
Distributed Data Base

Abstract
This is a small toy example which describes the communication between a set of data
base managers in a distributed system. The managers are supposed to keep their data
bases identical. Hence, each update must be followed by a broadcast to all the other
managers, asking them to perform a similar update.

The CPN ML declarations are described in great deal. Moreover, the example is
used to illustrate three of the very basic concepts of net theory: concurrency, con-
flict and causal dependency.

The example is taken from Sect. 1.3 of Vol. 1 of the CPN book.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.aau.dk).

Graphical Quality
The figures in this document are inserted via PICT format. This is why some of the
arcs and place borders look a bit ragged. A postscript printout from Design/CPN
(and the screen image in Design/CPN) has much higher graphical quality.

2

CPN Model

This example describes a very simple distributed data base with n different sites (n
is a positive integer, which is assumed to be greater than or equal to 3). Each site
contains a copy of all data and this copy is handled by a local data base manager.
Thus we have a set of data base managers:

DBM = {d1, d2, …, dn}.

Each manager is allowed to make an update to its own copy of the data base – but
then it must send a message to all the other managers (so that they can perform the
same update on their copy of the data base). In this example we are not interested in
the content of the message – but only in the header information, which describes the
sender and the receiver. Thus we have the following set of messages:

MES = {(s,r)  s,r ∈DBM ∧ s ≠ r}

where the sender s and the receiver r are two different data base managers. When a
data base manager s makes an update, it must send a message to all other managers,
i.e., the following messages:

Mes(s) = ∑
r ∈DBM–{s}

 1`(s,r)

where the summation indicates that we form a multi-set, with n–1 elements, by
adding the multi-sets {1`(s,r)  r ∈DBM–{s}}, each of which contains a single ele-
ment. The resulting multi-set contains one appearance of each message which has s
as sender.

Together these definitions give us the following declarations:

constants: n : integer (* n ≥ 3 *);

colour sets: DBM = {d1, d2, …, dn};
MES = {(s,r)  s,r ∈DBM ∧ s ≠ r};
E = {e};

functions: Mes(s) = ∑
r ∈DBM–{s}

 1`(s,r);

variables: s,r : DBM;

Now let us look at the CP-net (shown at the next page). Each data base manager has
three different states: Inactive, Waiting (for acknowledgments) and Performing (an
update requested by another manager). Each message can be in four different states:
Unused, Sent, Received and Acknowledged. Finally, the system can be either Active
or Passive.

Initially all managers are Inactive and all messages are Unused. This is indicated
by the initialization expressions. DBM denotes the multi-set which contains exactly
one appearance of each colour in the colour set DBM. Analogously, MES denotes
the multi-set which contains exactly one appearance of each colour in the colour set
MES.

3

When a manager, s, decides to make an Update and Send Messages, its state
changes from Inactive t o Waiting, while the state of its messages Mes(s) changes
from Unused to Sent. Now the manager has to wait until all other managers have
acknowledged the update. When one of these other managers, r, Receives a Message,
its state changes from Inactive to Performing (the update), while the state of the cor-
responding message (s,r) changes from Sent to Received. Next the data base man-
ager r may Send an Acknowledgment (saying that it has finished the update) and its
state changes from Performing back to Inactive, while the state of the message (s,r)
changes from Received t o Acknowledged. When all the messages Mes(s), which
were sent by the manager s, have been Acknowledged, the manager s may Receive
all Acknowledgments and its state changes from Waiting back to Inactive, while the
state of its messages Mes(s) changes from Acknowledged back to Unused.

To ensure consistency between the different copies of the data base this simple
synchronisation scheme only allows one update at a time. In other words, when a
manager has initiated an update, this has to be performed by all the managers before
another update can be initiated. This mutual exclusion is guaranteed by the place
Passive (which is marked when the system is passive). Initially Passive contains a

Receive all
Acknowledg-

ments

RecAck

Update
and

Send Messages

SendMes

Send an
Acknowledg-

ment

SendAck

Receive
a

Message

RecMes

Performing

DBM

Inactive
DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive
E

e

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

val n = 4;
color DBM = index d with 1..n declare ms;
color PR = product DBM * DBM declare mult;
fun diff(x,y) = (x<>y);
color MES = subset PR by diff declare ms;
color E = with e;
fun Mes(s) = mult'PR(1`s,DBM-1`s);
var s, r : DBM;

4

single e-token (as for the resource allocation system, we use e to denote “uncoloured
tokens”, i.e., tokens with no information attached).

It should be remarked that our description of the data base system is very
high-level (and unrealistic) – in the sense that the mutual exclusion is described by
means of a global mechanism (the place Passive). To implement the data base system
on distributed hardware, the mutual exclusion must be handled by means of a
“distributed mechanism”. Such an implementation could be described by a more de-
tailed CP-net – which also could model how to handle “loss of messages” and
“disabled sites”.

It should also be noted that the CP-net description of the data base system has
several redundant places – which could be omitted without changing the behaviour
(i.e., the possible sequences of steps). As an example, we can omit Unused. Then
there will only be an explicit representation of those messages which currently are
in use (i.e., in one of the states Sent, Received or Acknowledged). We can also omit
Active and Performing. It is very common to have redundant places in a CP-net,
and this often makes the description easier to understand – because it gives a more
detailed and more comprehensive description of the different states of the system.

The data base system can be used to illustrate three of the very basic concepts of
Petri nets: concurrency, conflict and causal dependency. In the initial marking of the
data base system, the transition Update and Send Messages is enabled for all man-
agers, but it can only occur for one manager at a time (due to the single e-token on
Passive). This situation is called a conflict (because the binding elements are indi-
vidually enabled, but not concurrently enabled) – and we say that the transition
Update and Send Messages is in conflict with itself.

When the transition Update and Send Messages has occurred for some manager s,
the transition Receive a Message is concurrently enabled for all managers different
from s. This situation is called concurrency – and we say that the transition
Receive a Message is concurrent to itself.

The transition Receive all Acknowledgments is only enabled when the transition
Update and Send Messages has occurred for some manager s, and the transitions
Receive a Message and Send an Acknowledgment have occurred for all managers
different from s. This situation is called causal dependency (because we have a
binding element which can only be enabled after the occurrence of certain other
binding elements).

We have drawn the places and arcs in three different ways. This has no formal
meaning, but it makes the net more readable to humans – because it makes it easier
to distinguish between: state changes of the data base managers (thick lines), state
changes of the messages (thin lines), and the mechanism to ensure the mutual exclu-
sion (shaded lines). The distinction may also help to make the model more consistent
(because it helps the modeller to see whether he has covered all parts of the system).

Now let us explain why the CPN ML declarations (in the dashed box at the bot-
tom of the CP-net) are equivalent to the declarations outlined, at the beginning of
this section.

Line 1 declares n to be a constant, and gives it the value 4. Constants in CP-nets
are used in a way which is similar to that of programming languages. This means

5

that we can change the number of data base managers by changing the declaration of
n (instead of having to change a large number of declarations and net inscriptions).

Line 2 declares the colour set DBM. This is done by means of a built-in colour
set constructor which makes it is easy to declare indexed colour sets, i.e., sets on
the form {xi, xi+1, …, xk–1, xk} where x is an identifier (i.e., a text string), while i
and k are two integers (specified by means of two integer expressions). CPN ML
does not recognise different font styles and thus xr is written as x(r) or as x r
(where the space after x is significant). By adding “declare ms” (where ms stands
for multi-set) we instruct the CPN ML compiler to declare a constant multi-set,
having a single appearance of each element in DBM. This constant is predefined, but
to save space on the ML heap it is only declared when the user asks for it. The con-
stant is denoted by ms'DBM or simply by DBM, and it is used in the initialization
expression of Inactive. We could also have declared DBM by means of an enumera-
tion colour set, but then it would have been impossible to make the declaration inde-
pendent of the actual value of n.

Lines 3–5 declare the colour set MES. First we declare a colour set PR which is
the cartesian product of DBM with itself. By adding “declare mult” we instruct the
CPN ML compiler to declare a function mult'PR by which we can multiply two
DBM multi-sets with each other in order to get a PR multi-set. This function is pre-
defined, but to save space on the ML heap it is only declared when the user asks for
it. As an example, we have mult’PR(2`d3 + 1`d4, 1`d2 + 3`d3) = 2`(d3,d2) + 6`(d3,d3) +
1`(d4,d2) + 3`(d4,d3). The function mult'PR is used in line 7 of the declarations (see
below). Next we declare a function diff. The function takes two arguments and tests
whether these are different from each other (<> means ≠). Finally we declare MES
to be the subset of PR which contains exactly those elements for which diff(s,r) is
true. By adding “declare ms” we get a constant multi-set, denoted by ms'MES or
simply by MES – and this is used in the initialization expression of Unused.

Line 6 declares the colour set E, which is used in a similar way as in the resource
allocation system.

Line 7 declares the function Mes mapping data base managers into multi-sets of
messages. This is done by means of the predefined multiplication function mult'PR
declared in line 3. The minus sign denotes multi-set subtraction.

Finally, line 8 declares the two variables s and r of type DBM.

