
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

 Saturation

András Vörös

Formal methods

 Safety critical and embedded systems

oRailway, automotive industry, air transportation

oReliability is an important issue

 Design time analysis

o These models can be used for implementation

Modeling Specification
Formal

verification

requirements

- Does my system work well?

- Does it provide services properly?

Mathematically sound answer

Proof

Model checking

 Automatic verification method

 Prerequisite:

 Exploring and representing the reachable states

 Problem:

o State space explosion

o Time and space requirements

System
model

Specification,
requirements

Model
checker

Counterexample

Saturation algorithm

 Efficient solution for:
o State space generation

o Model checking

 Symbolic algorithm
o Encoding of states

o Special underlying data structures
• Multi Valued Decision Diagrams (MDD-s)

 Special iteration strategy
o Efficient for asynchronous models

Saturation
State
space

System
model

Multi Valued Decision Diagrams

 Derived from decision trees
o variables are ordered into levels

 Example:
o only binary variables

0 0 0 1 0 1 1 1

1. variable

2. variable

3. variable

terminal constants
Decision tree

1

0 1

0
1 0

1

0 0 0 1 0 1 1

Multi Valued Decision Diagrams
 Derived from decision trees

o variables are ordered into levels

 Special reduction rules
o in a bottom-up fashion, applying reduction from level-to-levels

 Compact representation of multi valued functions

0 0 0 1 0 1 1 1

Decision tree

1

0 1

0
1 0

1

0 0 0 1 0 1 1

0 1

≡

0 1

0 1
1

1

0

0

MDD

Symbolic algorithm

 Symbolic encoding instead of explicit state
representation

o Decomposition is needed

 Saturation uses component wise encoding

Component 3

Component 2

Component 1

m
ap

p
in

g

System Model

Special iteration
 Local exploration in a greedy manner
 Exploring global synchronization events if needed
 Uses the primarily defined order of the decision diagram

variable encoding
 Efficient for Globally Asynchronous, Locally Synchronous models

(GALS)

Component 3

Component 2

Component 1

System Model

Iteratio
n

 o
rd

e
r

State space representation with MDDs

Component 3

Component 2

Component 1

System Model

α

β

α

α

Real state Symbolic state Symbolic SS in MDD

α→0

α→0

(α,β)→0

1

0

0

0

State space representation with MDDs

Component 3

Component 2

Component 1

System Model

α

δ

γ

α

Real state Symbolic state Symbolic SS in MDD

α→0

α→0
γ→1

(α,β)→0
(α,δ)→1

1

0

0

0

1

1

Experiments

 Dining philosophers

o 5 philosophers

 State space
representation

o 1364 states

o 19 nodes

Experiments

 Dining philosophers

o 10 philosophers

 State space
representation

o 1,860,498 states

o 40 nodes

Experiments

 Dining philosophers

o 20 philosophers

 State space
representation

o 3,461,452,808,002
states

o 80 nodes

Exponential growth in the
state space

Linear growth in the state
space representation

Experiments

 Slotted Ring
communication protocol

o 2 slots

 State space
representation

o 52 states

o 14 nodes

Experiments

 Slotted Ring
communication protocol

o 4 slots

 State space
representation

o 5136 states

o 30 nodes

Experiments

 Slotted Ring
communication protocol

o 8 slots

 State space
representation

o 68,026,624 states

o 103 nodes

Experiments

 Slotted Ring
communication protocol

o 20 slots

 State space
representation

o 1020 states

o 487 nodes

Scales up to about 200 slots in the ring

and about 10200 states

(60902 nodes in the state space MDD,
the full state space generation lasted

222 seconds long)

Experiments

 Flexible manufacturing system

o 5 item

 State space representation

o about 2,900,000 states

o 248 nodes

Not so nice, but
still efficient 

Experiments

 Tower of Hanoi game

o It consists of three rods, and a number of disks of
different sizes which can slide onto any rod.

o Rules:

• Only one disk may be moved at a time

• Each move consists of taking the upper disk from one of the
rods and sliding it onto another rod, on top of the other

• No disk may be placed on top of a smaller disk

Synchronous model:

- at most 4 transitions are enabled

 from each state

Experiments

 Tower of Hanoi game

o 12 disks

 State space representation

o 531 441 (312) states

o 12 nodes

 Unfortunately:

o during the exploration we construct more
nodes

o the state space generation took 58 seconds

o huge number of transitions in the model

Experiments

 Tower of Hanoi game

o 12 disks

 State space representation

o 531 441 (312) states

o 12 nodes

 Unfortunately:

o during the exploration we construct more
nodes

o the state space generation took 58 seconds

o huge number of transitions in the model

Conclusion:
Efficient state space representation

Efficient iteration

 - For asynchronous models -

Problems

 Efficiency of the algorithm highly depends:

oDecomposition

oVariable ordering
• Bottleneck of symbolic methods

 Best performance if this information is
provided manually

Motivation for bounded model checking

State space

Initial
states

Error states

Requirements

not satisfied

Motivation for bounded model checking

State space

Initial
states

Error states

Requirements

not satisfied

Bounded model checking (BMC)
 explores a k-bounded part of the state space
 (usually in a breadth first manner)
 examines the specification on this smaller part

Bounded Saturation

 Bounded model checking

o explores a k-bounded part of the state space

• usually in a breadth first manner

o examines the specification on this smaller part

 Saturation

o Explores the state space in an irregular recursive order

o Difficult to bound the exploration

o There is no distance information in the MDD-s

Bounded Saturation

 Bounded model checking

o explores a k-bounded part of the state space

• usually in a breadth first manner

o examines the specification on this smaller part

 Saturation

o Explores the state space in an irregular recursive order

o Difficult to bound the exploration

o There is no distance information in the MDD-s
New data structure:

Edge Valued Decision Diagrams (EDDs)

- MDD based data structure enriched
with distance information

Saturation Based bounded model checking

 The algorithm uses the formerly
developed state space generation and
CTL model checking algorithms

 Efficient for some models and
specifications

Input:
•Petri Net
•CTL specification
•Initial bound (B)
•Increment (inc)

b= B
Saturation

based bounded
state space
exploration

Saturation
based CTL

model checking

Result?
b = b + inc

YES

MDD

References
 G. Ciardo, R. Marmorstein, and R. Siminiceanu. The saturation algorithm

for symbolic state-space exploration. Int. Journal Software Tools for
Technology Transfer, 8(1):4–25, 2006.

 G. Ciardo and R. Siminiceanu. Structural symbolic CTL model checking of
asynchronous systems. In Computer Aided Verification (CAV’03), LNCS
2725, pages 40–53. Springer-Verlag, 2003.

 A. Yu, G. Ciardo, and G. Lüttgen. Decision-diagram-based techniques for
bounded reachability checking of asynchronous systems. Int. J. Softw.
Tools Technol. Transf., 11:117–131, February 2009.

 Y. Zhao and G. Ciardo. Symbolic CTL model checking of asynchronous
systems using constrained saturation. In Proceedings of the 7th
International Symposium on Automated Technology for Verification and
Analysis, ATVA ’09, pages 368–381 2009. Springer-Verlag.

 A. Vörös, T. Bartha, D. Darvas, T. Szabó, A. Jámbor, and Á . Horváth.
Parallel saturation based model checking. In ISPDC, Cluj Napoca, 2011.
IEEE Computer Society

Automata theoretic model checking

Verifying ω-regular properties

Traditional approach

False

Automaton
accepting
violating

traces

True
The design
satisfies the
specification

Words of the
language are

violating traces

Is the
language
empty?

Automaton
modelling
the design

Synchronous
product of
automata

Detailed steps

 Can be obtained by:
o Complementing the Büchi-automaton describing the specification (not

always possible)
o Compiling the negation of the specification described in linear

temporal logic

 Compilation algorithm and optimization is crucial
o It is the „exponential part” of the model checking process
o Product computation complexity is linear in the size of the automaton

False

Automaton
accepting violating

traces

True The design satisfies the
specification

Words of the language are
violating traces

Is the
language
empty?

Automaton modelling
the design

Synchronous product
of automata

Detailed steps

False

Automaton
accepting violating

traces

True The design satisfies the
specification

Words of the language are
violating traces

Is the
language
empty?

Automaton modelling
the design

Synchronous product
of automata

 Can be obtained from higher level models by the means of state-
space generation
o State space can be huge, especially in asynchronous systems

 Symbolic representation can solve storage problems
o But it complicates the generation process

 Saturation algorithm provides efficient symbolic state space
exploration
o Especially in asynchronous systems…

Detailed steps

False

Automaton
accepting violating

traces

True The design satisfies the
specification

Words of the language are
violating traces

Is the
language
empty?

Synchronous product
of automata

 Product state space is the Cartesian product of the sets of states of the
automata
o But only a part is reachable from the initial state

 A word of the product language is an accepting trace of the product
automaton
o An accepting trace is a reachable loop that contains accepting states

 Task: find such a loop or prove that there does not exist one
o Efficient on-the-fly algorithms on explicit graph representations
o Symbolic approaches are cumbersome

Automaton modelling
the design

Detailed steps

 Compilation algorithm handling linear temporal logics (LTL)
o Past and future time linear temporal expressions

 Heavy optimization and minimization of the specification
automaton
o Reduction of the temporal expressions
o Removing redundancy from the automaton

 A compiled and optimized automaton can be used multiple
times!

False

Automaton
accepting violating

traces

True The design satisfies the
specification

Words of the language are
violating traces

Is the
language
empty?

Automaton modelling
the design

Synchronous product
of automata

Detailed steps

False

Automaton
accepting violating

traces

True The design satisfies the
specification

Words of the language are
violating traces

Is the
language
empty?

Synchronous product
of automata

 Product state space is generated together with the system state space
o Using a modified version of the saturation algorithm

 Emptiness checking is performed simultaneously during the generation
process
o Unlike traditional symbolic approaches, accepting loops are being detected

incrementally
o State space generation halts immediately when a loop is found

 This gives us an incremental, on-the-fly LTL model checking process
o Supporting LTL, PLTL and any ω-regular specification properties

Automaton modelling
the design

