
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

A Decomposition Method
for the Verification

of a Real-time Safety-critical Protocol

Tamás Tóth

András Vörös

István Majzik

Overview of the talk

 Safety critical systems

o Case-study

 Background

o Formal methods

o Model checking

o Temporal logic specification

 Verification approach

o Decomposition method

Motivation: safety critical systems

 A system-level failure may result in

o damage to people’s health

o serious environmental or financial harm

 Example:

o Railway interlocking systems

 Characteristics:

o Time-dependent behavior

o Parametric behavior

 Ensuring correct behavior is crucial

o In the presence of failures

Case-study

A master election and ID assignment protocol

The case study

 Protocol in a railway SCADA (supervisory control
and data acquisition) system

 Ensures stable and fault tolerant communication
between components

 Roles: MASTER-SLAVE

 Communication is performed in two layers:

o the lower layer serves for administration,

owhile the upper layer transmits information between
the components

The case study

 Protocol in a railway SCADA (supervisory control
and data acquisition) system

 Components:

o ETH units [1 .. 4]

o LIO units [0 .. 10]

 Goal:

1. Election of a unique
ETH master

2. Assignment of unique
logical addresses (CIDs)
to LIOs

Data transfer module

ETH0 ETH3...

Object modul 1

Logic card

LG
LG

LG

...

SCAN bus

Object module 12

Logic card

LG
LG

LG

Management and
administration

ETH module

 3 channels for
communication

 MASTER and
SLAVE roles

ETH module

ETH module

SysML Model of master election

 Reducing the model to the master election and
CID assignment

SysML Model of CID-assignment

Background

Verification

Formal methods

 Mathematical techniques for

o Specifying systems

• Hardware, software, continuous dynamics, ...

o Reasoning about systems

 Advantages:

o Applicable in early phase of develoment

o Unambiguous

o Automatic (?)

Model checking

 Automatic property checking

 Exhaustive exploration of the state space

Model checker

System model Property

Property FAILS
+ Counterexample

Property HOLDS
+ Witness

Temporal logic
formula

Transition
system

 Advantage: generates counterexample

Linear Temporal Logic (LTL)

 Gp – p holds globally along all paths

 Fp – p holds in the future along all paths

 Example: FGp – persistence property

...

...

...

Timed automata

 Program graph +

o Clock variables

o Clock constraints

• Invariants

• Guards

o Clock reset

S W

C T

id = 0
x := 0

id = i ⋀ x ≥ 2

id := i
x := 0

id = 0 id ≠ i
⋀

x ≥ 2

x ≤ 1

Model checking timed automata

Transition
system

Model checker

System model Property

Property FAILS
+ Counterexample

Property HOLDS
+ Witness

System model

Timed
automata Problem: state space explosion

• Discrete and clock variables
• Concurrency

Temporal logic
formula

Verification approach

Contribution

Verification approach

System

Fault
assumption

 Goal: Ensure correct behavior in the presence of
faults

System
model

Fault
model

Formal
model

Model checker

Engineer Verification Engineer

Requirements
Formal

requirements

Verification approach

System

Fault
assumption

 Goal: Ensure correct behavior in the presence of
faults

System
model

Fault
model

Formal
model

Model checker

Engineer Verification Engineer

Requirements
Formal

requirements

Decomposition

Overview

 System modeled as a network of timed automata

 Fault model

o Transient faults as unexpected change of state

 Goal of verification:

o The system will finally work correctly

FG (master election is successfull
&&

CID assignment is successfull)

Verification approach

 Goal of verification:

o The system will finally work correctly

 Battling state space explosion with decomposition

o One property depends on the other

• Split the problem into two subproblems

• Apply property-preserving simplification to the systems

o Both subproperties are persistence properties

• Strengthen to a conjunction of two simpler properties

Modeling faults

 Consider faults that can be modeled as
nondeterministic change of model state, e.g.

o Loss, modification or creation of a message

o Restart of a unit

oModification of a variable

o ...

 Allow a finite number of occurrences

Fault abstraction

 Instead of modeling faults, we apply abstraction

t

Persistence
condition holds

 If the persistence property holds in the fault free
model from any (initial) state,

Scope of modeling
and model checking

Assume the system
is in any state

Fault abstraction

Finite number of
transient faults

 Instead of modeling faults, we apply abstraction

t

Persistence
condition holds

 If the persistence property holds in the fault free
model from any (initial) state,

 It holds after any finite number of transient faults

Scope of modeling
and model checking

Assume the system
is in any state

Decomposition by FG-detachment

 Instead of checking FG(p ∧ q),

t

 Check 1: FG(p)

t

t

Assume the system
only has p-states

 This way, the system to be checked can be
significantly reduced

 Check 2: FG(q)

Decomposition by FG-detachment

t

t

t

Assume ETH0
is master

 Master election is not in the cone of influence

 ETH1, ETH2, ETH3 is not in the cone of influence

ETH0 is master

Each LIO has
a unique and stable CID

Decomposition by G-detachment

 Instead of checking FG p,

t

 Check 1: F p,

t

t

a p-state is
reached

Invariance
condition holds

 Check 2: G p,

Decomposition by G-detachment

 Instead of checking FG p,

t

 Check 1: F p,

t

t

Assume the system
starts in a p-state

a p-state is
reached

Invariance
condition holds

 Decompose an expensive query into
two less expensive ones

Decomposition by G-detachment

t

t

t

Assume ETH0 starts
as master

ETH0 becomes
master

ETH0 remains
master

Complete verification process

ETH0 becomes master
eventually

ETH0 remains master
Assigned valid CIDs are

stable
Valid CIDs are assigned

eventually

Master election works as expected CID-assignment works as expected

The protocol works as expected

The protocol works as expected

Assume
any starting state

Assume
ETH0 starts as master

Assume
ETH0 is master

Assume ETH0 is master
and assigned CIDs are valid

Assume any starting state Assume ETH0 is master

Assume any starting state

Assume a finite number of transient faults may occur

G-detachment + reduction

FG-detachment + reduction

Fault abstraction

G-detachment + reduction

Summary

 Modeled the complete system as a network of
timed automata

 Formalized and applied decomposition rules to
obtain smaller subtasks

 During verification, discovered bugs have been
corrected

 The protocol has been successfuly verified in
UPPAAL

o Each query completed in seconds (instead of OOM)

