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Formal methods 

 Safety critical and embedded systems 

oRailway, automotive industry, air transportation 

oReliability is an important issue 

 Design time analysis 

o These models can be used for implementation  

 

Modeling Specification 
Formal 

verification 

requirements 

- Does my system work well? 

- Does it provide services properly? 

Mathematically sound answer 



Proof 

Model checking 

 Automatic verification method 

 

 Prerequisite: 

 Exploring and representing the reachable states 

 Problem: 

o State space explosion 

o Time and space requirements 

System 
model 

Specification, 
requirements 

Model 
checker 

Counterexample 



Saturation algorithm 

 Efficient solution for: 
o State space generation 

o Model checking 

 Symbolic algorithm 
o Encoding of states 

o Special underlying data structures 
• Multi Valued Decision Diagrams (MDD-s) 

 Special iteration strategy 
o Efficient for asynchronous models 

Saturation 
State 
space 

System 
model 



Multi Valued Decision Diagrams 

 Derived from decision trees 
o variables are ordered into levels 

 Example:  
o only binary variables 
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Multi Valued Decision Diagrams 
 Derived from decision trees 

o variables are ordered into levels 

 Special reduction rules 
o in a bottom-up fashion, applying reduction from level-to-levels 

 Compact representation of multi valued functions  
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Symbolic algorithm 

 Symbolic encoding instead of explicit state 
representation 

o Decomposition is needed 

 Saturation uses component wise encoding 
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Special iteration 
 Local exploration in a greedy manner 
 Exploring global synchronization events if needed 
 Uses the primarily defined order of the decision diagram 

variable encoding 
 Efficient for Globally Asynchronous, Locally Synchronous models 

(GALS) 
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State space representation with MDDs 

Component 3 

Component 2 

Component 1 

System Model 
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State space representation with MDDs 

Component 3 
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Component 1 
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Experiments 

 Dining philosophers 

o 5 philosophers 

 State space 
representation 

o 1364 states 

o 19 nodes 

 



Experiments 

 Dining philosophers 

o 10 philosophers 

 State space 
representation 

o 1,860,498 states 

o 40 nodes 

 



Experiments 

 Dining philosophers 

o 20 philosophers 

 State space 
representation 

o 3,461,452,808,002 
states 

o 80 nodes 

 

Exponential growth in the 
state space 

 

Linear growth in the state 
space representation 



Experiments 

 Slotted Ring 
communication protocol 

o 2 slots 

 State space 
representation 

o 52 states 

o 14 nodes 

 



Experiments 

 Slotted Ring 
communication protocol 

o 4 slots 

 State space 
representation 

o 5136 states 

o 30 nodes 

 



Experiments 

 Slotted Ring 
communication protocol 

o 8 slots 

 State space 
representation 

o 68,026,624 states 

o 103 nodes 

 



Experiments 

 Slotted Ring 
communication protocol 

o 20 slots 

 State space 
representation 

o 1020 states 

o 487 nodes 

 

Scales up to about 200 slots in the ring 

and about 10200 states 

(60902 nodes in the state space MDD, 
the full state space generation lasted 

222 seconds long) 



Experiments 

 Flexible manufacturing system 

o 5 item 

 State space representation 

o about 2,900,000  states 

o 248 nodes 

 

Not so nice, but 
still efficient  



Experiments 

 Tower of Hanoi game 

o It consists of three rods, and a number of disks of 
different sizes which can slide onto any rod.  

o Rules: 

• Only one disk may be moved at a time 

• Each move consists of taking the upper disk from one of the 
rods and sliding it onto another rod, on top of the other 

• No disk may be placed on top of a smaller disk 

 
Synchronous model: 

- at most 4 transitions are enabled 

  from each state 



Experiments 

 Tower of Hanoi game 

o 12 disks 

 State space representation 

o 531 441 (312) states 

o 12 nodes 

 Unfortunately: 

o during the exploration we construct more 
nodes 

o the state space generation took 58 seconds 

o huge number of transitions in the model 

 



Experiments 

 Tower of Hanoi game 

o 12 disks 

 State space representation 

o 531 441 (312) states 

o 12 nodes 

 Unfortunately: 

o during the exploration we construct more 
nodes 

o the state space generation took 58 seconds 

o huge number of transitions in the model 

 

Conclusion: 
Efficient state space representation 

Efficient iteration 

 - For asynchronous models - 



Problems 

 Efficiency of the algorithm highly depends: 

oDecomposition 

oVariable ordering 
• Bottleneck of symbolic methods 

 

 Best performance if this information is 
provided manually 



Motivation for bounded model checking 

State space 

Initial 
states 

Error states 

Requirements 

not satisfied 



Motivation for bounded model checking 

State space 

Initial 
states 

Error states 

Requirements 

not satisfied 

Bounded model checking (BMC) 
 explores a k-bounded part of the state space  
 (usually in a breadth first manner) 
 examines the specification on this smaller part 



Bounded Saturation 

 Bounded model checking 

o explores a k-bounded part of the state space  

• usually in a breadth first manner 

o examines the specification on this smaller part 

 Saturation 

o Explores the state space in an irregular recursive order 

o Difficult to bound the exploration 

o There is no distance information in the MDD-s 



Bounded Saturation 

 Bounded model checking 

o explores a k-bounded part of the state space  

• usually in a breadth first manner 

o examines the specification on this smaller part 

 Saturation 

o Explores the state space in an irregular recursive order 

o Difficult to bound the exploration 

o There is no distance information in the MDD-s 
New data structure:  

Edge Valued Decision Diagrams (EDDs) 

- MDD based data structure enriched 
with distance information 



Saturation Based bounded model checking 

 The algorithm uses the formerly 
developed state space generation and 
CTL model checking algorithms 

 Efficient for some models and 
specifications 

Input: 
•Petri Net 
•CTL specification 
•Initial bound (B) 
•Increment (inc) 

b= B 
Saturation 

based bounded 
state space 
exploration 

Saturation 
based CTL 

model checking 

Result? 
b = b + inc 

YES 

MDD 
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Automata theoretic model checking 

Verifying ω-regular properties 



Traditional approach 
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product of 
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Detailed steps 

 Can be obtained by: 
o Complementing the Büchi-automaton describing the specification (not 

always possible) 
o Compiling the negation of the specification described in linear 

temporal logic 

 Compilation algorithm and optimization is crucial 
o It is the „exponential part” of the model checking process 
o Product computation complexity is linear in the size of the automaton 
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Detailed steps 

False 

Automaton 
accepting violating 

traces 

True The design satisfies the 
specification 

Words of the language are 
violating traces 

Is the 
language 
empty? 

Automaton modelling 
the design 

Synchronous product 
of automata 

 Can be obtained from higher level models by the means of state-
space generation 
o State space can be huge, especially in asynchronous systems 

 Symbolic representation can solve storage problems 
o But it complicates the generation process 

 Saturation algorithm provides efficient symbolic state space 
exploration 
o Especially in asynchronous systems… 



Detailed steps 

False 

Automaton 
accepting violating 

traces 

True The design satisfies the 
specification 

Words of the language are 
violating traces 

Is the 
language 
empty? 

Synchronous product 
of automata 

 Product state space is the Cartesian product of the sets of states of the 
automata 
o But only a part is reachable from the initial state 

 A word of the product language is an accepting trace of the product 
automaton 
o An accepting trace is a reachable loop that contains accepting states 

 Task: find such a loop or prove that there does not exist one 
o Efficient on-the-fly algorithms on explicit graph representations 
o Symbolic approaches are cumbersome 

Automaton modelling 
the design 



Detailed steps 

 Compilation algorithm handling linear temporal logics (LTL) 
o Past and future time linear temporal expressions 

 Heavy optimization and minimization of the specification 
automaton 
o Reduction of the temporal expressions 
o Removing redundancy from the automaton 

 A compiled and optimized automaton can be used multiple 
times! 
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Detailed steps 

False 

Automaton 
accepting violating 

traces 

True The design satisfies the 
specification 

Words of the language are 
violating traces 

Is the 
language 
empty? 

Synchronous product 
of automata 

 Product state space is generated together with the system state space 
o Using a modified version of the saturation algorithm 

 Emptiness checking is performed simultaneously during the generation 
process 
o Unlike traditional symbolic approaches, accepting loops are being detected 

incrementally 
o State space generation halts immediately when a loop is found 

 This gives us an incremental, on-the-fly LTL model checking process 
o Supporting LTL, PLTL and any ω-regular specification properties 

Automaton modelling 
the design 


