
Simple Protocol

Abstract
This is a small toy example describing a simple protocol by which a sender can
transfer a number of packets to a receiver. The communication medium may
loose packets and packets may overtake each other. Hence, it may be necessary
to retransmit packets and to ignore doublets and packets that are out of order.

The example illustrates how the results of a lengthy simulation can be recorded
for later inspection and analysis. One way is to add “reporting places” and
another is to use an output file.

The example is a modified version of a timed CP-net presented in Sect. 5.5 of
Vol. 2 of the CPN book.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.au.dk).

 2

CPN Model

This example describes a simple protocol where a sequence of packets is sent
from one site to another via a network where packets may be delayed or lost.
We do not claim that the described protocol is optimal (it is not). However, the
protocol is interesting enough to deserve a closer investigation, and it is also
complex enough for such an investigation to be valuable.

The CPN model of the protocol system is shown below. It consists of
three parts. The Sender part has two transitions which can Send Packets and

(n,p)

 Send
Packet

nn

k n

n

Receive
Acknow.

A

INTxDATA
(n,p) (n,p) if Ok(s,r)

then 1‘(n,p)
else empty

Transmit
 Packet

SP

Ten0

8

D

INT

Transmit
 Acknow. n

s

if Ok(s,r)
then 1‘n
else empty

s

B

INTxDATA

(n,p)

k

if n=k
then k+1
else k

if n=k
then k+1
else k

Receive
 Packet

str if n=k
andalso
p<>stop
then str^p
else str

NextSend

INT

1

Send

INTxDATA

1‘(1,"Modellin")++
1‘(2,"g and An")++
1‘(3,"alysis b")++
1‘(4,"y Means")++
1‘(5,"of Colou")++
1‘(6,"red Petr")++
1‘(7,"i Nets##")++
1‘(8,"########")

Received

DATA

""

NextRec

INT

1

C

INT

SA

Ten0

8

NetworkSender Receiver

color INT = int;
color DATA = string;
color INTxDATA= product INT*DATA;
var n,k: INT;
var p, str: DATA;
val stop = ”########”;
color Ten0 = int with 0..10;
color Ten1 = int with 1..10;
var s: Ten0; var r: Ten1;
fun Ok(s:Ten0, r:Ten1) = (r<=s);

 3

Receive Acknowledgments. The Network part has two transitions which can
Transmit Packets and Transmit Acknowledgments. Finally, the Receiver part has
a single transition which can Receive Packets (and send acknowledgments). The
interface between the Sender and the Network consists of the places A and D,
while the interface between the Network and the Receiver consists of the places
B and C.

The packets to be sent are positioned at the place Send (in the upper left
corner). Each token on this place contains a packet number and the data contents
of the packet (represented as a text string). The place Next Send contains the
number of the next packet to be sent. Initially this number is 1, and it is updated
each time an acknowledgment is received.

The content of the received message is kept at the place Received (in the
upper right corner). This place contains a single token with a text string which is
the concatenation of the text strings contained in the received packets (ignoring
the contents of duplicates and packets received out of order). Initially the text
string at Received is empty, i.e., "". At the end of the transmission we expect
Received to contain the text string "Modelling and Analysis by Means of
Coloured Petri Nets". The place Next Rec contains the number of the next
packet to be received. Initially this number is 1, and it is updated each time a
packet is successfully received.

We do not model how the Sender splits a message into a sequence of packets
or how the Receiver reassembles the packets into a message. Neither do we
model how the tokens at Send and Received are removed at the end of the
transmission or how the packet numbers in Next Send and Next Rec are reset
to 1. Now let us take a closer look at the five different transitions in the protocol
system.

Send Packet sends a packet to the Network by creating a copy of the packet
on place A. The number in Next Send specifies which packet to send. It should
be noted that the packet is not removed from Send. Neither is the counter at Next
Send increased. The reason is that the packet may be lost and hence need to be
retransmitted. Our protocol is pessimistic, in the sense that it continues to repeat
the same packet – until it gets an acknowledgment telling that the packet has
been successfully received. Transmit Packet transmits a packet from the Sender
site of the Network to the Receiver site by moving the corresponding token from
A to B. The boolean expression Ok(s,r) determines whether the packet is
successfully transmitted or lost. The variable r will be bound to an arbitrary
value in its colour set (i.e., to any integer between 1 and 10). CPN Tools makes
a fair choice between the 10 values. The Ok function returns true if the value of
r is less than or equal to the value of s. This means that the probability of
successful transmission is determined by the token at place SP. We have given
SP a token with value 8. Hence we have 80 % chance for successful
transmission. However, it is easy to modify the success rate, simply by changing
the token value at SP.

 4

Receive Packet receives a packet and checks whether the packet number n is
identical to the number k in Next Rec. When the two numbers match, the
number in Next Rec is increased by 1 and the text string in the packet is
concatenated to the text string in Received – unless it is stop = "########",
which by convention indicates end-of-message. Otherwise, the packet is ignored
and the number in Next Rec is left unchanged. In both cases an acknowledgment
is sent containing the number of the next packet which the Sender should send.

Transmit Acknowledgment transmits an acknowledgment from the Receiver
site of the Network to the Sender site by moving the corresponding token from
C to D. The transition works in a similar way as Transmit Packet. This means
that the acknowledgment may be lost, with a probability determined by the
token at place SA.

Receive Acknowledgment receives an acknowledgment and updates the
number in Next Send by replacing the old value with the one contained in the
acknowledgment.

After a number of steps the CP-net may have reached the intermediate
marking shown below. From the left-hand part of the net, we see that the sender
is sending packet number three. We also see that three copies of this packet are
present at places A and B. From the right-hand part of the net we see that the

 Intermediate Marking

(n,p)

 Send
Packet

nn

k n

n

Receive
Acknow.

A

2 2‘(3,"alysis b")

INTxDATA
(n,p) (n,p) if Ok(s,r)

then 1‘(n,p)
else empty

Transmit
 Packet

SP 1 1‘8
Ten0

8

D

2 2‘4

INT

Transmit
 Acknow. n

s

if Ok(s,r)
then 1‘n
else empty

s

B

1 1‘(3,"alysis b")

INTxDATA

(n,p)

k

if n=k
then k+1
else k

if n=k
then k+1
else k

Receive
 Packet

str if n=k
andalso
p<>stop
then str^p
else str

NextSend 1 1‘3

INT

1

Send

8

1‘(1,"Modellin")++1‘(2,"g and An")++1‘(3,"alysis b")++1‘(4,"y Means")++1‘(5,"of Colou")++1‘(6,"red Petr")++

INTxDATA

1‘(1,"Modellin")++
1‘(2,"g and An")++
1‘(3,"alysis b")++
1‘(4,"y Means")++
1‘(5,"of Colou")++
1‘(6,"red Petr")++
1‘(7,"i Nets##")++
1‘(8,"########")

Received
1

1‘"Modelling and Analysis b"

DATA

""

NextRec

1 1‘4INT

1

C

INT

SA 1 1‘8
Ten0

8

NetworkSender Receiver

 5

string "Modelling and Analysis b" has been Received. This is the contents of the
first three packets and the receiver is now waiting for packet number four.
Hence the packets on A and B will be ignored when they reach the receiver. We
can also see that two acknowledgments are present at place D. When Receive
Acknowledgment occurs, Next Send will be updated to four, and then the sender
will start sending packet number four.

When the last packet (with "########") is successfully received by the
receiver, Next Rec gets the value nine (one larger than the number of packets).
This value will (via an acknowledgment) be communicated to the sender, Next
Send will be updated to nine, and the sending will stop – because no packet with
this number exists. After a few more steps, where the places A, B, C and D are
cleared for packets/acknowledgments, the CP-net will reach a dead final
marking, which looks as shown below.

Even though this protocol is rather simple, it is not that easy to see that it
actually works correctly. What happens, for instance, if the “last”
acknowledgment gets lost? By making a number of simulations – interactive
and automatic – the user can greatly increase his confidence in the protocol. He
may also make a proof of correctness by using the occurrence graph tool. For
more information about this, see the example: “Simple Protocol for Occurrence
Graph”.

It is often convenient to be able to record the things that happen during a

 Final Marking

(n,p)

 Send
Packet

nn

k n

n

Receive
Acknow.

A

INTxDATA
(n,p) (n,p) if Ok(s,r)

then 1‘(n,p)
else empty

Transmit
 Packet

SP 1 1‘8
Ten0

8

D

INT

Transmit
 Acknow. n

s

if Ok(s,r)
then 1‘n
else empty

s

B

INTxDATA

(n,p)

k

if n=k
then k+1
else k

if n=k
then k+1
else k

Receive
 Packet

str if n=k
andalso
p<>stop
then str^p
else str

NextSend 1 1‘9

INT

1

Send

8

1‘(1,"Modellin")++1‘(2,"g and An")++1‘(3,"alysis b")++1‘(4,"y Means")++1‘(5,"of Colou")++1‘(6,"red Petr")++1‘(

INTxDATA

1‘(1,"Modellin")++
1‘(2,"g and An")++
1‘(3,"alysis b")++
1‘(4,"y Means")++
1‘(5,"of Colou")++
1‘(6,"red Petr")++
1‘(7,"i Nets##")++
1‘(8,"########")

Received
1

1‘"Modelling and Analysis by Means of Coloured Petri Nets##"

DATA

""

NextRec

1 1‘9

INT

1

C

INT

SA 1 1‘8
Ten0

8

NetworkSender Receiver

 6

simulation. This is in particular the case when we perform a fast-forward
simulation where we have no chance to observe the individual steps. This can be
done by adding a number of “reporting places”, i.e., places that gather historical
information about the simulation run – without influencing the simulation. The
use of reporting places is illustrated below. To see the reporting places in CPN
Tools, you have to use the CPN model called “SimpleProtocol_RP”. First we
add a few extra declarations:

Then we add one o
Sent Pack tells us h
example, packet nu
times and packet
acknowledgments t
a pair, where the f
contents of the ack
place Count. In our
value two and then
color BOOL = bool;
color INTxINT = product INT*INT;
color PackSeq = list INTxDATA;
var i: INT;
var plist: PackSeq;
r two extra places for each of the five transitions. The place
ow many times the individual packets have been sent. In our
mber one has been sent four times, packet number two six
number three twice). The place Rec Ack tells us which
he sender has received. Each acknowledgment is recorded as
irst element is a sequence number while the second is the
nowledgment. The sequence number is obtained from the

 example, we have first received four acknowledgments with
three acknowledgments with value three.

 7

Reporting Facilities for the Sender

(n,p)

 Send
Packet

nn

k n

n

Receive
Acknow.

A

INTxDATA

(n,p)

D 1 1‘3

INT

NextSend 1 1‘3

INT

1

Send

8

1‘(1,"Modellin")++1‘(2,"g and An")++1‘(3,"alysis b")++1‘(4,"y Means")++1‘(5,"of Colou")++1‘(6,"red Petr")++

INTxDATA
1‘(1,"Modellin")++
1‘(2,"g and An")++
1‘(3,"alysis b")++
1‘(4,"y Means")++
1‘(5,"of Colou")++
1‘(6,"red Petr")++
1‘(7,"i Nets##")++
1‘(8,"########")

n

i+1

i

SentPack

12 4‘1++6‘2++2‘3

INT

Count

1 1‘8

INT

1

(i,n)

RecAck

7

1‘(1,2)++1‘(2,2)++1‘(3,2)++1‘(4,2)++1‘(5,3)++1‘(6,3)++1‘(7,3)
INTxINT

 8

Reporting Facilities for the Network

A

INTxDATA
(n,p) if Ok(s,r)

then 1‘(n,p)
else empty

Transmit
 Packet

SP 1 1‘8

Ten0

8

D

1 1‘3

INT

Transmit
 Acknow. n

s

if Ok(s,r)
then 1‘n
else empty

s

B

1 1‘(3,"alysis b")

INTxDATA

C 1 1‘4

INT

SA 1 1‘8

Ten0

8

LostAck 9 1‘false++8‘true

BOOL

if Ok(s,r)
then true
else false

if Ok(s,r)
then empty
else 1‘n

LostPack 1 1‘2

INT

The place Lost Pack tells us about the lost packets. In our example, we have

only lost one copy of packet number two. The place Lost Ack tells us how many
acknowledgments we have transmitted/lost. In our example, we have lost one
acknowledgment and successfully transmitted eight.

 9

Reporting Facilities for the Receiver

(n,p)

if n=k
then k+1
else k

k

if n=k
then k+1
else k

plist

plist^^(if n=k
 then [(n,p)]
 else [])

str

if n=k
andalso
p<>stop
then str^p
else strB

1 1‘(3,"alysis b")INTxDATA

C

1 1‘4INT

Receive
 Packet

Received

1 1‘"Modelling and Analysis b"

DATA

""

RecPack

1

1‘[(1,"Modellin"),(2,"g and An"),(3,"alysis b")]

PackSeq

[]
NextRec

1 1‘4

INT

1

The place Rec Pack tells us about the successfully received packets (the

^^ operator at the arc from Receive Packet to Rec Pack concatenates the two
lists). In our example, we have received three packets. First we received packet
number one with data "Modellin", then we received packet number two with
data "g and An", and finally packet number three with data "alysis b".

A second way to record the results of a simulation is to use code segments to
write selected results on an output file. The file can then later be read – by a
human being or by another computer program (e.g., a spreadsheet program). To
see the use of an output file (and an input file) in CPN Tools itself, you have to
use the CPN model called “SimpleProtocol_IO”. We first add a few extra
declarations:

color INTxDATA = product INT * DATA;
color E = with e;
globref packets = empty: INTxDATA ms;
globref outfile = TextIO.stdOut;
fun getPackets() = (!packets);

The predefined function INTxDATA.output writes the value of a specified ex-
pression to a specified file. The expression must be of type INTxDATA (if the
expression is a multi-set over INTxDATA, you have to use the function
INTxDATA.output_ms). Analogously, the predefined function

 10

INTxDATA.input_ms reads a multi-set over INTxDATA from a specified file (if
you want to read a single value of type INTxDATA, you have to use the function
INTxDATA.input).

It should be noted that the variable called packets is a global reference
variable, and its type is INTxDATA ms. This means that it will be bound to
multi-sets over INTxDATA (instead of a single value of INTxDATA). The
variable is initialized to the empty multi-set. The function getPackets simply
returns the multi-set that packets refers to. The global reference variable outfile
will be used to provide a handle to our output file. The reference variable is
initialised to TextIO.stdOut (standard output), but this will later be overwritten.
Next, we add a code segment to transition Receive Packet:

input (n,p,k);
action
if n=k then
 (if n=1 then
 outfile := TextIO.openOut(“SimpleProtocol.SimRes”)
 else ();
 INTxDATA.output(!outfile, (n,p));
 if p=stop then TextIO.closeOut(!outfile) else ())
else ();

The first line specifies that the action part of the code segment is allowed to
refer to the values of the variables n, p and k of the transition. The action part
tests whether the received packet is a success (n = k) or a failure (n ≠ k). For
failures nothing is done, while successes imply the following operations on the
output file:
• When the first packet is received (n = 1), the output file, called

SimpleProtocol.SimRes is opened.
• For each successfully received packet, we use the function INTxDATA.output

to write the value of (n,p) to the output file (a space is automatically appended
after the value).

• When the last packet is received (p = stop), the output file is closed.
After a simulation (with the usual eight packets) the output file will have the
following contents:

(1, “Modellin”) (2, “g and An”) (3, “alysis b”) (4,

“y Means “) (5, “of Colou”) (6, “red Petr”) (7, “i

Nets##”) (8, “########”)

 11

Next let us show how an input file can be used to initialise a simulation. To do
this we add an extra transition, called Initialise Packets. When a simulation
starts, this transition reads a multi-set from a specified file and adds the tokens
specified by the multi-set to place Send (which initially is empty).

e

Initialise
Packets

action
let
 val infile=TextIO.openIn("SimpleProtocol_IO.TXT");
 val message = INTxDATA.input_ms(infile);
in
 packets := message;
 TextIO.closeIn(infile);
 ()
end handle _ => ();

Start

E

e

Send

INTxDATA

getPackets()

Again we use a fixed file name (as we did for the output file). First, a

multi-set over INTxDATA is read and bound to the global reference variable
packets. Then the input file is closed. When the arc inscription getPackets() is
evaluated, it will return the current value of packets, i.e. it will return the multi-
set that was read in from the file. If the input file is not present or an error
occurs while reading the file, an exception is raised. This exception is handled
in the last line of the code segment (in this case the value of packets is
unchanged, and the function getPackets() will return the empty multi-set).

The file “SimpleProtocol_IO.TXT” (provided together with this example)
specifies a multi-set with the “usual” eight packets. It looks as follows:

%This file is used by to initialise
%the packets on Send

1`(1,"Modellin")++ % first packet
1`(2,"g and An")++ % second packet
1`(3,"alysis b")++ % third packet
1`(4,"y Means ")++ % fourth packet
1`(5,"of Colou")++ % fifth packet
1`(6,"red Petr")++ % sixth packet
1`(7,"i Nets##")++ % seventh packet
1`(8,"########") % eighth packet

It is easy to modify the CPN model for the “Simple Protocol”, e.g., to obtain
a blast protocol – in which all the packets are sent immediately after each other
– without waiting for acknowledgments for the individual packets. The reader is

 12

encouraged to make one or more such modifications and to use the CPN Tools
simulator to validate the new protocols. It is surprisingly “easy” to get a
protocol which is “nearly correct” but not totally correct. One of the problems is
to be sure that we always stop. Remember that both the last packet and the last
acknowledgment may be lost.

In the present CP-net we have described that retransmissions may occur.
However, we have not provided any details telling when and how often this will
happen – the transition Send Packet is always enabled. As shown in “Timed
Protocol” it is possible to augment the CP-net by specifying how long time the
individual operations take and how long time the sender should wait before
making a retransmission. With such a description it becomes possible to
experiment with different waiting times to determine which one is the best – in
the sense that it transmits the message fast without using the network too much
(i.e. without making too many retransmissions).

	Simple Protocol

