
 1/7

Formal Methods

First Mid-term Exam 1. 2. 3. 4. 5. 6.

Name: ________________________________

NEPTUN code: ________________________ 10 points 6 points 8 points 6 points 12 points 8 points 50 points

1. Theoretical questions (10 points)

Statement True False Not decidable

Only one atomic proposition can be assigned to each state in

Kripke structure models (KS).
 X

In bounded model checking of invariant properties, we need

to increase the bound (and continue the algorithm) only if no

counterexample was found with the current bound.

X

It is possible that a node in an ROBDD has only one outgoing

edge. X

{Q, R}

e.g.: A(XX p) or A(X p F q), because the path expressions may not be combined in CTL.

The automaton cannot wait in an urgent location unless nothing else can happen in the system. It has to

leave the urgent state as soon as possible.

1.1. For each of the following statements indicate (with an X) whether it is true, false or not

decidable.
3 points

1.2. Give a sequence of labeled states for which the property F (P U (Q R) holds but the

property Q, the property X (P R) and the property XX Q do not hold, using as few states

as possible!

3 points

1.3. Give an example for a temporal logic expression that is syntactically valid in PLTL

(assuming the implicit path quantifier “A”) but invalid in CTL. Explain why it is invalid in

CTL!

2 points

1.4. Describe the behavior of urgent states in timed automata (of UPPAAL)!

2 points

 2/7

2. Modeling formalisms (6 points) Please provide the solution on a new sheet!

The following figures show two timed automata (modeled in UPPAAL) that describe the states of the

controller of a heater (Idle, or Heating), and the states of the water in a water tank (Empty, Cold, Warm or

Boiling. The automata use two logical variables (bool boiling, finished), and two channels (chan refill,

heat). Logical variables are initially false. Note, that guards use “==” whereas assignments use “=”.

2.1. Construct the Kripke structure corresponding to the whole system, i.e., reachable

combinations of the states of the controller and states of the water tank, including the

transitions! Label each combined state with the names of the states that it represents (you

can use the initial letters of the states)!

6 points

{Idle, Empty} {Idle, Cold} {Heating, Warm}

{Heating, Empty} {Heating, Boiling}

3. Binary Decision Diagrams (8 points) Please provide the solution on a new sheet!

A Kripke structure is given in the left side of the figure, where the states are encoded in three bits using

the variables x, y, z (for example 010 corresponds to x=0, y=1, z=0).

000

001

010 100

110

x

z

0 1

0 1

0

y

1

0

1

3.1. Give the characteristic function for the initial state of the Kripke structure!

Give the characteristic function for the transitions outgoing from the initial state!
2 points

𝐶000 = ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧

𝐶000→000 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∧ (¬𝑥′ ∧ ¬𝑦′ ∧ ¬𝑧′)

𝐶000→001 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∧ (¬𝑥′ ∧ ¬𝑦′ ∧ 𝑧′)

 3/7

3.2. Draw the ROBDD representing the states of the Kripke structure! Use the following order

for the variables: x, y, z!
3 points

x

y

z

0 1

3.3. Give the ROBDD corresponding to the intersection of the states of the Kripke structure

(constructed in the previous task) and the states encoded by the ROBDD in the right-hand

side of the figure, using ROBDD operations! The variable order should remain x, y, z.

3 points

x

y

z

0 1

z

 4/7

4. CTL model checking (6 points) Please provide the solution on a new sheet!

Consider the following Kripke structure:

4.1. Check if the following CTL expression holds from the initial state using the iterative

labeling algorithm presented in the lectures: A ((s p) U (AX q)).

For each iteration give the expression that is currently used for labeling and enumerate the

states that are labeled!

6 points

1. iteration: (labeling with s p)

S, A, B, C, D

2. iteration: (labeling with AX q)

B

3. iteration: (labeling with A ((s p) U (AX q)))

B (because of AX q)

A, C (first iteration backward, labeled with p q, all successors already labeled)

S, D (second iteration backward, labeled with p q, all successors already labeled)

(S may be labeled along with A and C if it is considered last.)

5. LTL requirement formalization (12 points) Please provide the solution on a new sheet!

On each day we record the status of solar activity and the command that we give to a satellite to protect

itself. Solar activity can be calm, weak or strong. The satellite can have closed solar panels and/or it can

turn away from the solar activity.

Use LTL expressions to formalize the following three requirements, which must apply to the behavior of

the system in every moment!

5.1. If solar activity is weak or strong, the satellite is turned away until solar activity becomes

calm.
2 points

G((weak strong) away U calm))

5.2. If solar activity is strong the satellite eventually closes its panels or turns away. 2 points

G(strong F(closed away))

5.3. If solar activity is calm for three consecutive days, the satellite does not close its panels on

the second day and on the third day neither the panels are closed nor is the satellite turned

away.

2 points

G((calm X calm XX calm) (X(closed) XX (closed away)))

 5/7

5.4. Use the tableau method to check if the requirement ¬(p U q) holds for the Kripke structure

below! Explain and document your solution! If the requirement does not hold, give a

counterexample based on the tableau!

6 points

s0 |- p U q

s0 |- q s0 |- p, X(p U q)

s1 |- p U q

s1 |- q s1 |- p, X(p U q)

s2 |- p U q

s2 |- q s2 |- p, X(p U q)

Counterexample:

s0 -> s1 -> s2
Counterexample:

s0 -> s1 -> s2 -> s0 ->

(s2 satisfies q)

 6/7

6. UML statecharts (8 points)

Consider the following statechart, in which for all states sk there is also an entry action sk.entry and an exit

action sk.exit that is not displayed in the figure! The expressions on the arrows (transitions) have the

following form: transition_name: trigger [guard] / action.

s0

s1 s2 s3

s4 s10

s11

s5

s13
t1: y[!a]/l

t2: x[a]/i t4: y[!a]/j

t3: x[a]/k t11: x[a]/i

s6

t7: [!a]/i

x

s9

t5: [a]/i

s7 s8

t8: y/i

t9: x[!a]/j

t10: x/l

H*

t12: y/i

t13: x/j

s12 s14
t14: x[a]/k

t15: x/l t16: y/i

t19: x/l

t17: x[!a]/i

t18: y/k

The statechart starts from the default initial state, the value of the logical variable “a” is “true”. The

incoming event is “x”.

6.1. Which transitions are enabled? 1 point

t2, t3, t5, t10, t11

6.2. Which enabled transitions are in conflict (cannot fire together)? 1 point

(t11, t2), (t11, t3), (t11, t5), (t11, t10), (t10, t5), (t2, t3)

6.3. What is the set of fireable transitions after resolving the conflicts? If there are multiple sets

of fireable transitions, give all sets!
1 point

{t2, t5}, {t3, t5}

6.4. What is (are) the next stable state configuration(s)? If there are more than one possible

stable state configurations give only one of them! Give the actions and their order during

firing the transition! Do not forget to include the entry and exit actions!

3 points

For {t2, t5}: Next: {s0, s1, s4, s9} Actions: (s2.exit, i, s1.entry) || (s8.exit, s6.exit, i, s9.entry)

For {t3, t5}: Next: {s0, s3, s4, s9} Actions: (s2.exit, k, s3.entry) || (s8.exit, s6.exit, i, s9.entry)

 7/7

6.5. The next incoming event is again “x”. Give the set of fireable transitions (after resolving

conflicts) and the next stable configuration! If there are more than one fireable sets and

next stable configurations, give all of them!

2 points

From {s0, s1, s4, s9}: Fireable: t14 Next: {s0, s1, s10, s12}

From {s0, s3, s4, s9}: Fireable: t14 Next: {s0, s3, s10, s12}

