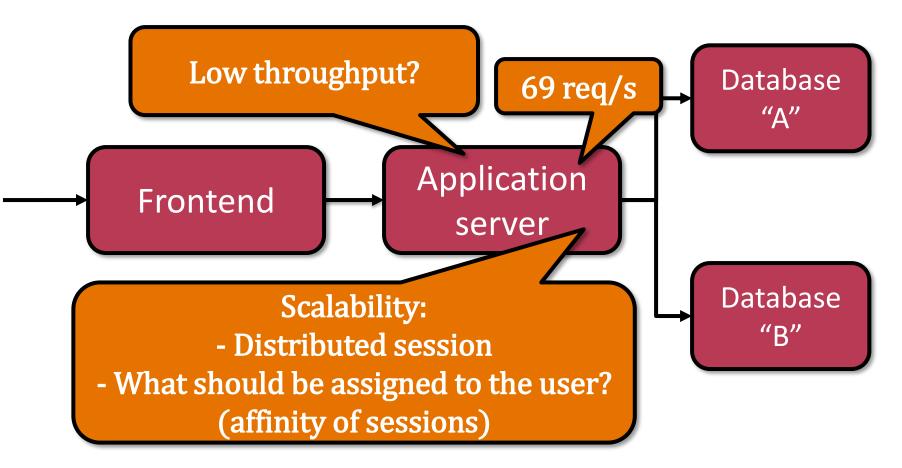
- o <u>http://web.mit.edu/sgraves/www/papers/Little's%20Law-Published.pdf</u>
 - E.g.: How long do the wine bottles stay in the cellar?
 - The cellar is filled up to $\frac{2}{3}$ in average. (~160 bottles)
 - We bought 8 bottles per month in the last one year.
 - According to Little's law, the bottles stay in average T=N/X, that is 160/8=20 months in the cellar.



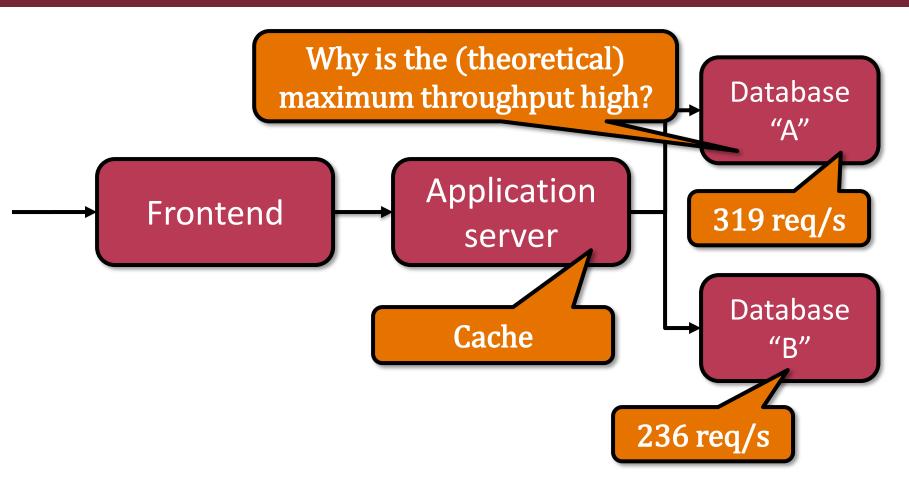
These metrics indicate the incoming load of the complete system! For instance "Database A" becomes the bottleneck if 319 requests arrive to the <u>system</u> each second.



These metrics indicate the incoming load of the complete system! For instance "Database A" becomes the bottleneck if 319 requests arrive to the system each second.

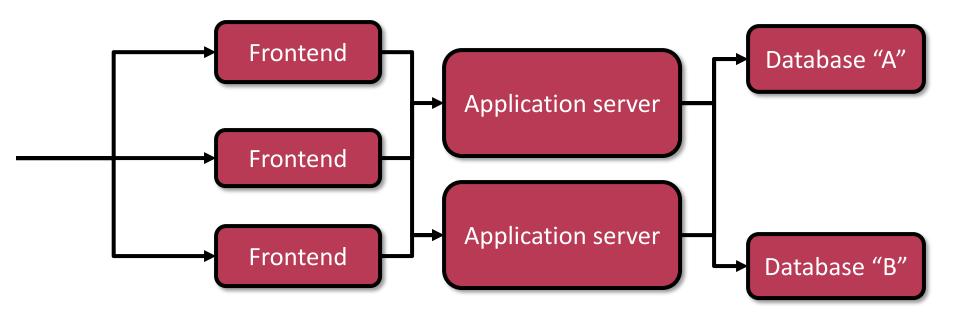


These metrics indicate the incoming load of the complete system! For instance "Database A" becomes the bottleneck if 319 requests arrive to the system each second.



These metrics indicate the incoming load of the complete system! For instance "Database A" becomes the bottleneck if 319 requests arrive to the system each second.

3-tier Architecture in Reality

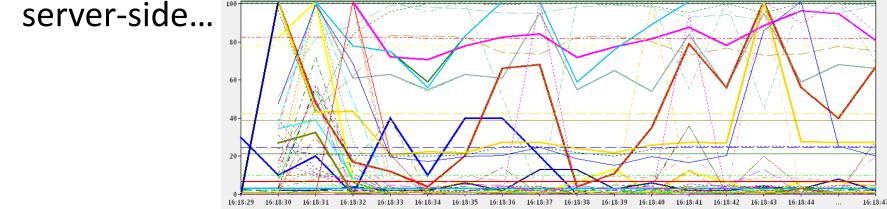


(Example: technological background for the interested) <u>http://www.projectclearwater.org/wp-content/uploads/2013/05/Clearwater-Deployment-Sizing-10-Apr-13.xlsx</u> http://www.projectclearwater.org/technical/clearwater-performance/

EGYETEM

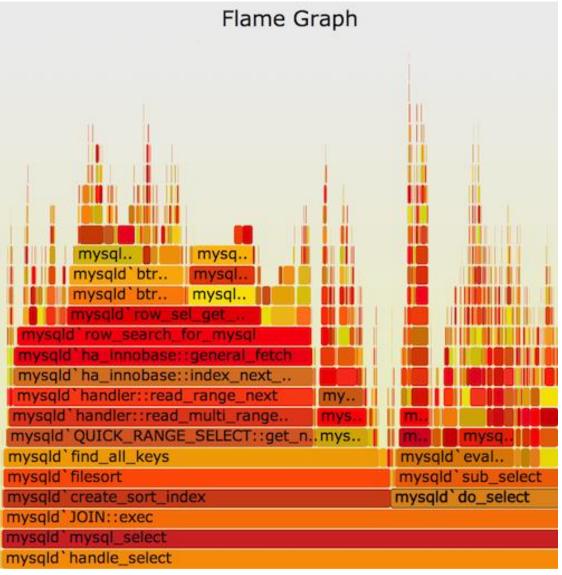
What to Measure? / What is Important?

- Metrics "in small"
 - E.g. Task manager, Resource monitor, the same on



- Metrics "in big"
 - E.g. virtualized systems
- Which metrics are interesting?

E.g.: What Takes so Much to Compute?



http://www.brendangregg.com/flamegraphs.html

anderserverser **- Annen** - Serverserversiter

MÜEGYETEM 1782

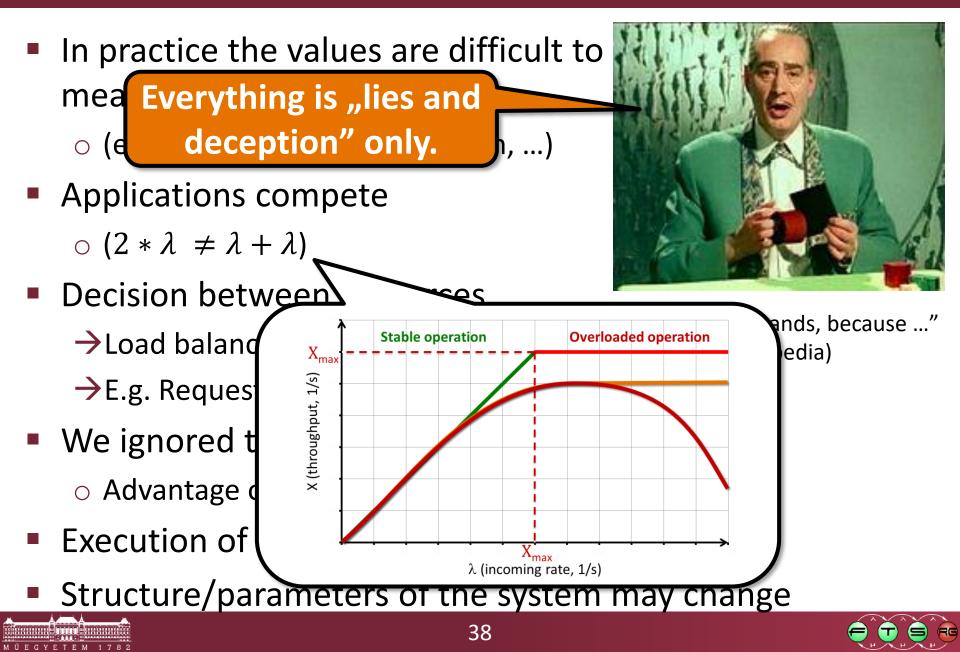
Where Do We Approximate?

- In practice the values are difficult to measure
 - (e.g. Response time fluctuation, ...)
- Applications compete $\circ (2 * \lambda \neq \lambda + \lambda)$
- Decision between resources
 - →Load balancer is also critical

"Watch my hands, because ..." (picture: wikipedia)

- \rightarrow E.g. Requests of the same user to the same server
- We ignored the actual order/pattern of arrival
 - Advantage of Little's law
- Execution of a task may be data-dependent
- Structure/parameters of the system may change

Where Do We Approximate?



Little's law

Zip's law

Changes in Workload

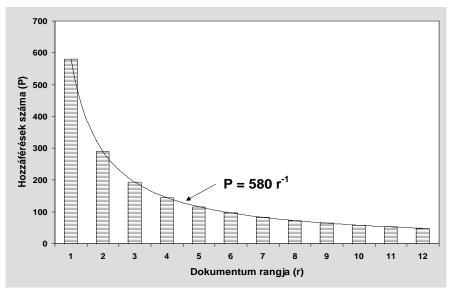
LOAD MODELS: ZIPF'S LAW

What is the Content of the Requests?

- Up to now: each requests are alike
 "I need the details of a book"
- Actually: requests have content
 - "I need the details of Foundation and Empire"
 - See Pareto principle (80% 20%)
 - Majority of the requests concerns minority of data
- Essential, because...
 - Has technical effects
 - Cache, pool size, static storage, ...
 - Concerns the system model
 - Special handling of frequent requests

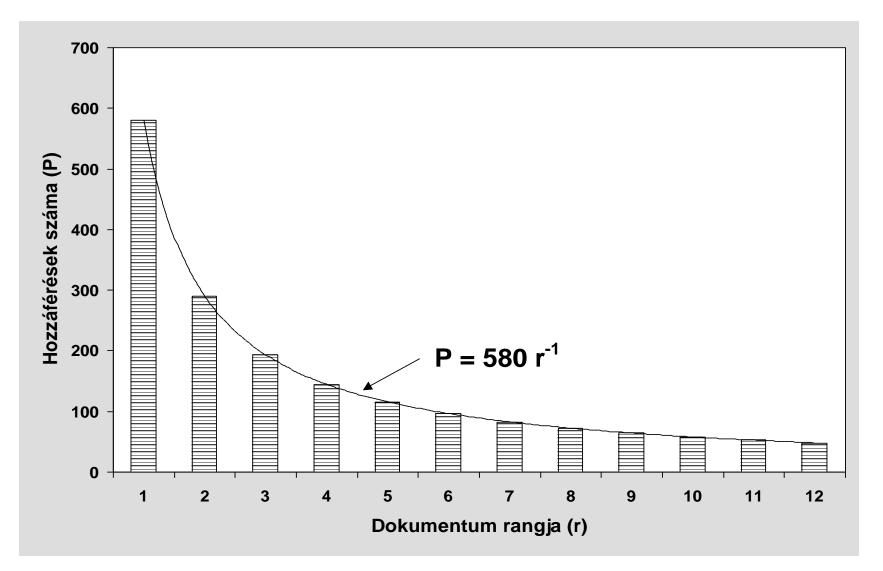
Zipf's Law

- Originally: number and frequency of words in *corpora* shows a characteristic distribution
 - True for not only language texts



George Kingsley Zipf (1902–1950) US American linguist and philologist

Zipf's Law – Example

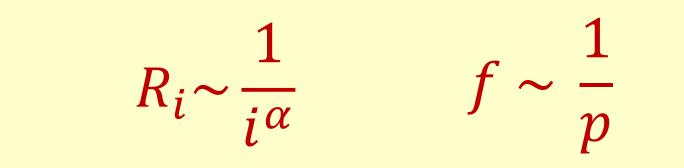


MÜEGYETEM 1782

Zipf's Law - Examples

- Hit lists
- Population of cities by their ranks
- Characteristics of internet traffic
- Popularity of websites' subpages
- Evolution of open source systems

Zipf's Law - Formula



- R_i is the incidence of the ith word
- α a value charasteristic
 of the corpus
 - o close to 1

- Simplified ($\alpha = 1$):
 - of frequency
 - p popularity:
 rank of the text
 (decreasing order)

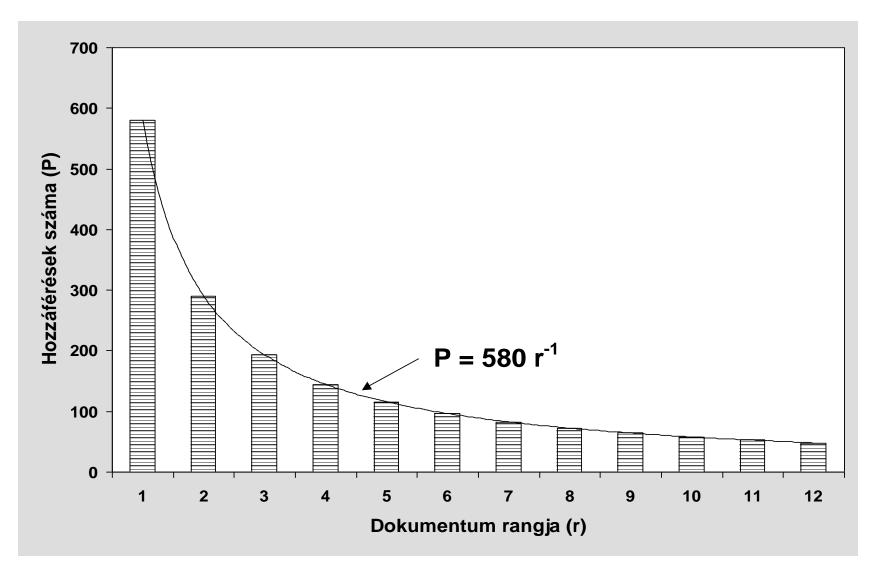
Zipf's Law – Example: Web Documents

- $\mathsf{P} = \frac{k}{r}$
- P references (hits)
- r rank (1 = most frequent)
- k positive constant

For more information see:

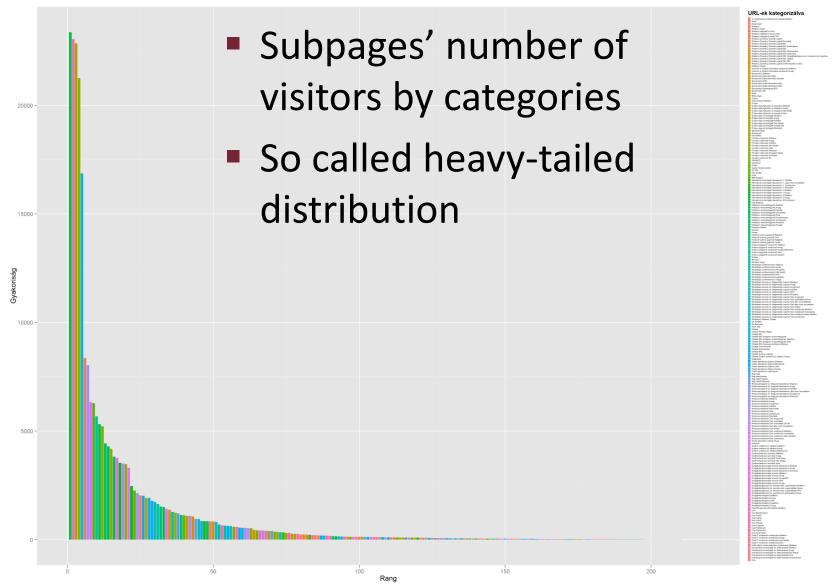
http://www.hpl.hp.com/research/idl/papers/ranking/adamicglottometrics.pdf

Zipf's Law – Example



MÜEGYETEM 1782

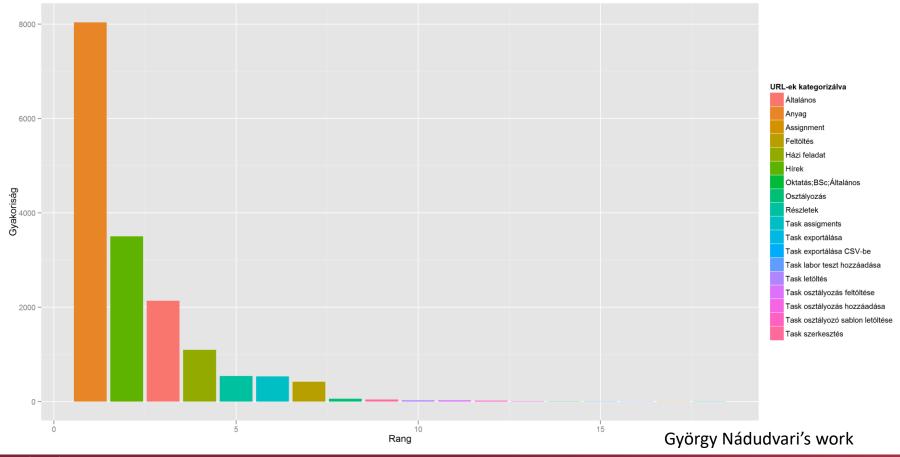
Zipf – Example: Website of our Group



47

Zipf – Example: Website of our Group

 Visitors of the webpages of the System Modelling course



48

EGYETEM

Visitation number

Little's law

Zip's law

Changes in Workload

CHANGES IN THE WORKLOAD

What kind of workload?

Up to now:

- We calculated with average values
- Regarded the system's behaviour depending on the load (intensity)
- But: In reality the increase of the load is not necessarily predictable
- In reality
 - The behaviour of the system *changes over time*
 - This has technological effects
 - Switching between tasks, resource reservation, etc. (see: Operating systems)

Changes in the Workload – Example

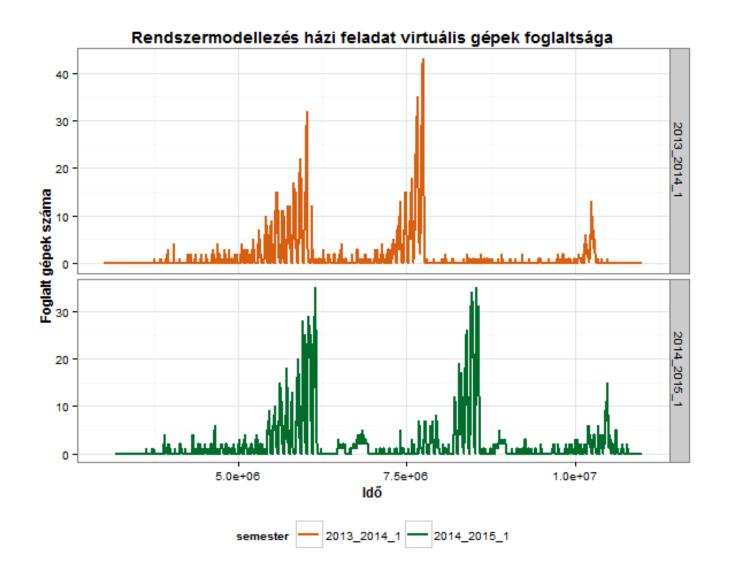
- Dimensioning a systems for producing the (at that time) new identity cards
 - It is predictable how many new cards will be applied for in a year. (expirations, next age group)
 - It is predictable how many hours there are in a year.

 \rightarrow We have the avg. arrival rate of the applications [*card/h*] Can it be used for dimensioning the system?

- Consider two different hours
 - 1. the 24th December 10-11PM
 - 2. the 15th June 4-5PM

(End of working day shortly before the main summer holiday time)

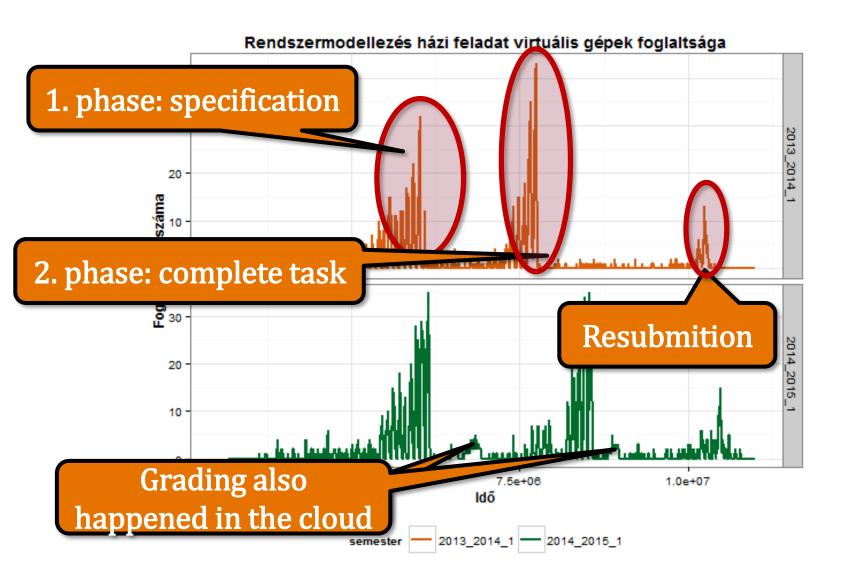
System Modelling (7th semest.) – in the cloud



52

<u>м ü е</u> суетем 17

System Modelling (7th semest.) – in the cloud



53

Real (historical) Load Example (iwiw)

Napi regisztrációk (előző hét nap átlaga)

MÜEGYETEM

