The design triangle

M Ú E G Y E T E M

1

The new era: dynamic CPS (?)

ES

Reusable sensors Multiple, on-demand algorithms

Intention

Solution

DSN 2011

The 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks

24-27th June 2013, Budapest

Reality: record flood

- A lot of e-mails:
 - o Is it safe to come to Budapest?
- Fortunately: no request for "Life west under your conference seat"

Example

Cameras on riverside

 Different applications concurrently using the same primary information

- Tasks can change according to time/season/requirements
 - Identification of ships
 - Monitoring the break-up of ice
 - Monitoring the water level
 - Monitoring the speed of flood
 - Pollution check
 - Supervision of hostile entrance to the ship

Dynamic cyber-physical systems

Critical CPS design and challenges

Dynamic composition of cyber-physical systems

Dynamic reconfiguration of resources⁷¹⁶

The change in ES design

м и́е суетем

9

Service Oriented Approach

SOA

Embedded systems provide services

- Information of
 - o sensors
 - Internet
- High level information derived
- Actuation possibility (limited)
- Services in a database

MDD

Upon a new task:

- solution based on
 - design patterns and
 - o available resources

New solution deployed

 no interference with the already running ones

UNIFICATION IS THE KEY

Ontologies and Semantic Technologies

M Ú E G Y E T E M 1782

Smart transducers

Plug and play (vs. SOA ?)

Electronic data sheet (NIST example)

Basic TEDS	Manufacturer ID	43 (Acme Accelerometer
	Model Number	7115
	Version Letter	В
	Serial Number	X001891
Standard and Extended TEDS (fields will vary according to transducer type)	Calibration Date	Jan 29, 2000
	Sensitivity @ ref. condition (S ref)	1.0094E+03 mV/g
	Physical measurement range	± 50 g
	Electrical output range	±5∨
	Reference frequency (firef)	100.0 Hz
	Qualitγ factor @ fref (Q)	300 E-3
	Temperature coefficient	-0.48 %/°C
	Reference temperature (T ref)	23 °C
	Sensitivity direction (x,y,z)	X
User Area	Sensor Location	Strut 3A
	Calibration due date	April 15, 2002

Figure 2. Example TEDS for Accelerometer

Implementation

<u>м и́е</u>дуетем 17

Use cases of IEEE 1451

Remote Monitoring Application

м Ú Е G Y Е Т Е М 1782

IEEE 1451 concept

IEEE1451 Standard Description

IEEE 1451 standards

<u>м Úе</u>дуетем 1782

STARTING POINT: FORMALIZED CONCEPTS

Design and analysis need clear concepts

From ontologies to metamodels

Hierarchical data representation

<u>м й е </u>дуетем 1782

Ontology

A data model that

- represents a domain and
- Has a logic in the background
- is used to reason about
 - the objects in that domain and
 - the relations between them.

Ontologies generally describe:

- Individuals: basic objects
- Classes: sets, collections, or types of objects
- Attributes: properties, features... that objects can have and share
- Relations: ways that objects can be related

Reasoning :

Concept space traversal

- subsumption test wrt. different profiles
- consistency check: satisfiability
- circular containment of classes

Ontology foundations

Ontology

- Formal description of concepts (terminology)
- OWL 2: ontology language for the Semantic Web
- Reusable knowledge models

Description Logic (DL)

- knowledge representation,
 - similar to rule languages
- decidable, efficient decision problems
- justifications for inferences
- terminology (concepts & properties, TBox) and data / cases (individuals, ABox) are separated
- schema language with complex constraints
- OWL 2 is based on the DL "SROIQ".

Example: part of the security ontology

😑 OWLClasses 📄 💼 Properties 🗎 🔶 Individuals	= 1	Forms	
SUBCLASS EXPLORER	C	CLASS EDITOR for AssetLifeC	yclePhase (insta
For Project: 兽 Security		For Class: file:///C:/Users/Patar	ic/Desktop/CASED/S
Asserted Hierarchy 😵 😭	8	🗳 🖻 🍫 🔜 🛛 🖪	
🛑 owl: Thing		Property	
🖕 🛑 Asset		🗖 owl:versionInfo	TODO: Work with th
		rdfs:comment	Denotes when a cou
= Attack = Threat			Proof-of-concept s
🖶 🛑 Countermeasure			
DefenseStrategy			
🖕 — 🛑 Goal			
AuthenticationGoals	0 0 🕑 🗣 🌨		
ConfidentialityGoals			
🔲 🗐 IntegrityGoals			
literature:Definition	e owl: Thing		
literature:Literature			
📙 🖕 🛑 Model			
🕀 🛑 AccessControlModel			
🗄 🛑 CryptographyModel			
🗄 🗝 NaryRelation			
🛉 🗝 🛑 Product			
protege:ExternalResource			
🖕 😑 Threat = Attack			
📄 🖶 🛑 ActiveAttack		1	
Disclosure = PassiveAttack			
\oplus 😑 PassiveAttack = Disclosure			
🗄 🛶 🛑 User		DefenseStrategy	
🗄 🔴 Vulnerability	Goal		
🕀 🛑 VulnerabilityInCode	Product		
🖶 🛑 VulnerabilityInConfiguration	ThreatThreatensGoalOfAsset		
VulnerabilityInUse	🛑 User		
🔽 🛤 📰 🗫 🔑	\mathcal{R}	📥 🔿 👾 🕒	

A. Herzog et al: An Ontology of Information Security Int. J. of Inf. Security and Privacy (1), 4

RESOURCE DESCRIPTION FRAMEWORK (RDF)

Resource Description Framework

- W3C: Resource Description Framework (RDF)
- Graph based structure
 - \circ Node: **rdf:Resource** \rightarrow something we talk about
 - e.g. a document, this photo, a table or "something"
 - \circ Edge: rdf:Property \rightarrow relation type between resources
 - e.g depicts, taken_in, type etc.
- Node name and relation type name: IRI (Internationalized Resource Identifier)
- Literal nodes: 5^^xsd:integer, "John"

RDF Statements

WEB ONTOLOGY LANGUAGE (OWL 2)

Formal Background

Axiomatic language

SEMANTIC INTEGRATION

Data integration

Warehousing

Federation

Semantic Service Integration

- Ontology-based Semantic Data Integration

 Local scheme explained with linked ontologies
 Semantic mapping between schemes

 Semantic Web Services

 OWL-S
 - Process Model, DL types
- Semantic Service Discovery

SEMANTIC DATA REPRESENTATION

Problems to be solved:

- Transducer metadata as knowledge
 - Store and query
 - Search & discovery
- Application-generated data as "derived sensor" data
- Approach:
- Semantic framework to describe knowledge

Semantic Sensor Network (SSN)

- W3C Incubator Group (2009-2011)
- http://www.w3.org/2005/Incubator/ssn/
- Describes capabilities of sensors and sensor networks
 o Formal ontology in OWL 2
 - Built on DOLCE Ultra Lite (DUL) upper ontology
- Covers:
 - system, deployment, sensing device, process
 - observed phenomenon (e.g. wind)
 - sensor type (e.g. ultrasonic wind sensor)
 - property (e.g. wind direction)
 - meaning (e.g. blows from direction)
 - unit of measure (e.g. radian)
 - operating / survival range (e.g. temperature, humidity, power...)
SSN – Feature of Interest

SSN – Sensor

SSN – Sensing Device

SSN – Device

SSN – SensorOutput

SSN – Observation

Sensing method estimated or calculated: value of a Property of a FeatureOfInterest. Links to Sensing and Sensor: what made the Observation and how; Links to Property and Feature what was sensed; Result : the output of a Sensor Other metadata: times etc.

• Observation

SSN – ObservationValue

SSN – SensorDataSheet

SSN - Property

SSN - Condition

SSN - OperatingProperty

SSN - OperatingRange

SSN - SurvivalProprty

SSN – SurvivalRange

SSN - Measurant Canability

Measurement properties (accuracy, range, precision, etc) + Environmental conditions

SSN - Measurement Property

SSN - Accuracy

MŰEGYETEM

SSN - DetectionLimit

SSN - Drift

М Ű Е G Y Е Т Е М

SSN - Frequency

<u>MÚE</u>GYETEM 17

SSN - Latency

<u>м й е</u> дуетем 17

SSN - Measurement Range

SSN - Precision

SSN - Resolution

MŰEGYETEM

SSN – ResponseTime

SSN - Selectivity

Selectivity is a property of a sensor whereby it provides observed values for one or more qualities such that the values of each quality are independent of other qualities in the phenomenon, body, or substance being investigated.

SSN - Sensitivity

<u>M Ű E</u> G Y E T E M 17

SSN example: wind sensor

М Ű Е G Y Е Т Е М 1782

SSN – Wind Sensor

SSN – Wind Sensor

SSN – Wind Sensor

SSN – Query

MEASUREMENTS IN IT INFRASTRUCTURES

SSN – Sensing Device in IT

SPARQL Execution

uery Saved Queries			
Default Graph IRI			
Query			
PREFIX ssn: <http: net="" purl.oclc.org="" ssn#="" ssnx=""> SELECT *</http:>			
WHERE {			
?sensing_device a ssn:SensingDevice . ?sensing_device_ssn:onPlatform ?platform . ?sensing_device_ssn:observes ?observes .			
?platform a ?platform_is_	a.		
}			
Execute Save Load Clear			
sensing_device	platform	observes	platform_is_a
http://cloudpaw /cwpoc1#beren.ftslab.local_ESXi	http://cloudpaw /cwpoc1#beren.ftslab.local	http://inf.mit.bme.hu /ontologies/cloudperf /vmware#Metric	http://inf.mit.bme.hu/ontologies /cloudperf /virtualization#PhysicalMachine
http://cloudpaw /cwpoc1#Clearwater_ESXi	http://cloudpaw /cwpoc1#Clearwater	http://inf.mit.bme.hu /ontologies/cloudperf /vmware#Metric	http://inf.mit.bme.hu/ontologies /cloudperf /virtualization#VirtualDomain
http://cloudpaw /cwpoc1#elrond.ftslab.local_ESXi	http://cloudpaw /cwpoc1#elrond.ftslab.local	http://inf.mit.bme.hu /ontologies/cloudperf /vmware#Metric	http://inf.mit.bme.hu/ontologies /cloudperf /virtualization#PhysicalMachine
http://cloudpaw /cwpoc1#luthien.ftslab.local_ESXi	http://cloudpaw /cwpoc1#luthien.ftslab.local	http://inf.mit.bme.hu /ontologies/cloudperf /vmware#Metric	http://inf.mit.bme.hu/ontologies /cloudperf /virtualization#PhysicalMachine

ONTOLOGIES AS STORAGE SCHEMA MODELS

Sensor Observation Service (SOS)

- Abstracts sensor data and communication
 - Self-describing sensor information database
 - Stores sensor data with geographic relevance
 - Efficient data queries
 - temporal or spatial filters
- Members of the CPS
 - direct communication with the SOS

RDF datastore

- Resource Description Framework (RDF)
- Stores statements:
 - { subject, predicate, object } triples
- OWL \rightarrow RDF
 - ABox axioms:
 - { Instance1 rdf:type Class1 }
 - { Instance1 hasProperty "value"^^xsd:string }
 - OWL: schema, RDF: data
- NoSQL, graph-based databases
 - SPARQL: query language, based on pattern matching
 - OWL reasoning

74

Architecture

