
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Modeling Textual Requirements

CPS Course

(based on IT System Design)

What is it about?

Context of the Modeling Aspect

Roots & Relations

 Document based system development

o Formulated requirements textually (e.g. in Word)

o Handled by Req. management tools (e.g. DOORS)

o Challenge: complexity

3

Requirements Diagram

4

Modeling Aspect

What are the main requirements formulated
textually and what are their hierarchy?

5

Objectives

 Provides linkage between traditional textual and
model based requirements specifications

 Helps establishing relations between
requirements

o Containment hierarchy

o Derivation

o Reusing between projects

 Provides traceability of requirements

6

Definition of a Requirement

 Definitions
o A condition or capability a system must conform to

(IBM Rational)

o A statement of the functions required of the system
(Mentor Graphics)

 Each requirements needs to be
o Identifiable + Unique: unique IDs

o Consistent: no contradiction

o Unambiguous: one interpretation

o Verifiable: e.g. testable to decide if met

 Captured with special statements and vocabulary

7

The Certification Perspective: High-level vs Low-Level

 High Level Requirements (HLR):
o customer-oriented

o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

 Low Level Requirements (LLR):
o SC can be implemented without

further information

 Software Architecture (SA)
o Interfaces, information flow of SW

components

 Source Code (SC)

 Executable Object Code (EOC)

HLR

LLRSA

SC

OC

DR

DR

Concepts from DO-178C standard

Functional vs Extra-functional

Functional

• Specific to a component of the system

• Core technical functionality

Extra-functional

• Fulfilled by the system as a whole

• Performance

• Reliability

• Safety

• Security

9

Sample Requirements

Requirements of a
Cyber-physical Agricultural System

Cyber-physical system

 American terminology

o Novel buzz-word for embedded system

o In EU it is ~ „Internet of things”

„ Cyber-Physical Systems (CPS) are engineered systems comprising
interacting physical and computational components. In CPS,
computation and communication are deeply embedded in and
interacting with physical processes to add new capabilities and
characteristics to physical systems.”

 E.g., acoustic sniper detection system

11

Example requirements
Design a simple Cyber-physical agricultural system (CPAS), which helps a
farmer with his/her everyday life using sensors to measure the environment
and react to its changes by using automated operations like irrigation,
mowing and spraying.

Requirements
 The CPAS system is capable of measuring the environment through its sensors.
 The CPAS uses the following sensors: temperature, humidity, luminance, rain.
 The CPAS can execute operations to change its surrounding environment.
 These operations can be mowing, irrigation and spraying.
 The mowing operation signals the robot mower to execute its programmed task.
 If the mower robot executes its task without any problem it returns to its

refueling station.
 If the mower robot fails to complete its task, it sends a notification about its

status

12

Example requirements (con’t)
 The irrigation operation simply activates the pre-installed irrigation-

system.
 If the irrigation-system fails, it sends a notification about its status.
 Whenever a notification arrives the CPAS signals the farmer based on the

configured communication mean.
 The spraying operation signals the laborers to execute the spraying task.
 The laborers report to the CPAS when they finished their task.
 In case an error occurs during the spraying the laborers submit a form to

the CPAS and it notifies the farmer.
 The farmer can configure the system, when to activate its operations

based on its sensor inputs.
 The farmer can shut down the CPAS system that immediately stops all of

its active operations.
 The system shall provide diagnostic information about its components for

maintenance.

13

How to Write Requirement?

Best practices for writing textual requirements

 A textual requirement contains
o a short description(stand-alone sentence / paragraph)
o of the problem and not the solution

 English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions

• Example:
The railway operator shall create a direct route
between any two points on the track

o Be precise! (Quantitative is better than qualitative)
o Avoid passive sentences

 Use of auxiliaries:
o Positive: shall/must > should > may
o Negative: must not > may not
o They specify priorities!

15

Examples

Functional:

• The operator shall be able to change the
direction of turnouts

• Train equipments shall periodically log
sensor data with a timestamp

Safety:

• The system shall ensure safe traffic within a
zone

• The system shall stop two trains if they are
closer than a minimal distance

• No single faults shall result in system failure

Performance:

• The system should allow five trains per
every 10 minutes

Reliability:

• The allowed downtime of the system
should be less than 1 hour per year

• The system shall continue normal
operation within 10 minutes after a
failure

Supportability:

• The system shall allow remote access for
maintenance

Security:

• The system shall provide remote access
only to authorized personnel

Usability:

• The user interface should contain only 3
alerts at a time

16

Anti-patterns

1. The system should be safe

2. The system shall use Fast
Fourier Transformation to
calculate signal value.

3. The system shall continue
normal operation soon
after a failure.

4. Sensor data shall be logged
by a timestamp

5. Unauthorized personnel
could not access the
system

17

Too general / high-level

Describes a solution
(and not only the problem)

Imprecise
(how to verify „soon”?)

Passive should be avoided!

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?

What are the building blocks?

Modeling Elements & Notation

Example – Top Level Requirements

19

Requirement
Name

Id

Text
Requirement

decomposition

Example – Further Decomposed

20

Example – Full Hierarchy

21

Requirements Table

22

Requirements Trace Relations
 Refine

o Depicts a model element that clarifies a requirement
o Typically a use case or a behavior

 Satisfy
o Depicts a design or implementation model element that satisfies the

requirement

 Verify
o Used to depict a test case that is used to verify a requirement

 Derive
o Used when a requirement is derived from another requirement based on

analysis
o Typically at the next level of the system hierarchy

 Copy
o Supports reuse by copying requirements to other namespaces
o Master-slave relation between requirements

 Trace
o General trace relationship
o Between requirement and any other model element

23

Example derive relationship

24

Derived
requirement:
after analysis

Rationale can
be attached

Example refine relationship

25

Direct
notation

Compartment
notation

Callout
notation

Example trace relationships

26

Requirements Relations in Table

27

Hierarchical
numbering

Traceability
links

Summary

 Goal
o Bridge the gap between textual requirements and

requirement and design models
• Handles textual req.s as model elements

• Provides support for requirements traceability

 Modeling aspect
o What are the main requirements formulated textually

and what are their hierarchy?

 Relation of requirements to other aspects
o Refined by model elements (e.g. use case, activity)

o Satisfied by blocks

o Verified by test cases

28

