

Kiberfizikai rendszerek

Dr. Péceli Gábor egyetemi tanár Kocsis Imre tanársegéd Dr. Pataricza András egyetemi tanár Vörös András tud. segédmunkatárs

Oktatók

2

Kiberfizikai rendszerek (Cyber-Physical Systems - CPS)

- A tantárgy célkitűzése
- Az internethez integrált beágyazott rendszerek
 - a felhő szolgáltatások → számítási lehetőségek
 - Interneten keresztül elérhető tudás és szolgáltatások
 - felhasználói igények által vezérelt
 - adaptív/átkonfigurálható
 - internetes infrastruktúra megbízhatatlansága

Követelmények

1 db zárthelyi okt.26. 16-18 óráig

- pótZH szorgalmi időszakban,
- pót-pótZH pótlási héten
- 1 db házi feladat
 - -Részbeadások:
 - szept.28. (specifikáció),
 - •okt.26. (rendszerterv),
 - dec.7. (védés)
 - -Pótlás a pótlási héten
- Szóbeli vizsga
 - –Csak aláírással
 - ZH + házi feladat
 - -Megajánlott jegy
 - jeles ZH és jeles házi feladat alapján

Challenges in Cyber-Physical Systems

András Pataricza

Budapest University of Technology and Economics

pataric@mit.bme.hu

单 👰 🎐 Fault-Tolerant Systems Research Group

Let's reach an unlimited intelligence by the synergy of

- intelligence in the cyber space and
- ES interfacing them to the physical world

THE NEW ERA: V INTERNET OF THINGS AKA CYBER-PHYSICAL SYSTEMS

ES paradigm shift

Traditional

Industrialized

- Best component technologies
- Standardized components
- Automated system design

Local vs. remote data

Video Weather Forecast

Kiskunlacháza-airport Satellite

Ivan

Sibing

Data integration

	Official euro exchange rates 314.24	
MI	07 September 2015	mpl Service
You To te	Other exchange rates O	1d use it to call the service. You can do this using the svcutil.exe tool from the command line with the following syntax:
2	Central bank base rate 1.35% 22 July 2015 Base rate hitory •	ramok.asmx?wsdl
Yc		ngle file:
≚ This C#		<u>ngleWsdl</u> hat contains the client class. Add the two files to your client application and use the generated client class to call the Service. For example:
	Inflation Medium term target 3% (±1 p.p. tolerance band)	<pre>; client = new MNBArfolyamServiceSoapClient(); e to call operations on the service.</pre>
	July 2015, KSH:	

Eault-Tolerant Systems Research Group

Budapest University of Technology and Economics

Cloud computing around the globe

Source: Cisco Global Cloud Index: Forecast and Methodology 2013-

Fault-Tolerant Systems Research Group

Mission critical cloud computing

- August 31, 2015
 - -Federal aviation administration
 - -108\$ million now, \$1 billion in 10 years
 - -Source: <u>CSC news</u>
- Network Functions Virtualization
 - -The "telco" cloud
 - -Source: NFV

Critical services over ordinary clouds?

Appearance of cloud-based semantic services

- "Drag-and-drop" application prototyping
- Uniformization
 - Meta-algorithms
 - Data
 - COMPUTED
 - SENSED

IBM Internet of Things (IoT) Foundation

Cloud-connect your Things in minutes Write apps that use the data from real physical devices

Wolfram Connected Devices Project

Example

 Cameras on riverside
Different applications concurrently using the same primary information

- Tasks can change according to time/season/requirements
 - Identification of ships
 - Monitoring the break-up of ice
 - Monitoring the water level
 - Monitoring the speed of flood
 - Pollution check
 - Supervision of hostile entrance to the ship

On-demand Cyber Physical Systems

Cyber

world

Physical

world

Critical CPS design and challenges

Service Oriented Approach

Embedded systems provide services

- Information of sensors
- -information of Internet
- -high level information derived
- -actuation possibility (limited)
- Services in a database
- Upon a new task: solution derived based on design patterns and available resources
- new solution deployed with no interference with the already running ones

Case study: supervising a server room

- Observations
 - -temperature
 - -humidity
 - -state of doors/windows

- -monitoring the power consumption weather (temp./humidity)
- -temperature of outflow air of air conditioning
- -state of server computers/switches (video based)

Sensor platform

Beagleboard-XM embedded SBC

- Sensors
 - -temperature
 - -humidity
 - -web camera
 - -power meters
 - -microswitches to windows/doors
- Information from the web
 - -weather status
 - -weather forecast

3.25′″× 3.25″

Processing the camera pictures in the Cloud

Motion JPEG stream

-available on the Internet

20

Threshold

Virtualization for sensor drivers

Cloud Customer Architecture for IoT

http://www.cloud-council.org/deliverables/CSCC-Cloud-Customer-Architecture-for-IoT.pdf

© 2016 Cloud Standards Customer Council www.cloud-council.org

흦 👰 📚 Fault-Tolerant Systems Research Group

Edge computing

Techtarget: Edge computing definition

Fog computing

🖨 👰 👰 Fault-Tolerant Systems Research Group

Edge and fog computing

End of lecture #1

🗧 👰 🍹 Fault-Tolerant Systems Research Group

Cost impact estimation

# of System Requirements	Easy	Nom.	Diff.
# New	0,5	1,0	5,0
# Design For Reuse	0,7	1,4	6,9
# Modified	0,3	0,7	3,3
# Deleted	0,3	0,5	2,6
# Adopted	0,2	0,4	2,2
# Managed	0,1	0,2	0,8

- Quality and stability Modification: ~ 70% !
- 2. Requirement set complexity reduction
 - 4 similar problems
 - -Separate solution: $4 \times New = 400\%$
 - -Global solution: $1 \times Reuse + 4 \times Adopt$
 - **= 300**%

NIST CPS Framework

NIST CPS Cognitive Cycle

NIST CPS Framework for System Design

Budapest University of Technology and Economics

Aspect	Description	
Functional	Concerns about function including sensing, actuation, control, communications, physicality, etc.	
Business	Concerns about enterprise, time to market, environment, regulation, cost, etc.	
Human	Concerns about human interaction with and as part of a CPS.	
Trustworthiness	Concerns about trustworthiness of CPS including security, privacy, safety, reliability, and resilience.	
Timing	Concerns about time and frequency in CPS, including the generation and transport of time and frequency signals, timestamping, managing latency, timing composability, etc.	
Data	Concerns about data interoperability including fusion, metadata, type, identity, etc.	
Boundaries	Concerns related to demarcations of topological, functional, organizational, or other forms of interactions.	
Composition	Concerns related to the ability to compute selected properties of a component assembly from the properties of its components. Compositionality requires components that are composable: they do not change their properties in an assembly. Timing composability is particularly difficult.	
Lifecycle	Concerns about the lifecycle of CPS including its components.	

Budapest University of Te	Aspect

Concerns

Aspect	Concern	Description
		the ability to modify a CPS or its function, if necessary.
Functional	functionality	Concerns related to the function that a CPS provides.
Functional	manageability	Concerns related to the management of CPS function. For example, Managing Timing in complex CPS or SoS is a new issue with CPS that did not exist before. It is being developed with new standards
Functional	measurability	Concerns related to the ability to measure the characteristics of the CPS.
Functional	monitorability	Concerns related to the ease and reliability with which authorized entities can gain and maintain awareness of the state of a CPS and its operations. Includes logging and audit functionality.
Functional	performance	Concerns related to the ability of a CPS to meet required operational targets.
Functional	physical	Concerns about purely physical properties of CPS including seals, locks, safety, and EMI.
Functional	physical context	Concerns relating to the need to understand a specific observation or a desired action relative to its physical position (and uncertainty.) While this information is often implied and not explicit in traditional physical systems, the distributed, mobile nature of CPS makes this a critical concern.
Functional	sensing	Concerns related to the ability of a CPS to develop the situational awareness required to perform its function.

Fault-Tolerant Systems Rese

A secure, privacy protected message exchange might consist of the simultaneous (set of) properties: {Trustworthiness.Security.Cybersecurity.Confidentiality.Encryption.AES, Trustworthiness.Privacy.Predictability.Controls.Authorization.OAuth}

How to Discover Consensus

Specs to Pivotal Points of Interoperability

Zones of Concern: From Requirements To Services

E.g. CyberSecurity Zone of Concerns: Authorization service + Confidentiality Service

COMPOSITION OF CYBER-PHYSICAL SYSTEMS

Critical CPS design and challenges

Development Process for Critical Systems

Unique Development Process (Traditional V-Model)

Critical Systems Design

- requires a certification process
- to develop justified evidence
- that the system is free of flaws

Software Tool Qualification

- obtain certification credit
- for a software tool
- used in critical system design

Innovative Tool → Better System Qualified Tool

Certified
Output

e 👰 💽 Fault-Tolerant Systems Research Group

Models and Transformations in Critical Systems

Overview: Foundations of Model Transformations

单 👰 👰 Fault-Tolerant Systems Research Group

Budapest University of Technology and Economics

Model-Driven Engineering of Critical Systems

Traditional V-Model

Model-Driven Engineering

DO-178B/C: Software Considerations in Airborne Systems and Equipment Certification (RTCA, EUROCAE)
Steven P. Miller: Certification Issues in Model Based Development (Rockwell Collins)

Main ideas of MDE

- early validation of system models
- automatic source code generation
- ➔ quality++ tools ++ development

Content of the second s

cost--

Design schemes

- Detecting changes in system state
- Detecting changes in environment
- Reconfiguration
 - Resource allocation
 - generation of new application/middleware
 - replacement of sensors
 - •new information fusion etc.
 - -Design space exploration
 - Qualitative
 - Quantitative

Composability

- System design principle:
 - -recombinant components
 - -can be assembled in various combinations
- Meaningful fusion of self-contained services
- Provide interoperability of devices
 - Bridging the gap between different
 - physical,
 - computational and
 - communication capabilities

Dynamic composition of cyber-physical systems

🗧 👰 🊔 Fault-Tolerant Systems Research Group

Requirements of composability

- User interface for describing domain specific constraints
- Abstract interfaces between cooperating nodes
 - Embedded systems connected to sensors and actuators
 - Mobile devices
 - Conventional computing devices,
 - -cloud resources
- Automated system maintenance,
- Fault tolerance, redundancy

Composability through abstraction

- Finding a conceptual domain where devices are homogeneous
 - Possibly the lowest level of such domains
- Abstraction of computing capabilities
 Virtualization (QEMU, Java, Python)
- Abstraction of physical capabilities
 - -Sensor virtualization (SOS),
 - -Feature discovery
- Abstraction of communication capabilities
 - -Self-describing communication interface (SOS)

Budapest University of Technology and Economics

Sensor Observation Service (SOS)

- Abstracts sensor data and communication
 - -Self-describing sensor information database
 - -Stores sensor data with geographic relevance
 - Efficient data queries
 temporal or spatial filters
- Members of the CPS
 - -direct communication with the SOS

Semantic Sensor Network (SSN) ontology

- •W3C Incubator Group (2009-2011)
- Capabilities of sensors and sensor networks
 - -Formal ontology

Covers:

-system, deployment, sensing device, process

- -observed phenomenon (e.g. wind)
 - sensor type (e.g. ultrasonic wind sensor)
 - property (e.g. wind direction)
 - meaning (e.g. blows from direction)
 - •unit of measure (e.g. radian)

-operating range (e.g. temperature, humidity, ...)

SSN example: wind sensor

Architecture

Opportunities and threats in the cps paradigm **RESILIENCE**

e 🍎 🏟 Fault-Tolerant Systems Research Group

Self-* properties – dynamic challenges and solutions

Opportunities-algorithmic diversity

- "Meta-algorithms"
- Different principles
 - -Speed control in Italy:
 - Radar
 - Laser
 - TUTOR
 - –Resource requirements
- External providers
 - –Aaas algorithm as a service
 - External validator

Opportunities- resource redundancy

- Cheap computational redundancy, but
 - Depends on the reservation policy
- Virtualized network (SDN)
 - -Fast failover
- Cheap sensors
 - -Multitude of sensors

Dynamic reconfiguration of resources

🗧 👰 👰 Fault-Tolerant Systems Research Group

🗧 👰 👰 Fault-Tolerant Systems Research Group

🗧 👰 👰 Fault-Tolerant Systems Research Group

THE HORRIBLE MOTIVATION - NEW DANGERS ARE HERE...

unprotected against malicious attacks

protected against worst-case technical faults, but

Safety-critical systems are

Burlapest University of Technology and Economics Polish teen deralls train after hacking train network

- A 14-year-old Polish boy turned the tram system in the city of Lodz into his "train set".
- a modified TV remote control to change track points, and derailed four vehicles.
- Twelve people injured.

Malware implicated in fatal Spanair plane crash

- Authorities investigating the 2008 crash of Spanair flight 5022 have discovered a central computer system used to monitor technical problems in the aircraft was infected with malware.
- An internal report issued by the airline revealed the infected computer failed to detect three technical problems with the aircraft, which if it tected, may have prev ES: long life span off...
 Flight 5022 (Security: evolving threats) off...
 Flight 5022 (Security: evolving threats) off...
 Barajas International Airport two years ago today, killing 154 and leaving only 18 survivors.

Msnbc.com

Safety contra security?

Safe, but not secure

 People may escape danger from inside

Secure, but not safe

 No intruder can enter the gate

Specialization: error propagation/ protection

Introduces:

- Security aspects
- Protection profiles
- Error propagation attributes

Object property hierarchy	Data property hierarchy	Individuals	
Object properties:			
🚅 📬 · 🕅			
detects			
-drives			
has_Outcome			
has_State_CC			=
is_Detected_By			
is_Driven_by			
is_Outcome_of			
is_State_CC			+
	N L Ci no		

Budapest University of Technology and Economics

System level fault impact analysis

Safety vs. security analysis

	Safety	Security	
Fault	HW/SW	Intrusion	
	Unintentional		
	defects		
	LIMITED		
	FAULTS		
Error	Distorted values/states		
Failure	Critical failure		
Propagation	Funtional/	Functional/	
model	architectural	architectural +	
		attack surface	

Dependability/security problems and analysis

: IES-City Framework

e e e Fault-Tolerant Systems Research Group

CONCERNS - ABSTRACT REQUIREMENTS

Budapest University of Technology and Economics

🍬 🁰 🍹 Fault-Tolerant Systems Research Group