
Simple Protocol

Abstract
This is a small toy example which is well-suited as an introduction to
occurrence graphs. The analysis of the occurrence graph is described in great
detail.

The CPN model describes a simple protocol by which a sender can transfer a
number of packets to a receiver. The model is identical to the “Simple Protocol”
presented in “Introductory Examples”(which we recommend to study before
this example).

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.au.dk).

 2

CPN Model

In this example we study the O-graph for the simple protocol. To obtain a finite
and reasonably small O-graph we make three modifications of the CP-net. First
we reduce the number of packets from eight to four. Secondly, we introduce a
new place to Limit the number of packets/acknowledgments which
simultaneously can be at the network. Finally, we simplify the decision
mechanism for transferring/loosing packets and acknowledgments. For
O-graphs it does not make sense that packets are lost/transmitted with a certain
probability. Hence, we replace the Ok function with a boolean variable Ok.

(n,p)

 Send
Packet

nn

k n

n

Receive
Acknow.

A

INTxDATA
(n,p) (n,p) if Ok

then 1‘(n,p)
else empty

Transmit
 Packet

D

INT

Transmit
 Acknow. n

if Ok
then 1‘n
else empty

B

INTxDATA

(n,p)

k

if n=k
then k+1
else k

if n=k
then k+1
else k

Receive
 Packet

str if n=k
andalso
p<>stop
then str^p
else str

NextSend 1 1‘1

INT

1

Send

4 1‘(1,"Modellin")++1‘(2,"g and An")++1‘(3,"alysis##")++1‘(4,"########")INTxDATA
1‘(1,"Modellin")++
1‘(2,"g and An")++
1‘(3,"alysis##")++
1‘(4,"########")

Received

1 1‘""

DATA

""

NextRec

1 1‘1

INT

1

C

INT

Limit 2 2‘e

E

2‘e

if Ok
then empty
else 1‘ee

e
if Ok
then empty
else 1‘e

Sender ReceiverNetwork
color INT = int;
color DATA = string;
color INTxDATA= product INT*DATA;
color E = with e;
var n,k: INT;
var p, str: DATA;
val stop = ”########”;

color BOOL = bool;
var Ok: BOOL;

 3

Having made the modifications described above, we are ready to construct
O-graphs. Let us start with the situation where the initial marking of Limit is
1`e. This means that the network (i.e., the place A, B, C and D) contains at most
one packet/acknowledgment at a time. Hence overtaking is impossible. The O–

Initial Part of O-graph

1
1:1

NextSend: 1`1
NextRec: 1`1
Received: 1`""

2
1:2

NextSend: 1`1
NextRec: 1`1
A: 1`(1,"Modellin")
Received: 1`""

3
1:1

NextSend: 1`1
NextRec: 1`1
B: 1`(1,"Modellin")
Received: 1`""

4
2:2

NextSend: 1`1
NextRec: 1`2
C: 1`2
Received: 1`"Modellin"

5
2:1

NextSend: 1`1
NextRec: 1`2
Received: 1`"Modellin"

6
1:1

NextSend: 1`1
NextRec: 1`2
D: 1`2
Received: 1`"Modellin"

8
2:1

NextSend: 1`2
NextRec: 1`2
Received: 1`"Modellin"

7
1:2

NextSend: 1`1
NextRec: 1`2
A: 1`(1,"Modellin")
Received: 1`"Modellin"

10
1:2

NextSend: 1`2
NextRec: 1`2
A: 1`(2,"g and An")
Received: 1`"Modellin"

9
1:1

NextSend: 1`1
NextRec: 1`2
B: 1`(1,"Modellin")
Received: 1`"Modellin"

SendPack:
{p="Modellin",n=1}

TranPack:
{p="Modellin",n=1,Ok=false}

TranPack:
{p="Modellin",n=1,Ok=true}

RecPack:
{str="",p="Modellin",
n=1,k=1}

TranAck:
{n=2,Ok=false}

TranAck:
{n=2,Ok=true}

RecAck:
{n=2,k=1}

SendPack:
{p="Modellin",n=1}

SendPack:
{p="g and An",n=2}

TranPack:
{p="Modellin",n=1,Ok=true}

RecPack:
{str="Modellin",
p="Modellin",n=1,k=2}

 4

graph has 33 nodes and 44 arcs. The initial and final part of it is drawn below.
The current version of CPN Tools does not include facilities for drawing O-
graphs. From the O-graph we can see that the O-graph has a regular structure, in
the sense that some patterns are repeated. The subgraph of nodes {4, 5, 7 and 9}
has the same ”form” as the subgraph of nodes {28. 29. 31. 33}. The only
difference is that the latter is “three packets ahead” of the former. If we
construct the middle part of the occurrence graph, we will find two additional
copies of the pattern.

Final Part of O-graph

32
1:0

NextSend: 1`5
NextRec: 1`5
Received: 1`"Modelling
and Analysis##"

30
1:1

NextSend: 1`4
NextRec: 1`5
D: 1`5
Received: 1`"Modelling
and Analysis##"

28
2:2

NextSend: 1`4
NextRec: 1`5
C: 1`5
Received: 1`"Modelling
and Analysis##"

27
1:1

NextSend: 1`4
NextRec: 1`4
B: 1`(4,"########")
Received: 1`"Modelling
and Analysis##"

33
1:1

NextSend: 1`4
NextRec: 1`5
B: 1`(4,"########")
Received: 1`"Modelling
and Analysis##"

26
1:2

NextSend: 1`4
NextRec: 1`4
A: 1`(4,"########")
Received: 1`"Modelling
and Analysis##"

31
1:2

NextSend: 1`4
NextRec: 1`5
A: 1`(4,"########")
Received: 1`"Modelling
and Analysis##"

29
2:1

NextSend: 1`4
NextRec: 1`5
Received: 1`"Modelling
and Analysis##"

RecAck:
{n=5,k=4}

TranAck:
{n=5,Ok=true}

RecPack:
{str="Modelling
and Analysis##",
p="########",n=4,k=4} RecPack:

{str="Modelling
and Analysis##",
p="########",n=4,k=5}

TranPack:
{p="########",
n=4,Ok=true}

TranPack:
{p="########",n=4,Ok=true}

SendPack:
{p="########",n=4}

TranAck:
{n=5,Ok=false}

 5

Next let us investigate the more complex situation in which overtaking is
possible. To do this, we construct an O-graph for the situation where the initial
marking of Limit is 2`e. The new O-graph is considerably larger than the first
one. The standard report looks as shown below.

From the statistics it can be seen that the O-graph has 428 nodes and 1130
arcs. It can also be seen that there are fewer strongly connected components
than O-graph nodes. This means that the system has at least one non-trivial
strongly connected component, and hence an infinite occurrence sequences
exists. In other words, we cannot be sure that the simple protocol terminates – to
achieve termination one usually limits the number of retransmissions.

 Statistics

 Occurrence Graph
 Nodes: 428
 Arcs: 1130
 Secs: 8
 Status: Full

 Scc Graph
 Nodes: 182
 Arcs: 673
 Secs: 1

The integer bounds are as expected.

 Boundedness Properties

 Best Integers Bounds
 Upper Lower
 A 2 0
 B 2 0
 C 2 0
 D 2 0
 Limit 2 0
 NextRec 1 1
 NextSend 1 1
 Received 1 1
 Send 4 4

Also the multi-set bounds are as expected. The places A and B may contain all
four different packets, while places C and D may contain all four possible
acknowledgments. Remember that an acknowledgment always specifies the

 6

number of the next packet to be sent (hence we never has an acknowledgment
with value 1). The two counters Next Send and Next Rec can take all values
between one and five. The place Received may contain four different values –
corresponding to the situations where we have received the data from zero, one,
two or three packets (packet number four contains "########" which we never
copy to Received). Finally, the place Send has identical upper and lower
multi-set bounds. This means that the marking never changes.

 Best Upper Multi-set Bounds
 A 2`(1,"Modellin")+
 2`(2,"g and An")+
 2`(3,"alysis##")+
 2`(4,"########")
 B 2`(1,"Modellin")+
 2`(2,"g and An")+
 2`(3,"alysis##")+
 2`(4,"########")
 C 2`2+ 2`3+ 2`4+ 2`5
 D 2`2+ 2`3+ 2`4+ 2`5
 Limit 2`e
 NextRec 1`1+ 1`2+ 1`3+ 1`4+ 1`5
 NextSend 1`1+ 1`2+ 1`3+ 1`4+ 1`5
 Received 1`""+ 1`"Modellin"+
 1`"Modelling and An"+
 1`"Modelling and Analysis##"
 Send 1`(1,"Modellin")+
 1`(2,"g and An")+
 1`(3,"alysis##")+
 1`(4,"########")+
 Best Lower Multi-set Bounds
 A empty
 B empty
 C empty
 D empty
 Limit empty
 NextRec empty
 NextSend empty
 Received empty
 Send 1`(1,"Modellin")+
 1`(2,"g and An")+
 1`(3,"alysis##")+
 1`(4,"########")+

 7

The home and liveness properties are very interesting. They tell us that the
system has exactly one dead marking M235 which also is a home marking:

 Home Properties

 Home Markings: [235]

 Liveness Properties

 Dead Markings: [235]
 Dead Transitions Instances: None
 Live Transitions Instances: None

Marking M235 looks as shown below. It corresponds to the situation where all
four packets has been successfully transmitted. The fact that M235 is dead tells
us that the protocol is partly correct – if it terminates it terminates with the
correct result. The fact that M235 is a home marking tells us that the protocol has
the nice property that it never can reach a state from which it is impossible to
terminate with the correct result.

235
12:0

NextSend: 1`5
NextRec: 1`5
Received: 1`"Modelling and Analy

The fairness properties are as shown below.

 Fairness Properties

 SendPack Impartial
 TranPack Impartial
 RecPack No Fairness
 TranAck No Fairness
 RecAck No Fairness

 8

Above, we have seen that M235 is the desired final marking, and we have also
seen that it can be reached from any reachable system state. Now let us
investigate how fast it can be reached. To do this we ask the system to construct
a path from the initial marking M1 to M235. By convention the system constructs
a path with minimal length, and hence we see that at least 20 transitions must
occur – in order to reach M235 from M1. This is not surprising. We have four
packets and to process a packet (plus the corresponding acknowledgment) we
need one occurrence of each of the five transitions.

Next let us investigate the way in which we update the Next Send counter. One
might expect that this counter always is increased (or left unchanged). However,
the following query tells us that there are a number of occurrence graph arcs
where Next Send actually is decreased. The result of the query is a list
containing all those arcs where Next Send has a smaller value in the destination
node than it has in the source node. The function ms_to_col maps a multi-set
with one element into the element itself (e.g., 1`3 into 3).

 9

To investigate why Next Send is decreased, we examine the first arc in the result
of the above query, i.e., arc number 981 (from node 368 to node 385). Recall
that CPN Tools does not have facilities for drawing O-graphs, but standard
queries can be used to examine all information associated with nodes and arcs in
an O-graph. We also use standard queries to examine some of the nearest
predecessors of node 368. After a few “backwards” steps we find marking M249,
which is of interest. In this marking Next Send has the value 4 while Next Rec
has the value 5. Moreover, there is an acknowledgment with value 5 positioned

368
2:2

NextSend: 1`4
NextRec: 1`5
B: 1`(4,"########")
D: 1`3
Received: 1`"Modelling
and Analysis##"

385
4:2

NextSend: 1`3
NextRec: 1`5
B: 1`(4,"########")
Received: 1`"Modelling
and Analysis##"

347
2:3

351
1:3

320
1:4

316
3:2

281
3:3

284
2:3

249
2:4

NextSend: 1`4
NextRec: 1`5
C: 1`3+ 1`5
Received: 1`"Modelling
and Analysis##"

RecAck:
{n=3,k=4}

TranPack:
{p="########",n=4,Ok=true}

TranAck:
{n=3,Ok=true}

TranPack:
{p="########",n=4,Ok=true}

SendPack:
{p="########",n=4}

TranAck:
{n=3,Ok=true}

TranAck:
{n=5,Ok=false}

TranAck:
{n=3,Ok=true}

SendPack:
{p="########",n=4}

TranAck:
{n=3,Ok=true}

TranAck:
{n=5,Ok=false}

 10

at place C. However, there is also an “old” acknowledgment with value 3
positioned at C. This acknowledgment must have been there quite a while. It
was created when packet number 2 was successfully received, i.e., before
receiving packets number 3 and 4. The old acknowledgment has been overtaken
by several “younger” acknowledgments. However, it may still proceed and
cause Next Send to be decreased to 3.

Another way to investigate the possible decrease of Next Send, is to ask how
much Next Send can differ from the Next Rec. This is done by means of the
following query, which tells us that the difference can be 3, 2, 1 and 0. This
result is consistent with our analysis above. Next Rec can be at most 5, while
Next Send is at least 1, but Next Send can never be reset to a value less than 2 –
because we never have acknowledgments with value 1.

From our analysis above, it is quite obvious that an easy way to improve the simple
protocol is to avoid decreasing Next Send. This can be done by modifying the arc
expression of the arc from Rec Ack to Next Send – so that it becomes Int.max(n,k)
instead of n. We encourage you to make this modification, construct a new O-graph
and repeat the occurrence graph analysis – to convince yourself that the new
protocol works as desired. You may also want to construct O-graphs where you
allow the network to contain more than two packets/acknowledgments at a time.
The size of the O-graphs are as follows:

Limit Max Nodes Arcs
1 no 33 44
2 no 428 1130
3 no 3329 12825
4 no 19520 91220
1 yes 33 44
2 yes 293 764
3 yes 1829 6860
4 yes 9025 43124

 11

	Simple Protocol

