
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Modeling Requirements in SysML

2

Systems Engineering
 Systems Engineering is a multidisciplinary approach to

develop balanced system solutions in response to diverse
stakeholder needs

 ~ Integration Engineering
o Software engineering
o Hardware engineering
o Mechanical engineering
o Safety engineering
o Security engineering
o ...

 ~ Process Engineering
 System

o Military, airplane, car, aviation,
railway interlocking, notebook, etc.

2

3

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

kódgeneráláskódgenerálás

HW library

Requirements

Fault tolerance
& safety

Definition of a Requirement

 Definitions
o A condition or capability a system must conform to

(IBM Rational)

o A statement of the functions required of the system
(Mentor Graphics)

 Each requirements needs to be
o Identifiable + Unique: unique IDs

o Consistent: no contradiction

o Unambiguous: one interpretation

o Verifiable: e.g. testable to decide if met

 Captured with special statements and vocabulary

4

The Certification Perspective: High-level vs Low-Level

 High Level Requirements (HLR):
o customer-oriented

o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

 Low Level Requirements (LLR):
o SC can be implemented without

further information

 Software Architecture (SA)
o Interfaces, information flow of SW

components

 Source Code (SC)

 Executable Object Code (EOC)

HLR

LLRSA

SC

OC

DR

DR

Concepts from DO-178C standard

Relationship Between SysML and UML

UML 2

UML 2

Reuse

(1, 2)

UML

reused by

SysML

UML

not required

by SysML

(UML -

UML4SysML)

SysML

extensions to

UML

SysML

6

Aspects of SysML

7

4 Pillars of SysML – ABS Example

8

req [package] VehicleSpecifications

[Requirements Diagram - Braking Requirements]

Braking Subsystem

Specification

Vehicle System

Specification

id=“102”

text=”The vehicle shall stop

from 60 mph within 150 ft

on a clean dry surface.”

«requirement»

StoppingDistance

id=”337"

text=”Braking subsystem shall

prevent wheel lockup under all

braking conditions.”

«requirement»

Anti-LockPerformance

«deriveReqt»

definition

bdd [package] VehicleStructure [ABS-Block Definition Diagram]

«block»

Traction

Detector

«block»

Brake

Modulator

«block»

Library::Elec

tro-Hydraulic

Valve

«block»

Library::

Electronic

Processor

«block»

Anti-Lock

Controller

d1 m1

use

ibd [block] Anti-LockController

[Internal Block Diagram]

d1:Traction

Detector

m1:Brake

Modulator

c1:modulator

interface

1. Structure 2. Behavior

3. Requirements 4. Parametrics

sd ABS_ActivationSequence [Sequence Diagram]

d1:Traction

Detector

m1:Brake

Modulator

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

interaction

state
machine

stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction

activity/
function

act PreventLockup [Activity Diagram]

DetectLossOf

Traction

Modulate

BrakingForce
TractionLoss:

par [constraintBlock] StraightLineVehicleDynamics [Parametric Diagram]

:Accelleration
Equation

[F = ma]

:VelocityEquation
[a = dv/dt]

:DistanceEquation
[v = dx/dt]

:BrakingForce
Equation

[f = (tf*bf)*(1-tl)]

tf: bf:tl:

f:

F:

c

a:
a:

v:

v:

x:

Cross Connecting Model Elements

9

req [package] VehicleSpecifications

[Requirements Diagram - Braking Requirements]

Braking Subsystem

Specification

Vehicle System

Specification

id=“102”

text=”The vehicle shall stop

from 60 mph within 150 ft

on a clean dry surface.”

«requirement»

StoppingDistance

id=”337"

text=”Braking subsystem

shall prevent wheel lockup

under all braking conditions.”

«requirement»

Anti-LockPerformance

«deriveReqt»

req [package] VehicleSpecifications

[Requirements Diagram - Braking Requirements]

Braking Subsystem

Specification

Vehicle System

Specification

id=“102”

text=”The vehicle shall stop

from 60 mph within 150 ft

on a clean dry surface.”

«requirement»

StoppingDistance

SatisfiedBy

«block»Anti-LockController

id=”337"

text=”Braking subsystem

shall prevent wheel lockup

under all braking conditions.”

«requirement»

Anti-LockPerformance

«deriveReqt»

act PreventLockup [Activity Diagram]

DetectLossOf

Traction

Modulate

BrakingForce
TractionLoss:

par [constraintBlock] StraightLineVehicleDynamics [Parametric Diagram]

:Accelleration
Equation

[F = ma]

:VelocityEquation
[a = dv/dt]

:DistanceEquation
[v = dx/dt]

:BrakingForce
Equation

[f = (tf*bf)*(1-tl)]

tf: bf:tl:

f:

F:

c

a:
a:

v:

v:

x:

ibd [block] Anti-LockController

[Internal Block Diagram]

d1:Traction

Detector

m1:Brake

Modulator

c1:modulator

interface

1. Structure 2. Behavior

3. Requirements 4. Parametrics

act PreventLockup [Swimlane Diagram]

«allocate»

:TractionDetector

«allocate»

:BrakeModulator

allocatedTo
«connector»c1:modulatorInterface

DetectLossOf

Traction

Modulate

BrakingForce
TractionLoss:

ibd [block] Anti-LockController

[Internal Block Diagram]

 allocatedFrom
«activity»DetectLos
OfTraction

d1:TractionDetector

 allocatedFrom
 «activity»Modulate
 BrakingForce

m1:BrakeModulator

allocatedFrom
«ObjectNode»
TractionLoss:

c1:modulator

Interface

ibd [block] Anti-LockController

[Internal Block Diagram]

 allocatedFrom
«activity»DetectLos
OfTraction

d1:TractionDetector

 allocatedFrom
 «activity»Modulate
 BrakingForce

m1:BrakeModulator

allocatedFrom
«ObjectNode»
TractionLoss:

c1:modulator

Interface

satisfies
«requirement»
Anti-Lock
Performance

ibd [block] Anti-LockController

[Internal Block Diagram]

 allocatedFrom
«activity»DetectLos
Of Traction

d1:TractionDetector

values

DutyCycle: Percentage

 allocatedFrom
 «activity»Modulate
 BrakingForce

m1:BrakeModulator

allocatedFrom
«ObjectNode»
TractionLoss:

c1:modulator

Interface

satisfies
«requirement»
Anti-Lock
Performance

par [constraintBlock] StraightLineVehicleDynamics [Parametric Diagram]

:Accelleration
Equation

[F = ma]

:VelocityEquation
[a = dv/dt]

:DistanceEquation
[v = dx/dt]

:BrakingForce
Equation

[f = (tf*bf)*(1-tl)]

tf: bf:tl:

f:

F:

m:

a:
a:

v:

v:

x:

v.Position:

v.Weight:
v.chassis.tire.

Friction:
v.brake.abs.m1.

DutyCycle:
v.brake.rotor.
BrakingForce:

par [constraintBlock] StraightLineVehicleDynamics [Parametric Diagram]

:Accelleration
Equation

[F = ma]

:VelocityEquation
[a = dv/dt]

:DistanceEquation
[v = dx/dt]

:BrakingForce
Equation

[f = (tf*bf)*(1-tl)]

tf: bf:tl:

f:

F:

m:

a:
a:

v:

v:

x:

v.Position:

v.Weight:
v.chassis.tire.

Friction:
v.brake.abs.m1.

DutyCycle:
v.brake.rotor.
BrakingForce:

req [package] VehicleSpecifications

[Requirements Diagram - Braking Requirements]

Braking Subsystem

Specification

Vehicle System

Specification

VerifiedBy

«interaction»MinimumStopp

ingDistance

id=“102”

text=”The vehicle shall stop

from 60 mph within 150 ft

on a clean dry surface.”

«requirement»

StoppingDistance

SatisfiedBy

«block»Anti-LockController

id=”337"

text=”Braking subsystem

shall prevent wheel lockup

under all braking conditions.”

«requirement»

Anti-LockPerformance

«deriveReqt»

satisfy

SysML Diagram Taxonomy

10

Structure
Diagram

Behaviour
Diagram

Block Definition
Diagram

Internal Block
Diagram

Package
Diagram

Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Sequence
Diagram

Diagram

Requirement
Diagram

Parametric
Diagram

Modified from UML2

New diagram type

Same as UML2

SysML Example – Requirements

11

Requirement
Name

Id

Text
Requirement

decomposition

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

12

R1.1

R2.1

R3.2

R1.2 ?

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

13

R1.1

R3.2

?

R2.1

Relations between Requirements
 Trace

o General trace relationship
o Between requirement and any other model element

 Refine
o Depicts a model element that clarifies a requirement
o Typically a use case or a behavior

 Derive
o A requirement is derived from another requirement by

analysis or decision
o Typically at the next level of the system hierarchy

 Copy
o Supports reuse by copying requirements to other

namespaces
o Master-slave relation between requirements

 Satisfy
o Depicts a design or implementation model element that

satisfies the requirement

 Verify
o Used to depict a test case that is used to verify a

requirement

14

Examples of Relations between Requirements

15

Derive

Refine Refine

Traceability of Requirements in SysML Models

16

Requirements

Use Cases

Test Cases

Block
diagrams

<<refine>>

<<verify>>

<<satisfy>>

Budapest University of Technology and Economics
Department of Measurement and Information Systems

SysML 1.5 requirement modeling
changes

May 2017

Requirements Relations in Table

18

Hierarchical
numbering

Traceability
links

Subclassing the SysML

Additional
requirement
properties
taxonomies

19

SysML 1.5 Requirement Definition

Any named
model element
could represent a
requirement.

 a constraint, a

 block with
value
properties,

 behavior
element

o state machine

o activity,

20

Modeling System Functions with
Use Cases

SysML notation: Actors and External systems

Actor

22

External system
(anything as a box)

Sensor

Actuator

Environmental
effect

Information
flow

Use cases

Who will use the system and for what?

23

System
boundary

Use case

Secondary
actor

Primary
actor

Use Case Descriptions

 Additional textual description to detail use cases
o Preconditions: must hold for the use case to begin

o Postconditions: must hold once the use case has
completed

o Primary flow: the most frequent scenario(s) of the use
case (aka. main success scenario)

o Alternate flow: less frequent (or not successful)

o Exception flow: not in support of the goals of
the primary flow

 Elaborated behavior in SysML (discussed later)
o Activity diagrams: scenarios with complex control logic

o Interaction diagrams: for message based scenarios

24

Overview of UC Relations

Association

• Actor – use case (rarely: actor – actor)

• an actor initiates (or participates in) the use of the system

Generalization

• actor – actor OR use case – use case

• a UC (or actor) is more general than another UC or actor

Includes

• use case – use case

• a complex step is divided into elementary steps

• a functionality is used in multiple UCs

Extend

• use case – use case

• a UC may be extended by another UC

• typically solutions for exceptional situations

25

Traceability of Use Cases in SysML Models

26

Use Cases

Requirements

Block
Diagrams

Activity
Diagrams

<<refine>>

<<satisfy>>

<<refine>>System
Context

<<refine>>

Summary

27

Modeling physical properties

Controller, plant and environment model

2
8

Platform-based systems design

Thermal model of an aircraft

30

Copyright:

Controller, Plant, and Environment

 Typical system control loop

 Co-designing controller and the plant would be
the ideal setting

31

Controller

Environment

Plant

Disturbance

Output
Feedback

Reference signals
and settings

Important step of controller design:
process identification based on measurements

Controller design

 Controller functional design using blocks

o BDD: defines element hierarchy and containment

o IBD: template for component internal structure

 Challenge: validate the design of the controller

o On-site testing and calibration can be

• Expensive (time + cost)

• Dangerous

o Instead:

• create plant model and environment model with physical
properties and

• run simulations

32

Example railway system controller

 Controller aims to

o monitor the trains

o apply brakes when necessary

• too close to each other

• prevent derailment at turnouts

 Parameters influencing braking distance

o Weather conditions

o Speed

o Landscape

o … (anything else?)

33

Railway
system

controller

Railway
infrastructure

Environmental
conditions

Train status

Train
destination

Constraints and physical parameters
in SysML

Constraint blocks

34

Units and Quantity Kinds

Unit, QuantityKind and ValueType definitions

36

Continuous elements :Rate

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

37

38

39

Constraint blocks

 Constraint: equations with parameters bound to
the properties of the system

 Constraint block: supports the definition and the
reuse of constraints. It holds

o a set of parameters and

o an equation constraining the parameters

40

Name of the
constraint

Equation – no dependency
between variables

Parameters
with types

May have
language

specification

Assignments and equations

 An assignment in a typical programming language is a
causal connection, where the left hand side is the
dependent variable:

y := x + 3

 An acausal connection is like a mathematical
equation; there is no notion of inputs/outputs. So

y = x + 3

and
y - 3 – x = 0

have the same meaning.
o If any of the variables has a new value, it enforces that the

other variables change accordingly.

41

Constraint definition

42

 Composition is used to define complex constraints
from simple equations

Hierarchy
depicted in a BDD

Parametric diagram

Specification of bindings between system parameters

43

Parametric Diagram (PAR)

44

Parameter bindings

45

 Goal: describe the application of constraints in a
particular context

Values bound
together are equal

Types in a binding
must be compatible

Applications of parametrics

 Parametric specification

o Define parametric relationships in the system structure

 Parametric analysis

o Evaluating constraints on the system parameters to
calculate values and margins for a given context

o Checking design alternatives

o Tool support: ParaMagic plug-in for MagicDraw

 There are modeling standards with better support
for this modeling aspect…

o…such as Modelica

46

Modelica

A language for modeling and simulating
complex physical systems

47

Overview of Modelica

 Modelica is an object-oriented, equation based language
designed to model complex physical systems containing
process-oriented subcomponents of different nature

o Describing both continuous-time and discrete-time behaviour

 The Modelica Standard Library provides more than 1000
ready-to-use components from several domains

o Full high-school + 1st year university physics (and much more)

 Implementations

o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore

o Open-source: JModelica

 Modeling and simulation IDE: OpenModelica

48

Example: modeling a simple pendulum

 Simple pendulum

 Behavior of the pendulum as a function of time:

ሶ𝜃(𝑡)
ሶ𝜔 𝑡

=
𝜔(𝑡)

−
𝑔

𝐿
𝜃(𝑡)

49

ƟL

ω
m

Modelica code for simple pendulum

50

model SimplePendulum

parameter Real L=2.0;

constant Real g=9.81;

Real theta (each start = 1.0);

Real omega;

equation

der(thetha) = omega;

der(omega) = -(g/L)*thetha;

end SimplePendulum;

Model name Continuous time
variables, constants

Initial value

(Differential) equations

Pendulum simulation results

51

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

52

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

53

Definition in Modelica:
equation

phi = flange_a.phi;

phi = flange_b.phi;

w = der(phi);

a = der(w);

J*a = flange_a.tau + flange_b.tau;

Definition in Modelica:
equation

auxiliary[1] = x[1];

for i in 1:n - 1 loop

auxiliary[i + 1] = D.Tables.AndTable[auxiliary[i], x[i + 1]];

end for;

y = pre(auxiliary[n]);

Modelica and Simulation

 Simulating a model means to calculate the values
of its variables at certain time instants

 Advantages

o Observing dangerous/expensive bevaviour at low cost
with no risks

o Resolves scaling issues (size, duration)

 Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations
(ODEs) generated from the model

o Numerical techniques

54

Example plant model – train brakes

 Physical model for braking system carrying a mass

 Graphical notation in OpenModelicaEditor

55

Icon

Connection

Port

Example plant model – train brakes

 Physical model for braking system carrying a given
mass

56

Example plant model – train brakes

57

model BrakeExample

Brake brake(

fn_max=1,

useSupport=false);

Mass mass1(

m=1,

s(fixed=true),

v(start=1, fixed=true));

Step step(

startTime=0.1,

height=2);

equation

connect(mass1.flange_b, brake.flange_a);

connect(step.y, brake.f_normalized);

end BrakeExample;

Brake, Mass, and Step are inbuilt
classes to Modelica Library

Can describe both causal
and acausal connections

between ports

 Plot values w.r.t. time (displacement)

Brake times and distance

58

 X-Y plot (speed w.r.t. displacement)

The mass stopped
after 1s at 0.6m

The speed reduced to
0m/s after the mass

moved 0.6m

Summary

 Complex system design requires modeling of
physical parameters

o SysML constraint block, parametric diagram

 Modeling both discrete-time and continuous-time
behaviour of cyber-physical systems

o Modeling language for this purpose: Modelica

 Connecting models to study joint behavior

o Simulation of models is especially useful when
implementing and testing the system is expensive

59

