
Budapest University of Technology and Economics
Department of Measurement and Information Systems

System Modelling

Fault Modelling
(based on slides from MAJZIK István and MICSKEI Zoltán)

Contents

 Concept of service dependability

 Factors affecting service dependability

 Tools of service dependability

 Service dependability analysis

SIL Safety critical function failure / hour

1 10-6  THR < 10-5

2 10-7  THR < 10-6

3 10-8  THR < 10-7

4 10-9  THR < 10-8

Motivation: Failure Free Operation
 Service Level Agreements (SLA):

o Characteristics required by the client

o TelCo service systems („carrier grade”):
„Five nines”: 99,999% (5 mins/year outage)

 Safety critical systems:

o Standard specifications of the frequency of errors

o Safety Integrity Levels THRs (Tolerable Hazard Rates)

Failure free
operation
~ 11.000
years??

If the life-span is 15
years, then 1 out of 750
devices will fail in that

time

Inevitable: Faults

Design process Operational product

• Design faults

• Implementation faults

• Hardware faults

• Configuration faults

• Operator faults

Inevitable: Faults

Characteristics of design process:
• Better quality assurance, better methodologies
• But increasing complexity, more difficult verification

Usual estimated values for 1000 line of code:
• Good manual development and testing: <10 faults remain
• Automated development: ~1-2 faults remain
• Using formal methods: <1 fault remains

Design process Operational product

• Design faults

• Implementation faults

• Hardware faults

• Configuration faults

• Operator faults

Inevitable: Faults

Technological limits:
• Better parameters, better materials
• But increasing complexity (sensitivity)

Usual estimated values:
• CPU: 10-5…10-6 faults/hour
• RAM: 10-4…10-5 faults/hour
• LCD: ~ 2…3 years life-span

Design process Operational product

• Design faults

• Implementation faults

• Hardware faults

• Configuration faults

• Operator faults

Inevitable: Faults

Verification and validation
in design time

Fault tolerance
during operation

Design process Operational product

• Design faults

• Implementation faults

• Hardware faults

• Configuration faults

• Operator faults

Service Dependability

Dependability: is the ability to deliver
service that can justifiably be trusted

o justifiably: based on analysis, measurements

o trust: service satisfies the demands

Attributes of Dependability

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Service
Dependability

(Data)Security

Laprie et. al.: Basic Concepts and Taxonomy of Dependable and Secure Computing

Continually
failure free
operation

Ready at any
time

Service without
catastrophic

consequences

No faulty changeRepair and modification
possible

No unauthorized
access

State Partitioning

 S: the state space of the system

DOWN
Faulty

UP
Healthy

Reliability Attributes

 State partitioning s(t) system state
o Down (D) – Up (U) state partition

 Mean values:
o Mean time to first failure: MTFF = E{u1}

(sometimes MTTF)

o Mean up time: MUT = E{ui}

o Mean down time: MDT = E{di}

oMean time between failures:MTBF = MUT + MDT

t

s(t)

u1 d1 u2 d2 u3 d3 u4 d4 u5 d5 ...

U

D

Probability Time Functions

 reliability:
r(t) = P{ t’ < t: s(t’)  U} (can not go down)

 availability:
a(t) = P{ s(t)  U } (may go down)

o steady-state availability: K = lim t a(t) =

t

K

a(t)

r(t)

1.0

0

MDTMUT

MUT



Reliability

 reliability: r(t) = P{ s(t’)  U,  t’ < t }

 (first) failure rate: -r’(t)

o The probability density function of the „time to first failure”
probabilistic variable!

o Mean value: MTTF

 failure rate: λ(t) = -r’(t) / r(t) (probability of failure for one
device during a period of time)

o „bathtub curve”:

t
0

λ(t)

steady-state, regular operationtest phase
initial failures

wear out

Reliability

 Approximation: steady-state, λ(t) = λ (const.)

o „memoryless” property

o May be true for a properly tested IT system:
outdated before wear out

 Consequence:

 -r’(t): time to failure is exponential distribution

o with λ parameter

o 1/λ mean value

o Therefore: MTTF = 1/λ !

tetr )(

Requirements for Availability

Distributed systems (without fault tolerance, guiding figures):

 1 computers : 95%

 2 computers : 90%

 5 computers : 77%

 10 computers : 60%

Availability rate Maximum outage per year

2 nines (99%) 3,5 days

3 nines (99.9%) 9 hours

4 nines (99.99%) 1 hour

5 nines (99.999%) 5 minutes

6 nines (99.9999%) 32 seconds

7 nines (99.99999%) 3 seconds

Note for the Homework

 P(processserial) = P(Task1)*P(T2)*…*P(Tn)

 P(Taskn) = rn(tn) = 𝑒−λ
𝑛
∗𝑡𝑛

 λtotal * ttotal = σ𝑖=0
𝑛 λ𝑛 ∗ 𝑡𝑛

 λi = 1/MTTFi

 Failure rate is a kind of costs
o proportional to time

o additive

 In homework: rescale for representation
o λ𝑛 ∗ 𝑡𝑛 should be a usable value (and 𝑡𝑛 is small)

o Result should be scaled back at the end!

Contents

 Concept of service dependability

 Factors affecting service dependability

 Tools of service dependability

 Service dependability analysis

Affecting Factors

 Failure:
Service not conforming to specification
o value / time, catastrophic / „beneficial”

 Error:
System state leading to failure
o latent  detected

 Fault:
Presumed cause of error
o effect: dormant  active

o type: accidental or intentional, temporary or permanent

o origin: physical/human, internal/external,
development/operational

Software Faults

 Software fault: Permanent, developmental

 Activation is the function of operational profile
o Input domain, trajectory

 Reliability is proportional to:
Number of faults left after testing

 Number of fault left is proportional to:
Faults detected during a period of time at the end of testing

o Statistic testing: Measuring reliability

 Statistic techniques can estimate how long the
testing process should be continued to reach a
given reliability

Fault Chain

 Fault  Error  Failure
o e.g. software:

• fault: progr. fault: increase instead of decrease

• error: control flow reaches it, variable value erroneous

• failure: result of wrong calculation

o e.g. hardware:
• fault: cosmic radiation changes a bit

• error: reading faulty memory cell

• failure: robot arm hits the wall

 Function of system hierarchy level
o lower level failure is fault on higher level

• stuck output is failure in a chip

• fault on system level (chip is the replaceable unit)

Fault Chain

 Affecting the fault chain
o decrease failure rate

• better quality components

• stricter development process (verification, testing)

Failure free operation can not be guaranteed
(smaller chip size, more complex programs)

o prevent emergence of failure
• system structure design: redundancy

 Fault types:
o faults considered in advance:

optimal handling during design process

o unforeseeable faults:
requires appropriate system structure

Example: The Process

Large

transaction?

Receipt
N

Y

Backend Server 3

Compliance DB

AppServ4

N

N

Y

Y

AppServ3 VM

Customer & Account Identification

AppServ1 AppServ2

DB1 DB2

Backend Server 1 Backend Server 2
Application Server

 cluster

Client

Business Processes Layer

Supporting

Applications Layer

Physical

Resources Layer

Flag & report

Laundering

suspected?

Record

transaction

Money

takeover

Form

processing

Pay

to $

Manual

laundering check

Perform full

check

Timeout

DB

Client checked

earlier?

Cashier Module

Single

Hypervisor

Blade Server

Legend

Activity

Resource
Dependency

Execution Path

Gábor Urbanics – László Gönczy –Balázs Urbán – János Hartwig – Imre Kocsis:
Combined error propagation analysis and runtime event detection in process driven systems. In Software Engineering for Resilient
Systems. 2014, Springer, 169–183. p.

Large

transaction?

Receipt
N

Y

Backend Server 3

Compliance DB

AppServ4

N

N

Y

Y

AppServ3 VM

Customer & Account Identification

AppServ1 AppServ2

DB1 DB2

Backend Server 1 Backend Server 2
Application Server

 cluster

Client

Business Processes Layer

Supporting

Applications Layer

Physical

Resources Layer

Flag & report

Laundering

suspected?

Record

transaction

Money

takeover

Form

processing

Pay

to $

Manual

laundering check

Perform full

check

Timeout

DB

Client checked

earlier?

Cashier Module

Outage 1

Outage 1

Stuck 1

Single Fault 1

Outage 1

Stuck 1

Single

Hypervisor

Blade Server

Legend

Outage 1

Resource Setup Identifier

Failure Mode

Use Case Id

Activity

Resource
Dependency

Execution Path

Single (Hardware) Fault

Large

transaction?

Receipt
N

Y

Backend Server 3

Compliance DB

AppServ4

N

N

Y

Y

AppServ3 VM

Customer & Account Identification

AppServ1 AppServ2

DB1 DB2

Backend Server 1 Backend Server 2
Application Server

 cluster

Client

Business Processes Layer

Supporting

Applications Layer

Physical

Resources Layer

Flag & report

Laundering

suspected?

Record

transaction

Money

takeover

Form

processing

Pay

to $

Virtualized

HA Cluster

Manual

laundering check

Perform full

check

Timeout

Blade

Server Farm

DB

Client checked

earlier?

Cashier Module
Degraded 2

Degraded 2

Failover 2

Single Fault 2

Delay-incurred Cost 2

Delayed 2

Delayed

Delay-incurred Cost 2

2

Legend

Outage 1

Resource Setup Identifier

Failure Mode

Use Case Id

Activity

Resource
Dependency

Execution Path

Effects of the Single Fault

Propagation of the Fault

Large

transaction?

Receipt
N

Y

Backend Server 3

Compliance DB

AppServ4

N

N

Y

Y

AppServ3 VM

Customer & Account Identification

AppServ1 AppServ2

DB1 DB2

Backend Server 1 Backend Server 2
Application Server

 cluster

Client

Business Processes Layer

Supporting

Applications Layer

Physical

Resources Layer

Flag & report

Laundering

suspected?

Record

transaction

Money

takeover

Form

processing

Pay

to $

Virtualized

HA Cluster

Manual

laundering check

Perform full

check

Timeout

Blade

Server Farm

DB

Client checked

earlier?

Cashier Module
SQLInjected 3

OK 3

OK 3

OK 3

SQLInjected 3

SQLInjected 3

Legend

Outage 1

Resource Setup Identifier

Failure Mode

Use Case Id

Activity

Resource
Dependency

Execution Path

Categorizing Faults

 Hardware faults

o base system (motherboard,
processor, memory)

o power (power supply, UPS)

o storage subsystem

o network

 Software faults

o operating system faults

o application faults

o driver faults

 …

 Human-made faults

o administrator faults

o non-malicious fault of
users

o malicious fault of users

o attack of an outsider

 Natural faults

o interference of operation
environment, eg. failing air
conditioning, bomb alarm,
pipe break

o natural disasters

Causes of IT System Failures

Operating system

Software fault

Hardware fault

Other
(human,natural,
configuration)
(PEBCAK, PICNIC ;)

Contents

 Concept of service dependability

 Factors affecting service dependability

 Tools of service dependability

 Service dependability analysis

Means of dependability

 Fault prevention: prevent the occurrence of faults

o physical faults: good quality components, shading, ...

o design faults: verification

 Fault removal:

o prototype phase: testing, diagnostics, repair

o in operation: monitoring, repair

 Fault tolerance: provide service even in the presence of faults

o in operation: fault handling, redundancy

 Fault forecasting: estimate number and consequence of faults

o measurement and „prediction”, preventive maintenance

Fault-tolerant Systems

 However good is the verification during design,
dependability can not be guaranteed:
o temporary hardware faults (see disturbance sensitivity)

o non-tested software faults

o non-considered complex interactions

 We must prepare for in-operation faults!

 Fault tolerance: provide service even in the presence of faults

o autonomic fault handling in operation

o intervention to fault  failure chain

o system-based solutions (+ dependable components)

 Main condition: Redundancy (spares)
o spare resources to replace faulty components

Appearance of Redundancy

1. Hardware redundancy
o excess hardware resources

• already in the system (distributed system)
• designed for fault tolerance (spare)

2. Software redundancy
o excess software modules

3. Information redundancy
o excess information for fault removal

• error correction coding (ECC)

4. Time redundancy
o repeated execution, surplus time of fault handling

Simultaneous appearance!

Type of Redundancy

 Cold reserve (passive redundancy):
o passive in normal operation, activated when fault occurs

o slow failover (starting, state updating,...)

o e.g. spare computer

 Warm reserve:
o secondary functions in normal operation

o faster failover (starting is not needed)

o e.g. logging machine takes up critical functions

 Hot reserve (active redundancy):
o active in normal operation, executes the same tasks

o failover immediately

o e.g. duplicated, multiplicated

 Multiplication
o Duplication

• fault detection: e.g. master-checker setup

• fault tolerance only with diagnostics support and failover

o TMR: Triple-modular redundancy
• fault masking with voting

• voter is critical component (but simple)

o NMR: N-modular redundancy
• fault masking with majority vote

• MTFF lower, but higher chance of surviving mission time

• airplane on-board devices: 4MR, 5MR

 Typical: high-availability clusters

1. Hardware Redundancy

Level of Multiplication

 Computer (server) level: Loosely coupled
o high-availability clusters

e.g. Sun Cluster, HA Linux, Windows Failover Cluster

o software support: state synchronization, transactions

 Card level:
o runtime reconfiguration, “hot-swap”

e.g. compactPCI, HDD

o software support: configuration management

 Component level: tightly coupled
o component level multiplication

pl. TMR, self-checking circuit

2. Software Redundancy

Usage:

1. In case of software design faults:
o repeated execution doesn’t help...

o redundant modules: different design is required
variants: same specification, but
• different algorithm, data structure

• different development environment, programming language

• isolated development

2. In case of temporary (hardware) faults:
o fault does not appear after repeated execution

o fault prevention important

 Error correction coding
o memory, disk, data transfer

o e.g. Hamming-code, Reed-Solomon code

 Limited fault removal ability
o long-term data stability can be bad

(faults “pile up”)

o disk: “memory scrubbing”
continuous read and corrected write

 Redundant (multi instance) databases:
o ensure access consistency

o one instance serialization

3. Information Redundancy

 Clear case: retry execution

o low-level hardware: processor instruction

o effective against temporal faults

 Time redundancy is “companion” of others types

Real-time systems: design consideration
is the time of fault handling guaranteed?

o permanent hardware faults: masking, hot reserve

o temporal hardware faults: roll-forward recovery

o software design faults: N-version programming

4. Time Redundancy

Fault Handling

 Hardware design faults (< 1%):

o not taken into consideration (see properly tested
components)

 Hardware permanent operation faults (10%):

o hardware redundancy (e.g. spare processor)

 Hardware temporal operation faults (70-80%):

o time redundancy (e.g. repeated execution)

o information redundancy (e.g. error correction)

o software redundancy (e.g. state save and recovery)

 Software design faults (10-20%):

o software redundancy (e.g. separately designed modules)

Cost Optimization

development cost

costs

level of
fault tolerance

Cost Optimization

maintenance cost

development cost

costs

level of
fault tolerance

Cost Optimization

maintenance cost

development cost

sum

level of
fault tolerance

costs

 optimum

Contents

 Concept of service dependability

 Factors affecting service dependability

 Tools of service dependability

 Service dependability analysis

Dependability Analysis

 Why is analysis needed?

o Is it not enough to provide bountiful redundancy?

 Redundancy is expensive 

 Only a properly designed redundancy achieves it’s
goal!

o Amount

o Cold / hot

o Recovery

o …

Example

 3 hard disk RAID-5 array

o Two disk size usable space, plus parity

o Tolerates the failure of one disk

o Rate of first failure: 3λ
(hot swap  all three disk may fail!)

o MTTF: 1/3λ + 1/2λ = 5/6λ

o 5/6λ < 1/λ – one disk is better!

3 2 1 0

3λ 2λ λ

Example

 Redundancy worsened dependability!

 Solution: failed disk must be changed quickly

o Include repair process in Markov-chain

 Other example: three light bulbs, cold reserve

3λ 2λ λ

λ λ λ

μμμ

Dependability Analysis

 Tasks:

o Identify fault modes, failures

o Analysis: qualitative and quantitative

 Methods

o Check lists

o Tables
(e.g. FMEA: Failure Mode and Effect Analysis)

o Fault trees

o State-based approaches (e.g. Petri nets)

o…

Check List

 Technique:

o Organized collection of experience

o Use as „rules of thumb”

 Assures:

o Known fault sources not ignored

o Employs tried practices

 Disadvantages:

o List is not complete and difficult to extend

o Gives false sense of security

o Usability in other areas is questionable

Failure Mode and Effect Analysis (FMEA)

 List faults and their effects

Component Failure Modes Probability Effect

Webserver HW fault 10%
Service outage,
replace comp.

SW update 90%
Temporal

outage

SQL server Disc full 20%
Only static
content is
available

…

Example: Control electronics

Fault
mode Effect Probability

Calculated

Fault Tree

 How can the root failure occur?

 Components (partial)

o AND gate

o OR gate

o Rectangle: subsystem

o Circle: base level failure

service not available

web1 faulty web2 faulty
switch faulty

Fault Tree - Analysis

 Qualitative:

o identify single point of failure (SPOF)

o critical event: can cause failure on multiple paths

 Quantitative:

o probability for basic failures (hard: where to get
correct data?)

o calculate properties of root (e.g. reliability)

o Problems: not independent events…

Graphical Component Set of Fault Trees

top level or intermediate event

primary (base level) event

event not evaluated further

condition for the occurrence of a complex event

AND gate

OR gate

regular event (not fault or danger)

Fault Tree Example: Elevator

Elevator
stuck

Power
out

Controller
fault

Top level dangerBoole-logical

connection

Intermediate

event
Button

stuck

Event not

evaluated

further

Fault Tree Example: Elevator

Primary events

Elevator
stuck

Power
out

Controller
fault

Controller
HW faultUPS

out
380V

out

Primary

proc.

fault

Controller

SW fault

Button

stuck

Spare

proc.

fault

Top level dangerBoole-logical

connection

Intermediate

event

Event not

evaluated

further

Fault Tree Example: Software Pattern

IF-THEN-ELSE
fault

Condition TRUE,

THEN branch faulty
Condition FALSE,

ELSE branch faulty

ELSE

branch faulty
THEN

branch faulty
Condition

TRUE

Condition

evaluation

error

Condition

FALSE

Command 1

fault

Command 2

fault

Qualitative Analysis

 Fault tree reduction: Resolve intermediate events
and pseudo events
 disjunctive normal form (OR on top)

 Cut:
Primary events connected with AND gate

 Minimal set of cuts: Reduction not possible

o No set, for which a subset can also be found

 Identifiable:

o single point of failure (SPOF)

o critical events (appears in more than one cut)

Fault Tree Example: Elevator

Elevator
stuck

Power
out

Controller
fault

Controller
HW faultUPS

out
380V

out

Primary

proc.

fault

Controller

SW fault

Button

stuck

Spare

proc.

fault

Reduced Fault Tree Example: Elevator

Controller

SW fault

SPOF
maybe

SPOF

Elevator
stuck

UPS

out

380V

out

Primary

proc.

fault

Button

stuck

Spare

proc.

fault

Quantitative Analysis

 Probabilities assigned to primary events
o component data, experience, estimate

 Calculate probability of top-level danger
o AND gate: product (if independent events)

precise: P{A and B} = P{A}P{B|A}

o OR gate: sum (over approximation)
precise: P{A or B} = P{A}+P{B}-P{A and B}<=P{A}+P{B}

 Problems:
o correlating faults

o handling (fault) sequences over time

Fault Tree Example: Elevator

p2 p3

p1 p2p3

p4 p5

p4p5
p6

p4p5+p6

p1+p2p3+(p4p5+p6)Elevator
stuck

Power
out

Controller
fault

Controller
HW faultUPS

out
380V

out

Primary

proc.

fault

Controller

SW fault

Button

stuck

Spare

proc.

fault

Failure Rates

 Basis of analysis: fault probabilities

 Where to get good data:

o Estimate

o Own monitoring system

o External studies, numbers (credibility, precision?)

 Examples:

o Cisco switch MTBF ~ 200000 hours (=22,8 years)

o IBM S/390 mainframe MTTF 45 years

o Windows XP MTTF 608 hours

oweb server MTTF ~ 16 days…

State Based Techniques

 Qualitative description of faults: discrete behavior
model

o State machine, data flow network, process, Petri-
nets…

 Quantitative: timing for state transitions

o Deterministic

o Based on probability distribution:
continuous time, markovian stochastic

Fault Modelling with Data Flow Networks

 Qualitative fault model  data flow network

o Component data flow node

o Internal fault modes  node states

o Component connections  channels

o Communication faults  channel tokens

UP F

DN

Ok / Omission /
Compromised

Ok / Failed /
RangeViolation

Ok / Omission
/ Corrupted

Ok / Late /
Omission

in1

in2

R0: in1.Ok, in2.Ok / out1.Ok, out2.Ok

out2

out1R1: in1.-, in2.Failed /
out1.Corrupted,out2.Omission

Fault Modelling with Data Flow Networks

 Fault propagation

o Faulty component state  faulty message

o Faulty message  faulty component state

 Qualitative analysis

o Forward: what is the consequence of an fault?

o Backward: what is the cause of a failure?

 One (not complete) solution technique:

o Constraint Satisfaction Problem (CSP)

Example: Dependability Analysis

Task: What kind of faults will make the service unavailable
(web store)?

external DNS address directory

client

Task: Identify Fault Modes

 What kind of faults will make the service
unavailable (web store)?

 Power outage, HW fault, network
component/cable fault, server service faults,
application fault, install update, overload, attack,
misconfiguration, version incompatibility, virus…

Example: Incorporate Fault Tolerance

Use secondary DNS
server

Duplicate
network path Hot spare SQL

server

Use 2. ISP

external DNS address directory

client

Load distribution
cluster

replicate

external DNS 2.

Example: Incorporate Fault Tolerance

Is our system
fault tolerant?

external DNS address directory

client

replicate

external DNS 2.

Example: Incorporate Fault Tolerance

Is our system
fault tolerant?

 Depends:

oWe are protected from some SPOFs

 BUT

o many fault options are left

o Delete data, destruction of complete server room,
administrator faults, OS hotfix needs restart…

Example: incorporate fault tolerance

Is our system
fault tolerant?

 Depends:

oWe are protected from some SPOFs

 BUT

o many fault options are left

o Delete data, destruction of complete server room,
administrator faults, OS hotfix needs restart…

Moral: always know,
• against what you want to protect,
• what techniques do you have,
• is it worth to protect it

Analysis: Fault Tree

 SHARPE tool

 Draw fault tree

http://www.ee.duke.edu/~kst/software_packages.html

Analysis: Fault Tree

 Assigning occurrence probability to primary events

 Determining system reliability:

Analysis: Petri-net

 TimeNET tool

 Basic blocks and parameters
web_fault

web_faulty
web_good

web_repair

number_of_web

switch_fault

switch_faulty
switch_good

switch_repair

number_of_web := 2

web_fault := 90

web_repair := 0.5

switch_fault := 360

switch_repair := 0.02

avail = P{ #web_good > 0 AND #switch_good > 0}

http://pdv.cs.tu-berlin.de/~timenet/

Analysis: Petri-net

Complete
model:

Summary

 Dependability

o Characteristics, propagation chain, tools

 Fault tolerance

o Appearance of redundancy

 Analysis:

o Technical and mathematical methods

o Identification of fault modes

o Select appropriate protection technique

