
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Safety-critical systems:
Requirements & Architecture

Systems Engineering course

András Vörös
(slides: István Majzik)

Previous topics: Requirements

Previous topics: Requirements

Safety requirements

Introduction

 Safety-critical systems
o Informal definition: Malfunction may cause injury of people

 Safety-critical computer-based systems
o E/E/PE: Electrical, electronic, programmable electronic systems

o Control, protection, or monitoring

o EUC: Equipment under control

Railway signaling, x-by-wire,
interlocking, emergency

stopping, engine control, …

Accident examples

 Toyota car accident in San Diego, August 2009

 Hazard: Stuck accelerator (full power)

o Floor mat problem

 Hazard control: What about…

o Braking?

o Shutting off the engine?

o Putting the vehicle into neutral?
(gearbox: D, P, N)

Conclusions from accident examples

 Harm is typically a result of a complex scenario
o (Temporal) combination of failure(s) and/or normal event(s)

o Hazards may not result in accidents

 Hazard ≠ failure
o Undetected (and unhandled) error is a typical cause of hazards

o But hazard may also be caused by (unexpected) combination of
normal events (correct operation)

 Central problems in safety-critical systems:
o Analysis of situations that may lead to hazard: Risk analysis

o Assignment of functions to avoid hazards  accidents  harms

o Specification of (extra-functional) safety requirements

State 1 Hazard Harm
Event 1 Event 2 Accident

Trigger

Terminology in the requirements

Safety

Harm

Risk

Hazard

Functional
safety

Physical injury or damage to
the health of people
(to property, environment)

Situation (state, event) which
may result in harm under
specific circumstances

Combination of the
probability of occurrence of
hazard and the severity of the
consequences (harm)

Risk categories

Terminology in the requirements

Safety

Harm

Risk

Hazard

Functional
safety

Physical injury or damage to
the health of people
(to property, environment)

Situation (state, event) which
may result in harm under
specific circumstances

Combination of the
probability of occurrence of
hazard and the severity of the
consequences (harm)

Freedom from unacceptable risk
(Ideal case: Freedom from harm)

Safety depends on the correct
functioning of the system

Example: Application of the terminology

Safety

Harm

Risk

Hazard

Functional
safety

Bekapcsoló pont Bekapcsoló pont

Közelítési szakasz Közelítési szakasz

Kikapcsoló pont

What we have to specify?

Safety function requirements
o Function which is intended to achieve or maintain a safe

state for the EUC
• In other words: What the system shall do in order to avoid /

control the hazard

o (Part of the) functional requirements specification

Safety integrity requirements
o Probability that the safety-related system satisfactorily

performs the required safety functions (without failure)

o Probabilistic approach to safety
• Example 1: Buildings are designed to survive earthquake that

occurs with probability >10% in 50 years

• Example 2: Dams are designed to withhold the highest water
measured in the last 100 years

Safety integrity requirements

 Integrity depending on the mode of operation
o Low demand mode: Average probability of failure to perform

the desired function on demand

o High demand (continuous) mode: Average rate of failure to
perform the desired function
(rate: failure per hour)

 High demand mode: Tolerable Hazard Rate (THR)

SIL Failure of a safety function per hour

1 10-6  THR < 10-5

2 10-7  THR < 10-6

3 10-8  THR < 10-7

4 10-9  THR < 10-8

If the lifetime is
15 years then

1 equipment will
fail out of the

750 equipments

Operation
without failures

in more than
11.000 years??

Determining SIL: Overview

 Hazard identification and risk analysis -> Target failure measure

Frequency of

hazardous event

Consequence of

hazardous event

EUC

Risk

System

safety

integrity

level

Software

safety

integrity

level

4

3

2

1

0

4

3

2

1

0

THR SIL

Example: Safety requirements
 Machine with a rotating blade and a solid cover

o Cleaning of the blade: Lifting of the cover is needed

 Risk analysis: Injury of the operator
when cleaning the blade while the motor is rotating
o Hazard: If the cover is lifted more than 50 mm and

the motor does not stop in 1 sec

o There are 20 machines, during the lifetime
500 cleaning is needed for each machine;
it is tolerable only once that the motor is not stopped

 Safety function: Interlocking
o Safety function requirement: When the cover is lifted to 15 mm,

the motor shall be stopped and braked in 0.8 sec

 Safety integrity requirement:
o The probability of failure of the interlocking (safety function) shall be less

than 10-4 (one failure in 10.000 operation)

Satisfying safety integrity requirements
 Failures that influence safety integrity:

o Random (hardware) failures: Occur accidentally at a random time
due to degradation mechanisms

o Systematic (software) failures: Occur in a deterministic way
due to design / manufacturing / operating flaws

 Achieving safety integrity:
o Random failure integrity: Selection of components (considering failure

parameters) and the system architecture

o Systematic failure integrity: Rigor in the development
• Development life cycle: Well-defined phases

• Techniques and measures: Verification, testing, measuring, …

• Documentation: Development and operation

• Independence of persons: Developer, verifier, assessor, …

 Safety case:
o Documented demonstration that the product complies with the

specified safety requirements

Summary: Structure of requirements

Dependability related requirements

(When safety is not enough)

Characterizing the system services

 Typical extra-functional characteristics
o Reliability, availability, integrity, ...

o These depend on the faults occurring during the use of the
services

 Composite characteristic: Dependability

Definition: Ability to provide service in which reliance
can justifiably be placed

• Justifiably: based on analysis, evaluation, measurements

• Reliance: the service satisfies the needs

o Basic question: How to avoid or handle the faults
affecting the services?

Threats to dependability

Fault tolerance

during

operation

Verification

during the

development

Development process Product in operation

• Design faults
• Implementation faults

• Hardware faults
• Configuration faults
• Operator faults

Attributes of dependability

Attribute Definition

Availability Probability of correct service (considering
repairs and maintenance)

“Availability of the web service shall be 95%”

Reliability Probability of continuous correct service
(until the first failure)

“After departure the onboard control system
shall function correctly for 12 hours”

Safety Freedom from unacceptable risk of harm

Integrity Avoidance of erroneous changes or
alterations

Maintainability Possibility of repairs and improvements

State partitions

 S: state space of the system

DOWN
Faulty

UP
Healthy

Dependability metrics: Mean values

 Basis: Partitioning the states of the system
o Correct (U, up) and incorrect (D, down) state partitions

 Mean values:

o Mean Time to First Failure: MTFF = E{u1}
o Mean Up Time: MUT = MTTF = E{ui}

(Mean Time To Failure)

o Mean Down Time: MDT = MTTR = E{di}
(Mean Time To Repair)

oMean Time Between Failures: MTBF = MUT + MDT

t

s(t) trajectory

u1 d1 u2 d2 u3 d3 u4 d4 u5 d5 ...

U

D

Dependability metrics: Probability functions

 Availability:

 Asymptotic availability:

 Reliability:

t

A

a(t)

r(t)

1.0

0

 () ()a t P s t U 

 () (') , 'r t P s t U t t   

lim ()
t

A a t




MTTF
A

MTTF MTTR




Availability related requirements

Availability Failure period per year
99% ~ 3,5 days
99,9% ~ 9 hours
99,99% („4 nines”) ~ 1 hour
99,999% („5 nines”) ~ 5 minutes
99,9999% („6 nines”) ~ 32 sec
99,99999% ~ 3 sec

Availability of a system built up from components,
where the availability of single a component is 95%,
and all components are needed to perform the system function:

 Availability of a system built from 2 components: 90%

 Availability of a system built from 5 components : 77%

 Availability of a system built from 10 components : 60%

Attributes of components

 Fault rate:
Probability that the component will fail at time point t
given that it has been correct until t

 Reliability of a component on the basis of this definition:

֞𝜆 𝑡 = ൘−𝑟′ 𝑡
𝑟 𝑡

 For electronic components:

0

()

()

t

t dt

r t e




t

(t)

H ere () tr t e 

 
0

1
1 ()MTFF E u r t dt





  

Initial faults
(after

production)

Aging
period

Operating period

 () () | () while 0t t P s t t D s t U t       

()t

Threats to dependability

Fault  Error  Failure examples:

Component
or system

Error: State leading to
the failure

Fault:
adjudged or
hypothesized
cause of an error

Failure:
the delivered
service deviates
from correct service

Fault Error Failure

Bit flip in the memory
due to a cosmic particle

Reading the faulty
memory cell will result in
incorrect value

The robot arm
collides with the wall

The programmer
increases a variable
instead of decreasing

The faulty statement is
executed and the value of
the variable will be
incorrect

The final result of the
computation will be
incorrect



 



The characteristics of faults

Fault

Space Time

Internal External

Physical
(hardware)

Design
(typ. software)

Physical
(environment)

Data
(input)

Intermittent
(transient)

Permanent

Software fault:

 Permanent design fault (systematic)
 Activation of the fault depends on the operational profile (inputs)

Means to improve dependability

 Fault prevention:

o Physical faults: Good components, shielding, ...

o Design faults: Good design methodology

 Fault removal:

o Design phase: Verification and corrections

o Prototype phase: Testing, diagnostics, repair

 Fault tolerance: Avoiding service failures

o Operational phase: Fault handling, reconfiguration

 Fault forecasting: Estimating faults and their effects

o Measurements and prediction
E.g., Self-Monitoring, Analysis and Reporting Technology (SMART)

Summary

 Safety requirements

o Basic concepts: Hazard, risk, safety

o Safety integrity

 Dependability requirements

o Attributes of dependability

o Quantitative attributes (definitions): reliability and
availability

o The fault – error – failure chain

o Means to improve dependability: fault prevention,
fault removal, fault tolerance, fault forecasting

Safety architecture

Previous topics

 What we specified?

o Safety function requirements: Function which is
intended to achieve or maintain a safe state

o Safety integrity requirements: Probability of a safety-
related system satisfactorily performing the required
safety functions (i.e., without failure)

 Safety Integrity Level and component fault rates

o SIL 4: 10-8 ...10-9 faults per hour

o Typical electronic components: 10-5…10-6 faults/hour

o Typical software: 1..10 faults per 1000 line of code

???

Goals

 Safety critical systems study block

1. Requirements in critical systems: Safety,
dependability

2. Architecture design (patterns) in critical systems

3. Evaluation of system architecture

 Focus: Design of system architecture to ...

omaintain safety

o handle the effects of faults in hardware and software
components

Learning objectives

Architecture design in safety critical systems

 Understand the role of architecture

 Know the typical architecture level solutions for
error detection in case of fail-stop behavior

 Propose solutions for fault tolerance in case of

o Permanent hardware faults

o Transient hardware faults

o Software faults

 Understand the time and resource overhead of
the different architecture patterns

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fail-stop operation

1. Single channel architecture with built-in self-test

 Single processing flow with error detection

 Scheduled hardware self-tests

o After switch-on: Detailed self-test

o In run-time: On-line tests

 Online software self-checking

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

 Disadvantages

o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the checked channel

Implementation of on-line error detection

 Application dependent (ad-hoc) techniques
o Acceptance checking (e.g.: too low, too high value)

o Timing related checking (e.g.: too early, too late)

o Cross-checking (e.g.: using inverse function)

o Structure checking (e.g.: broken structure)

 Application independent (platform) mechanisms
o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MMU level: Protection of memory ranges

o OS level checking
• Invalid parameters of system calls

• OS level protection of resources

Example: Testing memory cells (hw)

States of a correct cell to be
checked:

States in case of stuck-at 0/1
faults:

States in case of transition
fault:

States of two correct (adjacent) cells
to be checked:

Testing: „March” algorithms (w/r)

Example: Checking execution flow (sw)

 Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

} else {

d: m=m-i;

}

e: printf(“%d\n”,n);

}

f: printf(“Ready.”)

Source code: Control flow graph:

b

c

d

e

a

f

Example: Checking execution flow (sw)

 Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

o Instrumentation: Signatures to be checked in runtime

a: S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

} else {

d: S(d); m=m-i;

}

e: S(e); printf(“%d\n”,n);

}

f: S(f); printf(“Ready.”)

Instrumented source code: Control flow graph:

b

c

d

e

a

f

2. Two-channels architecture with comparison

 Two or more processing
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

 High error detection
coverage
o The comparator is a critical

component (but simple)

 Disadvantages:
o Common mode faults

o Long detection latency
=

stopn

Example: TI Hercules Safety Microcontrollers

3. Two-channels architecture with safety checking

 Independent second
channel
o Safety bag: only safety

checking

o Diverse implementation

o Checking the output of
the primary channel

 Advantages
o Explicit safety rules

o Independence of the
checker channel 

stopn

Example: Elektra interlocking system

Two channels:

 Logic channel:
CHILL (CCITT High
Level Language)
procedure-
oriented
programming
language

 Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based
language

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fault-tolerant systems

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Fault tolerant systems

 Fault tolerance: Providing (safe) service in case of faults

o Intervening into the fault  error  failure chain

• Detecting the error and assessing the damage

• Involving extra resources to perform corrections / recovery

• Providing correct service without failure

• (Providing degraded service in case of insufficient resources)

 Extra resources: Redundancy

o Hardware

o Software

o Information

o Time

resources (sometimes together)

Categories of redundancy

 Forms of redundancy:
o Hardware redundancy

• Extra hardware components (inherent in the system
or planned for fault tolerance)

o Software redundancy
• Extra software modules

o Information redundancy
• Extra information (e.g., error correcting codes)

o Time redundancy
• Repeated execution (to handle transient faults)

 Types of redundancy
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component has reduced load

o Hot: The redundant component is active in fault-free case

Overview: How to use the redundancy?

 Hardware design faults: (< 1%)

o Hardware redundancy with design diversity

 Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g.: redundant processor)

 Hardware transient operational faults: (~70-80%)

o Time redundancy (e.g.: instruction retry)

o Information redundancy (e.g.: error correcting codes)

o Software redundancy (e.g.: recovery from saved state)

 Software design faults: (~ 10%)

o Software redundancy with design diversity

1. Fault tolerance for hardware permanent faults

Replication:

 Duplication with diagnostics:

o Error detection by comparison

o With diagnostic unit:
Fault tolerance by switch-over

 TMR: Triple Modular Redundancy

o Masking the failure
by majority voting

o Voter is a critical component
(but simple)

 NMR: N-modular redundancy

o Masking the failure by majority voting

o Mission critical systems: Surviving the mission time

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

OutputMajority

With diversity in case of considering design faults

2. Fault tolerance for transient hardware faults

 Approach: Fault tolerance implemented by software

o Detecting the error

o Setting a fault-free state by handling the fault effects

o Continuing the execution from that state
(assuming that transient faults will not occur again)

 Four phases of operation:

1) Error detection

2) Damage assessment

3) Recovery

4) Fault treatment and continuing service

Phase 1: Error detection

 Application independent mechanisms:

o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

 Application dependent techniques:

o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o…

Phase 2: Damage assessment

 Motivation: Errors can propagate among the components
between the occurrence and detection of errors

 Limiting error propagation: Checking interactions

o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

 Estimation of components affected by a detected error

o Logging resource accesses and communication

o Analysis of interactions (before error detection)

!Fault Error detection
Interactions

Phase 3: Recovery

 Forward recovery:

o Setting an error-free state by selective correction

o Dependent on the detected error and estimated damage

o Used in case of anticipated faults

 Backward recovery:

o Restoring a prior error-free state (that was saved earlier)

o Independent of the detected error and estimated damage

o State shall be saved and restored for each component

 Compensation:

o The error can be handled by using redundant information

Types of recovery

 State space of the system: Error detection

v2

v1 state variable

s(t)

! Error detection
Fault occurrence

Types of recovery

 State space of the system: Forward recovery

v2

v1 state variable

s(t)

!

Forward recovery

e1

e2

e3

Types of recovery

 State space of the system: Backward recovery

v2

v1 state variable

s(t)

!

Backward recovery

Saved state

Types of recovery

 State space of the system: Compensation

v2

v1 state variable

s(t)

!

Compensation

Types of recovery

 State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

e1

e2

e3

Compensation

Backward recovery

 Backward recovery based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
• Save: copying the state periodically into stable storage

• Recovery: restoring the state from the stable storage

• Discard: deleting saved state after having more recent one(s)

o Analogy: “autosave”

 Limited applicability: Based on operation logs
o Error to be handled: unintended operation

o Recovery is performed by the withdrawal of
operations

o Analogy: ”undo”

Scenarios of backward recovery

t

!
t

!
t

!
t

Saved state 1 Saved state 2

Fault Detection

Phase 4: Fault treatment and continuing service

 For transient faults:
o Handled by the forward or backward recovery

 For permanent faults:
o Recovery is unsuccessful (the error is detected again)

o The faulty component shall be localized and handled

Approach:
o Diagnostic checks to localize the fault

o Reconfiguration
• Replacing the faulty component using redundancy

• Degraded operation: Continuing only the critical services

o Repair and substitution

4. Fault tolerance for software faults

 Repeated execution is not effective for design faults!

 Redundancy with design diversity is required

Variants: Redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common faults

 Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

 Active redundancy:
Each variant is executed (in parallel)

o The same inputs are used

o Majority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a critical component (but simple)

Variant 1

Variant 2

Variant 3

Voter
Output

Error
signal

Input

Recovery blocks
 Passive redundancy: Activation only in case of faults

o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Execution of
a variant

Acceptance
checking

y n

Output

Input

Recovery blocks

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Comparison of the techniques

Property/Type N-version
programming

Recovery
blocks

Error detection Majority voting,
relative

Acceptance checking,
absolute

Execution of
variants

Parallel Serial

Execution time Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always
(active)

Only in case of fault
(passive)

Number of
tolerated faults

[(N-1)/2] N-1

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Summary

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components

2. Hardware permanent operational faults
o Replicated components: TMR, NMR

3. Hardware transient operational faults
o Fault tolerance implemented by software

1. Error detection

2. Damage assessment

3. Recovery: Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

