A Decomposition Method

for the Verification
of a Real-time Safety-critical Protocol

Tamas Toth
Andras Voros
Istvan Majzik

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem

Méréstechnika és Informacios Rendszerek Tanszék

Overview of the talk

= Safety critical systems
o Case-study

= Background
o Formal methods
o Model checking
o Temporal logic specification

= Verification approach

o Decomposition method

Motivation: safety critical systems

= A system-level failure may result in
o damage to people’s health
o serious environmental or financial harm

= Example:
o Railway interlocking systems

= Characteristics:
o Time-dependent behavior
o Parametric behavior

= Ensuring correct behavior is crucial

o In the presence of failures

Case-study

A master election and ID assignment protocol

The case study

= Protocol in a railway SCADA (supervisory control
and data acquisition) system

= Ensures stable and fault tolerant communication
between components

" Roles: MASTER-SLAVE
= Communication is performed in two layers:

o the lower layer serves for administration,

o while the upper layer transmits information between
the components

The case study

= Protocol in a railway SCADA (supervisory control
and data acquisitgs

Management and

= Components: administration
o ETH units [1 .. 4] | |
o LIO units [0 .. 10] [][}
= Goal: B N
1. Election of a unique —— ——
ETH master 1 csomes]
2. Assignment of unique | H e | | o

LG LG

logical addresses (CIDs)
to LIOS | Object modul 1] | Object module 12

ETH module

] = 3 channels for

stm [State Machine] ETH[ETH

[defaut]

I reset syncTimer

SYNCING

[syncTimer = tSync] after (syncTimer = tSync) / reset syncTimer

[3i31(2] & SAlivel] A isAlivel])] / send NORMAL to alEth on R, G, B

communication

ethiMaster(R) : ETHMaster

ethSlave(R) : ETHSlave

[defaul]/ reset slaveTimer;

after (slaveTimer (Siave) BEI0# A BAIVED A SAINVE [— — — — — — — — — — — — — — - S | AV E rO I e S

ethSlave(G) : ETHSlave ethMaster(G) : ETHMaster

NORMAL [this.cid > msg.cid] / reset slaveTimer

ETHSlave(B) : ETHSlave when (V0¥ j(sAlivel] A sAlve[] — i =j)}

ethMaster(B) : ETHMaster

ethChannelObserver(R)
: ETHChannelObserver

oo

ethChannelObserver(G}
: ETHChannelObserver

oo

ethChannelObserver(B)
: ETHChannelObserver

oo

ETH module

stm [State Machine] ETH[ETH

stm [State Machine] ETH M aster [ET

an

MASTER

[defaut] [channel ¥i (cidTablelchannel[] = -1 — obfTablechannel[] = -1]]

I reset searchTimer SEARCHING CID

I reset syncTimer .
[cidSearchTimer{channel] < {CidSearch]

SYNCING

[syncTimer = tSync] after (syncTimer = tSync) / reset syncTimer

[3i31(2] & SAlivel] A isAlivel])] / send NORMAL to alEth on R, G, B
afier (cidSearchTimer[channe] & iCidSearch)/ send SEARCH fo all on channe!; reset cidSearchTimer

SLAVE I reset slaveTimer MASTER LOGN ! masterCidAssignment

[slaveTimer < tSlave] .

ethSlave(R) : ETHSlave

%1 reset cidTmerichannelll j MAINTAINING CIDTABLE

ethMaster(R) : ETHMaster [V 1.(eidT: -1 — cidTi <tcid)]

[defaul]/ reset slaveTimer;

after (cidTi

after (slaveTimer = tSlave) = {Cid) [eidT:

Bali#asalivell AlsAlvell [— — — — — — — — — — — — — — 7

ethSlave(G): ETHSlave | | | [ethMaster(G):ETHMaster | | | | TN | | _ _ _ _ _ _ _ _ o o o o o o o e e e e e — - -

ethMaster(G) : ETHMaster

NORMAL [this.cid > msg.cid] / reset slaveTimer

ter (pbjlUpdateTimer = tDettaObjSearch) Vi (i=cid A i'=-1 A objTablelchannel[] '= 1) send OBIREGREQ; reset objUpdateTimer]

Et obiSearchtimer, objUpdateTmer,

SEARCHING OBJ
[objSearchTimer <tAlIObjSearch A objUpdateTimer < {DetaObjSearch]

ETHSlave(B) : ETHSlave when (V0¥ j(sAlivel] A sAlve[] — i =j)}

ethMaster(B) : ETHMaster

after {objSearchTimer = tAlObjSearch) / send OBJREGREQ to all reset abjSearchTimer

OBJREGANS / updateObiTable

I ¥ifreset

Al MAINTAINING DBJTABLE

[u . <10bj]

ethChannelObserver(R)
: ETHChannelObserver

oo

ethChannelObserver(G}
: ETHChannelObserver

DROPPING MESSAGES

oo

SEARCH

ethChannelObserver(B) NORMAL [this.cid < msg.ci]

: ETHChannelObserver

oo

PROCESSING NORMAL

ETH module

stm [State Machine] ETH[ETH

an

[defaut]

I reset syncTimer

SYNCING

[syncTimer = tSync] after (syncTimer = tSync) / reset syncTimer

[3i31(2] & SAlivel] A isAlivel])] / send NORMAL to alEth on R, G, B

stm [State Machine] ETHSlave [ETHSlave 1]

SLAVE I reset slaveTimer

[slaveTimer < tSlave] .

ethSlave(R) : ETHSlave

MASTER

ethMaster(R) : ETHMaster

MAINTAINING CIDTABLE

[defaull]/ reset slaveTimer;

after (slaveTimer

ASSIGN / slaveUpdateCidTable
ethSlave(G) : ETHSlave

NORMAL [this.cid > msg.cid] / reset slaveTimer

MAINTAINING OBJTABLE

ETHSlave(B) : ETHSlave when (V0¥ j(sAlivel] A sAlve[] — i =j)}

ethMaster(B) : ETHMaster

OBJREGANS / updateQbjTable

DROPPING MESSAGES

ethChannelObserver(R)
: ETHChannelObserver

oo

[this.cid = msg.cid]

PROCESSING NORMAL

ethChannelObserver(G}
: ETHChannelObserver

oo

[defaul] / reset slaveTimer

ethChannelObserver(B)
: ETHChannelObserver

oo

SysML Model of master election

= Reducing the model to the master election and
CID assighment

SYNCING
[syncTimer = tSync]

[syncTimer = tSync] / syncTimer := 0; send Normal(cid)

[cid = x] ? [slaveTimer = tSlave]
h 4 \ 4

Normal(x) [SLAVE default] / slaveTimer := 0 Normal(x)
<>< L[slaveTimer < tSlave] MASTER

[default] / slaveTimer := 0 T [cid =x] T

SysML Model of CID-assignment

MASTER

SEARCHING
[searchTimer < tSearch]

[searchTimer = tSearch] / searchTimer := 0; send Search

[cidTimer(i] = tCid]
[cidTablel[i] # -1]
/
cidTable[i] := -1

ASSIGNING
[Vi.(cid Table]i] # -1 — cid Timer]i] < tCid)]

Login(x, y)
/
sweep();
tmp = newCid(x, y);
cidTable[tmp] :=y;
cidTimer[tmp] := 0;
send Assign(tmp, y)

Background

Verification

Formal methods

= Mathematical techniques for
o Specifying systems

* Hardware, software, continuous dynamics, ...

o Reasoning about systems

= Advantages:
o Applicable in early phase of develoment
o Unambiguous

o Automatic (?)

Model checking

= Automatic property checking
= Exhaustive exploration of the state space

Temporal logic
system System model Property formula

Model checker

Property HOLDS Property FAILS
+ Withess + Counterexample

= Advantage: generates counterexample

Linear Temporal Logic (LTL)

= Gp — pholds globally along all paths

= Fp — pholds in the future along all paths

= Example: FGp — persistence property

Timed automata

d=0 x<1
=0

" Program graph +

o Clock variables
id =i o Clock constraints

x:=0 * |Invariants

id

e Guards

o Clock reset

Model checking timed automata

Timed
automata - Problem: state space explosion

System model * Discrete and clock variables
* Concurrency

Transition

Temporal logic
system S—— formula

Model checker

Property HOLDS Property FAILS
+ Witness + Counterexample

Verification approach

Contribution

Verification approach

" Goal: Ensure correct behavior in the presence of
faults

[

/ \

|
|
System >ystem il Model checker
| model model
I

| |

| |

Fault 1 Fault I
assumption model :
|

|

1
|
| Formal
\M requirements /

Engineer : Verification Engineer
|
|

I
I
I
I
|
I
I
I
I
I
|
| Requirements
|

|
|
|
|
7

Verification approach

" Goal: Ensure correct behavior in the presence of
faults

[Decomposition

|
Model checker

Overview

= System modeled as a network of timed automata
= Fault model

o Transient faults as unexpected change of state

" Goal of verification:
o The system will finally work correctly

FG (master election is successfull
&&
CID assignment is successfull)

Verification approach

" Goal of verification:
o The system will finally work correctly

= Battling state space explosion with decomposition
o One property depends on the other

 Split the problem into two subproblems
* Apply property-preserving simplification to the systems

o Both subproperties are persistence properties

* Strengthen to a conjunction of two simpler properties

Modeling faults

= Consider faults that can be modeled as
nondeterministic change of model state, e.g.

o Loss, modification or creation of a message
o Restart of a unit
o Modification of a variable

O ...

= Allow a finite number of occurrences

Fault abstraction

" |nstead of modeling faults, we apply abstraction

Assume the system Scope of modeling

is in any state and model checking
1

1
Persistence

condition holds

= |f the persistence property holds in the fault free
model from any (initial) state,

Fault abstraction

" |nstead of modeling faults, we apply abstraction

Assume the system Scope of modeling

is in any state and model checking
1

|] \) t
I I

Finite number of Persistence
transient faults condition holds

= |f the persistence property holds in the fault free
model from any (initial) state,

" |t holds after any finite number of transient faults

Decomposition by FG-detachment
" Instead of checking FG(p A g),

-
" Check 1: FG(p)

v

= Check 2: FG(C]) Assume the system

only has -states

= This way, the system to be checked can be
significantly reduced

R S

L] EGYETEM I1TEEZ

Decomposition by FG-detachment

t

ETHO is master

A
[|

Assume ETHO Each L/O has
is master ’ a unique anld stable CID |

e ———p
t

= Master election is not in the cone of influence
o ETH1 ETH2, ETH3 is not in the cone of influence

Decomposition by G-detachment

= |Instead of checking FG p,

t

* Check 1: Fp’ a p-state is
. rea(.:hed »
= Check 2: G D, Invariance t

condition holds

A
| 1

Decomposition by G-detachment

= |Instead of checking FG p,

* Check 1: Fp’ a p-state is

reaghed

Assume the system Invariance

startsina -state condition holds
|\

= Decompose an expensive query into
two less expensive ones

Decomposition by G-detachment

>
t
ETHO becomes
master
L >
t
Assume ETHO starts ETHO remains
as master master

A

Complete verification process

Assume Assume Assume Assume ETHO is master
any starting state ETHO starts as master ETHO is master and assigned CIDs are valid
ETHO becomes master : Valid CIDs are assigned Assigned valid CIDs are
ETHO remains master
eventually eventually stable
G-detachment + reduction G-detachment + reduction
Assume any starting state Assume ETHO is master

Master election works as expected CID-assignment works as expected

FG-detachment + reduction

Assume any starting state

The protocol works as expected

Fault abstraction

Assume a finite number of transient faults may occur

The protocol works as expected

* Modeled the complete system as a network of
timed automata

= Formalized and applied decomposition rules to
obtain smaller subtasks

= During verification, discovered bugs have been
corrected

"= The protocol has been successfuly verified in
UPPAAL

o Each query completed in seconds (instead of OOM)

