Complex event processing and the CoMiFin project

Gönczy László gonczy@mit.bme.hu

1

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

CEP basics

- Complex event
 - A logical composition of atomic events
- Main characteristics
 - Timing (e.g., sliding window)
 - Asynchron operation
 - o Causility, hierarchy of events
 - o Correlation
- SQL-like languages
 - E,g.. EPL: Event Processing Language, JAQL, ...
 - Queries as basic steps of event processing
- Distributed data sources
 - Databases, online transaction handling systems, monitoring systems, etc.
- Scalability
 - Distributed, cloud-based deplyoment
 - ~100k/sec transcations

CEP application areas

- Business&finance
 - Investments, stock exchange
 - o "Treasury"
 - Risk assessment
 - Transport tracking
- "Business Activity Monitoring"
- Online fraud detection/prevention
 - Transaction scanning
 - o Online betting (pl. UEFA)
- Operation of large IT systems
 - Detection complex patterns in operation
 - Metrics evaluation
- Security
 - E.g.,. Early detection of dDOS
- http://www.complexevents.com/

Map/Reduce algorithm

- Map
 Data split
- Reduce
 - Data processing
- Example

- "Split a text to words, count occurences"
 Implementation in multiple languages
- Apache implementation
 - Distributed architecture
 - Hadoop (+ Hadoop Distributed File System)
 - Schedule : Job Tracker, Task Tracker

CEP tools

- Esper
- Drools Fusion
- IBM InfoSphereStreams (System S)
- OpenESB Intelligent Event Processor
- Apache Hadoop + extending projects
- Main features
 - o Event processing logic
 - o Throughput
 - Requested response time ("low latency")

Case study: CoMiFin

- "Communication Middleware for Financial Infrastructures"
- Motivation
 - Banking systems are more and more dependable on IT services
 - Attacks are becoming more sophisticated
 - Critical infrastructures (network, telco, power supply)... interconnected
 - Traditional offline communication is slow (e.g., 8 days to close a bug)
- Aim
 - Scheme to set up and manage a secure environment (software, hardware, monitoring tools, etc.) for information exchange and analysis
- Demonstrator lead by a BME spin-off (OptXware)

Information Federation

- Purpose: detect events (attacks) in a collaborative way
 - o "Security: collaboration, not competition"
 - Collaborative network of certified participants
 - Security measures implemented
 - Resilient by its distributed nature
 - Systematic model-based management and monitoring
- Privacy assurance
 - Working on data about transactions
 - No transaction details
 - Anonymization
 - o ... see *comifin.eu*

Example: logical interconnections

 OPT

WARE

Attack types (IT)

- Distributed Denial of Service (dDOS)
 - o E.g., botnets
- Man in the Middle
 - o E.g., phishing
- "Identity theft"

	CY - 2006		CY - 2007		CY - 2008	
Contact Method	Complaints	Percentages ¹	Complaints	Percentages ¹	Complaints	Percentages ¹
Internet - E-mail	138,195	45%	152,131	50%	193,817	52%
Mail	50,317	16%	42,330	14%	51,837	14%
Internet - Web Site/Others	46,687	15%	45,447	15%	40,596	11%
Phone	39,365	13%	33,733	11%	26,067	7%
Other	31,722	10%	33,481	11%	57,695	16%
Total Reporting Contact Method	306,286		307,122		370,012	

... and many combinations

Attack surface

Banking systems with lot of entry points...

Martin Goulet and Morten Nygaard, Managing 21st Century Business and Technology Innovation:

Reduce Operational Risk, Enable Compliance, Protect Privacy with IBM System z,

IBM's Global Banking community, ibm.com/banking.

CoMiFin topology

Semantic Room concept

- Basic unit of information federation
- Logical separation of entities
- SR features : a "SaaS" offer of the underlying CoMiFin infrastructure
 - o Membership management
 - Resource allocation
 - Monitoring
 - o Information exchange

Online data analysis (CEP)

Logical components

RG

Model-driven system monitoring

Levels for metrics

- Resource level
 - o Network, Disk
 - o Memory, CPU...
 - SR Administrator View
- Application level
 - Event processing
 - Evaluation of alerts
 - o SR Administrator,
 - o SR Manager View
 - o FI specific parts. SR Member
- "Business level"
 - What CoMiFin produces?
 - o Alerts are also displayed
 - o SR Manager, SR Member

Example: Metric definition

Name	Performance capability of web server			
Definition	The number of threads that can receive and process HTTP requests.			
	States	Normal Operational State: The number of threads matches		
		the estimated capacity of the underlying resources.		
		Overloaded Operational State: The number of threads are		
		higher than the maximal estimated for the underlying		
		resources.		
		Unusable Operational State: The number of processing		
		threads cannot be determined.		
	Measurement Unit	piece		
	Range	non-negative integer		
	Туре	Low level		
Measuring	The web server should	be instrumented with an SNMP agent exposing this attribute.		
	Frequency	periodical, every 3 minutes		
Evaluation	Method	classification (see states above)		
	Time range	evaluation is instantaneous		

Architectural Example: Monitoring of the Gateway

Advanced Evaluation

Evaluation of measurements

- Advanced "Evaluator plugin" for monitoring
- Nagios integrated with Drools
 - Nagios: monitoring
 - o Drools: correlation of events sent by Nagios
- Motivation
 - CoMiFin is itself a critical infrastructure
 - advanced monitoring of resource should be ensured
 - e.g. COBIT/SOX/... directives
 - detecting meaningful patterns within CoMiFin could be beneficial

Overview of advanced evaluation

CoMiFin Control Loop

Example metric

Name	Performance capability o	Performance capability of web server			
Definition	The number of threads that can receive and process HTTP requests.				
	States	Normal Operational State: The number of threads matches			
		the estimated capacity of the underlying resources.			
		Overloaded Operational State: The number of threads are			
		higher than the maximal estimated for the underlying			
		resources.			
		Unusable Operational State: The number of processing			
		threads cannot be determined.			
	Measurement Unit	piece			
	Range	non-negative integer			
	Туре	Low level			
Measuring	The web server should	be instrumented with an SNMP agent exposing this attribute.			
	Frequency	periodical, every 3 minutes			
Evaluation	Method	classification (see states above)			
	Time range	evaluation is instantaneous			

Rule-based event detection

Session Hijack detection

- Session hijack: modify the sesison by observing/modifying user communication
- Configuration: sample banking app
 - User management
 - Transaction management
- Monitoring of application level information
 - o Session ID
 - o Client data
- "Fault injection"
 - o Simulated attacks

Session Hijacking

Session hijack detection

Checking IP and session ID with Drools

```
WARNING: possible session hijack:
{
   currentAddress=127.0.0.1,
   remoteAddress=127.0.0.1,
   sessionId=21...B6
}
and the possible attacker with the same session:
{
   currentAddress=10.11.1.154,
   remoteAddress=127.0.0.1,
   sessionId=21...B6
}
```


Demo 2: Missing backup problem

- Information from multiple aplications / event sources
- Related standards
 - e.g. COBIT PO-4 "Define the IT Processes, Organization and Relationships"
 - o COBIT PO-9 "Manage IT Human Resources"

Connectivity of Semantic Rooms

- Vision: CoMiFin as a platform (D6.5)
 o "Framework for information sharing among FIs"
 o "A trusted third party platform"
- Connectivity in CoMiFin
 - o Allows for propagating alerts among SRs
 - Improves the quality of Event Processing with additional input
 - Improves the capability of CoMiFin to detect attacks
 - Facilitates the creation of new services built on a combination of SRs
 - \rightarrow improves the ability of FIs to prevent attacks

Architecture

WARE

RG

Architecture

What to Measure in CoMiFin?

RG

What to Measure in CoMiFin?

Sample results

Visited 🌾 Getting Starte	d 🔒 Latest Headlines 👼 JBoss Po	rtal 2.7.2-GA ×					R.C.
Boss Portal (J	Alert deta	ils (time, s	source, tar	get, etc.)	Logged in as is	r_manager
Iome S_SR_Manag	er_Page 6_AlertLi	st				Sectores 1 copy to 11	reasonate 1 engone
AlertList							E BR
Date	Origin	Participating FIs	Type	Description	Affected Services	Suspicious FIs	Priority
2010-07-01 10:07:43.0	DHT Analytics	Bank of Vanyar	ALERTMICM	Statistical anomaly detected	Service15	1X.16X.XX.X89	-0.1799294
2010-07-01 10:07:43.0	DHT Analytics	Bank of Vanyar	ALERTMEM	Statistical anomaly detected	Service15	13X.X5X.XX.X5	-0.181737
2010-87-01 10:07:37.0	DHT Analytics	Bank of Vanyar	ALERTMIN	Statistical anomaly detected	Service12	6X.8X.X0X.X	~0.1778012
2010-07-01 10:07:37.0	DHT Analytics	Bank of Vanyar	Service effected		Service4	17X.XX.X3X.X29	-0.1718082
2010-07-01 10:07:32.0	DHT Analytics	Bank of Vanyar	Oct vice (enected	Service8	20X.XX.X4X.X5	-0.1802342
2010-07-01 10:07:31.0	DHT Analytics	Bank of Vanyar	ALERTMILM	Statistical	Service8	21X.XX.XX.X79	-0.175243
2010-07-01 10:07:27.0	DHT Analytics	Bank of Vanyar	ALERTMILM	Statistical anomaly detected	Service11	19X.X1X.X0X.X05	-0.183489
2010-07-01 10:07:27.0	DHT Analytics	Bank of Vanyar	ALERTMICM	Statistical anomaly detected	Service11	10X.X2X.X1X.X02	-0.1774248
2010-07-01 10:07:26.0	DHT Analytics	Bank of Vanyar	ALERTMICM	Statistical anomaly detected	Service10	6X.13X.X2X.X73	-0.1799292
2010-07-01 10:07:26.0	DHT Analytics	Bank of Vanyar	ALERTMitM	Statistical anomaly detected	0	and the set	182237
2010-07-01 10:07:09.0	DHT Analytics	Bank of Noldor	ALERTMICM	Statistical anomaly detected	Score	on the ale	nt . ₁₈₅₉₂
2010-07-01 10:07:08.0	DHT Analytics	Bank of Noldor	ALERTMIEM	Statistical anomaly detected	Service11	19X.X1X.X0X.Xu.	-0.1923068
2010-07-01 10:07:08.0	DHT Analytics	Bank of Noldor	ALERTMICM	Statistical anomaly detected	Service10	6X.13X.X2X.X73	-0.1886134
2010-07-01 10:07:08.0	DHT Analytics	Bank of Noldor	ALERTMITM	Statistical anomaly detected	Service10	9X.16X.X5X.X24	-0.1909274
2010-07-01 10:07:06.0	DHT Analytics	Bank of Vanyar	ALERTMitM	Statistical anomaly detected	Service8	19X.XX.XX.X79	-0.1778006
2010-07-01 10:07:05.0	DHT Analytics	Bank of Vanyar	ALERTMIN	Statistical anomaly detected	Service14	8X.20X.X4X.X6	-0.1798036
				Man of the Automation of the			

SR Composition (1)

Vertical, hierarchical composition

- o The goal of the collaborating SRs is identical
- The "topmost" SR has an aggregated global view
- The underlying SRs have detailed local view
- Example: Banks and the Financial Supervisory Authority

SR Composition (2)

Horizontal, sequential composition

- Communicating SRs have different goals
- Complex/combined attacks can be detected by information fusion
- E.g., alerts generated in Portscan SR contributes to the Blacklist managed in MitM SR

Demo – Scenario

SR Connectivity Metrics

Conclusions

Prototype applications

o Italy, Norway

- Still a lot to do to be "autonomous"
 - o Self-* properties
 - o Online modifications (pattern, thresholds...)

