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1 Introduction

Infrastructure analytics is a special field of quantitative analysis where the outcome of the
analysis process aims to support systems engineers with fine-tuning their domain knowl-
edge. The input of the analysis is usually logs collected at several levels (OS, application,
etc.) of different components. Nowadays, the components of an IT infrastructure are well-
instrumented, resulting large amount of heterogeneous data.

The goal of this laboratory is (i) getting familiar with the basic techniques used for trans-
formation and cleaning of small and large data sets (ii) practicing creation of good and in-
formative visualizations (iii) getting an idea how interpretation of temporal analysis results
support typical tasks of systems engineers, e.g. resource management and capacity plan-
ning.

The primary language of the laboratory is R. The basics of the language (value assignment,
control structures, data types) can be acquired e.g. via the interactive DataCamp course1

(which provides an R console in your browser so you do not have to install the R interpreter
or any IDE on your machine) but feel free to use any tutorial you find useful. You will
find a detailed list about R functions whose confident usage will be required to pass the
prerequisite test and finish the laboratory on time.

2 Background

This section will briefly summarize the necessary theoretical background of the laboratory.

2.1 System under analysis: our educational cloud

The use case of this laboratory is going to be monitoring data originated from our edu-
cational cloud (VCL as Virtual Computing Labs). It contains nine physical hosts as worker
nodes, each having 32 GB of RAM and 8 CPU cores [2].

Before the release of a VM type, it is configured by a minimally „promised” and maximally
allowed memory amount and number of CPU cores. There is no CPU affinity set up, i.e. the
mapping of logical cores to physical ones may change during the usage of the VM. Memory
overcommitment is prohibited in the system, thus, the sum of minimally reserved memory
of running VMs never exceeds the memory capacity of the physical machine. The VM type
is available for the students three weeks before their deadline.

During the reservation period, the students send requests containing a VM type and the
desired length of the reservation, which is usually maximized in a couple of hours. A request
can be parametrized as: (i) an immediate request becoming active right after the reservation is
acknowledged; in this case, after deployment onto the physical host, the VM starts loading;
(ii) a future request being served at a specified time. The VCL scheduler examines the resource
amount of the VM to be reserved and the current workload of the hosts. Each host has
a static limit for every VM type, maximizing the number of VMs able to run on the host
simultaneously. If there is no host which has enough spare capacity to run the requested
VM, then it will be rejected.

1https://www.datacamp.com/courses/free-introduction-to-r
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While using the system: if a reservation request is accepted, the VM is assigned to an ap-
propriate host and loading starts. If students decide to finish their work earlier or the time
expires, the VM is deleted and the resources are released.

2.2 Data sources

Two types of data was collected and stored in our educational cloud: (i) reservation logs
containing information about the VM requests and (ii) monitoring data originated from the
virtualization platform being sampled with a 20 second frequency.

Attributes characterizing a single log observation are the following:

request information: time and date of the request, requested VM type, desired length and
timing (immediate or a start time in case of future) of the reservation;

system state: boolean flag indicating whether any of the hosts had enough capacity to serve
the request;

reservation information: how much time the load took (time spent until the permission
comes to students to log-in onto the remote machines) and how the reservation was
closed (time expired, the user logged out and released the resources, etc.).

The attributes stored at the virtualization platform level are the basic resource utilization
metrics of the host subsystems: the average CPU and memory usage, number of bytes read
and written via the network interface or onto the local disk of the machine in the observed
period (here the last 20 sec). Since VMs are not instrumented for monitoring/logging, we
lack a more detailed analysis: e.g. there is no exact information about the resource usage
ratio among the VMs and the management functions.

Our analysis aims at answering a very simple question of capacity planning: according to our
experiences in the observed period, (i) what are the recommended limits of virtual machines and (ii)
what is the maximal number of reservations our system can serve reliably?

2.3 Basic concepts of data analysis

The goal of data analysis projects is extracting data-based information about an observed
system or phenomenon. In an ideal case, at the end of the project we have a deeper insight
of how our system works (what is happening?) and have some hypotheses about the cause-
effect relationships (why could it happen this way?).

The analysis usually consists of two steps: exploratory and confirmatory phases (exploratory
and confirmatory data analysis, EDA and CDA, respectively).

The exploratory data analysis phase consists of activities related to the exploration of the
system. It answers the most basic questions related to the marginal and joint distributions
of variables (the marginal distribution of each individual variable and basic relationships
between them). Since one- and two-dimensional visualization techniques are excellent (in-
tuitive, fast) tools for extracting this information, the exploratory analysis in practice means
the plotting of, and inspection into, many graphical plots.

At the end of the EDA phase, we already have some ideas, so-called hypotheses about the
basic phenomena in the system. For example ”the distribution family of the processing
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time is a two-modal Gaussian”. However, to prove (or publish) these, ad-hoc ideas are not
enough, we need statistically significant results. This is the main task of the CDA phase.
Primary tools here are the statistical tests (z-test, chi-square test, etc.).

This laboratory focuses on the exploratory phase, thus, concepts of statistical testing will not
be tested.

2.4 Toolset: the R language

R is a popular analytical framework, originally tailored for statistics and visualization. It
has more than 7000 packages, built-in functions support the analyst at every step from data
cleaning through manipulation to reporting and publishing of results.

We will use only a very narrow subset of R functions, related to data manipulation, dis-
tributed data processing, visualization and reporting. This syllabus contains the required
theoretical background of the laboratory: the basic visualization types, the concepts of wide
and long data frames and the MapReduce programming paradigm.

However based on our experiences, solid knowledge of particular R packages (functions)
can boost your performance during the analysis (and allow to finish your exercises in time),
thus, familiarity with the following functions is required for the laboratory:

reshape2:: dcast, melt – transformation between wide and long data tables2,

ggplot2:: qplot – sophisticated (static) data visualization3,

plyr:: ddply – category-dependent computations4,

stats:: lm – linear model fitting5,

rmr2:: mapreduce, to|from.dfs, keyval, c.keyval – distributed computations6,

base:: as.POSIXct, strptime – conversion between date and string7,

utils:: read|write.csv – loading and saving data in a tabular format8.

3 Analysis workflow

The first part of the laboratory (you should spend approx. one and a half hour on it) is about
data transformation and exploration, the second section (approx. one hour) focuses on dis-
tributed computations, the third part is less coding and ideal to improve your interpretation
skills (approx. one hour). This section briefly summarizes the main steps of your workflow.

2http://seananderson.ca/2013/10/19/reshape.html
3http://blog.echen.me/2012/01/17/quick-introduction-to-ggplot2/
4http://seananderson.ca/2013/12/01/plyr.html
5http://www.statmethods.net/stats/regression.html
6http://home.mit.bme.hu/~ikocsis/notes/2013/10/23/(r)hadoop-sandbox-howto/
7http://www.cyclismo.org/tutorial/R/time.html
8http://www.r-tutor.com/r-introduction/data-frame/data-import

4

http://seananderson.ca/2013/10/19/reshape.html
http://blog.echen.me/2012/01/17/quick-introduction-to-ggplot2/
http://seananderson.ca/2013/12/01/plyr.html
http://www.statmethods.net/stats/regression.html
http://home.mit.bme.hu/~ikocsis/notes/2013/10/23/(r)hadoop-sandbox-howto/
http://www.cyclismo.org/tutorial/R/time.html
http://www.r-tutor.com/r-introduction/data-frame/data-import


3.1 Step 1: Transformation of small data

During transformation, our data set can be available in several different forms, depending
how many empty cells (NA stands for ”not available” values in analytics terminology) the
data table has or how redundant it is. There are two distinguished formats we get familiar
with in detail: the long and the wide data format.

Long data frames have as few columns as possible, minimally three: the ID of the object, a
feature name (what we have measured, observed, etc.) and the value itself. For example,
ESX logs are typically in a long format:

>head(esx_log)
Timestamp variable host_ID Instance Value
"2014.03.21.7:05:00" "cpu.usage.average" "394" "1" "1.57"
"2014.03.21.7:05:00" "mem.usage.average" "394" "" "31.33"
"2014.03.21.7:05:00" "net.transmitted" "394" "" "1.99"
"2014.03.21.7:05:00" "net.received" "394" "" "1.67"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "5" "2.68"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "7" "1.48"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "2" "1.37"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "3" "0.46"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "4" "1.89"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "0" "1.97"

Listing 1: ESX logs are typically stored in a long format

Wide data frames have one ID column and every feature appears in a separate column: one
observation is characterized with a single row in our data table.

For example, the reservation log of the VCL is stored in a wide format, where a row repre-
sents a reservation query:

>head(reservations, n = 10)
reservation_id time_of_reservation start_of_reservation

end_of_reservation length_of_reservation VM_type host_ID
5337 2014.01.24 15:20 2014.01.24 15:27 0.1786 Windows7 394
5338 2014.01.24 15:32 2014.01.24 15:33 0.0867 Windows7 396
5339 2014.01.24 15:33 2014.01.24 16:25 0.9272 Windows7 397
5340 2014.01.27 7:48 2014.01.27 16:00 8.2022 Windows7 397
5341 2014.01.27 11:31 2014.01.27 11:46 0.3050 ITLab1 MIT2 Client 396
5342 2014.01.28 7:07 2014.01.28 7:09 0.0475 ITLab1 MIT2 Client 396
5343 2014.01.28 7:30 2014.01.28 7:32 0.1044 ITLab1 MIT2 Client 397
5344 2014.02.01 11:32 2014.02.01 11:51 0.3300 ITLab1 MIT2 Client 396
5345 2014.02.01 11:41 2014.02.01 11:51 0.2011 NFS Server 397

Listing 2: The reservation log stored in a wide format

In general, the long format is much more flexible; in case of entering a new feature in our
system (e.g. our instrumentation has changed and we monitor more metrics of the applica-
tion) we only add a new line in the right format without any configuration problems. On
the other hand, the wide data format allows us to handle features absolutely separately.
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reshape2

melt and dcast are the most useful transformation functions for changing between long and
wide format. Please take a look at their help page9.

3.2 Step 2: Distributed data processing on MapReduce base

MapReduce is a general programming paradigm allowing parallel processing of large data
sets. The ”divide and conquer” concept of MapReduce – that we write simple functions
executed on small data chunks and at the end we somehow summarize the results yielded
from the individual functions – should be familiar from other domains, where distributed,
massively parallelizeable algorithms run.

Two main steps of a MapReduce job are – not surprisingly – Map and Reduce. The typical
task of the Map phase is usually some filtering, while the summarization is performed dur-
ing the Reduce. Note: the input of the Map is only a randomly assigned data chunk, the
Reduce phase handles usually a more homogeneous data subset. MapReduce implementa-
tions nowadays (e.g. Hadoop) take care of the whole management workflow (split the data
into chunks, assign the computation jobs to them, collecting and merging the results of the
Map phase etc.) and thus, the developers only have to write the two worker functions.

For example, we have a larger ESX log file containing resource utilization metrics in a long
format. We are curious how our resources are utilized, thus, we would like to extract the
maximum utilization of each resources.

Fig. 1 shows what happens in each phase of a possible implementation of this exercise,
where the resources are considered as keys. (The original figure credit goes to [1].)

Mappers process the data chunk by row, emits the results of a filtering in form of <key,
value> pairs, where the resource is the key. Note that the we abstract the timestamp
variable entirely, decreasing the amount of data to be sent further to Combiner jobs.

Combiners summarize the values belonging to one key, practically performing a Reduce on
the small data set. It reduces further the data set further (note again the communication
overhead in a distributed system). In simpler cases the Map and Combiner functions
are merged.

Partitioners aggregate values by keys, transmit the results of the Mapper/Combiner jobs in
a <key, value list> format.

Reducers perform the final summarization (or other computations) for an individual key.

rmr2

The rmr2 package is a MapReduce implementation, where Map and Reduce functions can
be written in R. The package is able to connect to a Hadoop distribution, and – and this is
the most useful feature for us – can run on a single compute node. Thus, we are able to get
familiar with its functions without installing a whole Hadoop cluster into our analysis VM.

Please take a look at a possible solution for the exercise above.
9A detailed description can be found here: http://seananderson.ca/2013/10/19/reshape.html
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Data chunk A
2016.02.03 11:24 CPU 93%
2016.02.03 11:24 Memory 6%
2016.02.03 11:25 CPU 94%
2016.02.03 11:25 Memory 12%
2016.02.03 11:26 CPU 92%
2016.02.03 11:26 Memory 14%

Data chunk B
2016.02.03 11:27 CPU 93%
2016.02.03 11:27 Memory 16%
2016.02.03 11:28 CPU 90%
2016.02.03 11:28 Memory 12%
2016.02.03 11:29 CPU 90%
2016.02.03 11:29 Memory 4%

Data chunk C
2016.02.03 11:30 CPU 88%
2016.02.03 11:30 Memory 23%
2016.02.03 11:31 CPU 86%
2016.02.03 11:31 Memory 2%

Mapper Mapper Mapper

Combiner Combiner
Combiner

CPU 93% Memory 6%

CPU 94% Memory 12%

Memory 14%CPU 92%

CPU 93% Memory 16%

CPU 90% Memory 12%

Memory 4%CPU 90%

CPU 88% Memory 23%

CPU 86% Memory 2%

Partitioner Partitioner Partitioner

CPU 94% Memory 14% CPU 93% Memory 16% CPU 88% Memory 23%

Shuffle and sort: aggregate values by keys

Reducer Reducer

CPU: 94%, 93%, 88% Memory: 14%, 16%, 23%

CPU: 94% Memory: 23%

Figure 1: A possible solution for the maximum resource utilization exercise

library(rmr2)
library(stringr)
rmr.options(backend = "local")

a <- mapreduce(input="VCL_sample.csv",
input.format="csv",

map=function(k,v){
v <- v[v[, 4] == "", ]
keyval(key=v[, c(2, 3)],

val=v[, 5])},

reduce=function(id, numbers.list){
keyval(key=id,

val=max(numbers.list))}
)()

b <- from.dfs(a)
b

Listing 3: rmr2 code for the maximal resource utilization problem
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3.3 Step 3: Visualization

Faithful and quick visualization is a key during EDA.

Note: visual analytics and information visualization are different concepts.

Information visualization – nice examples are e.g. in newspapers – is the art of storytelling
with charts. Business analysts, designers, UX experts work on the best possible presentation
of some information already found. In other words, infographics10 are the result of an analysis,
they contain the most compelling or useful or impressive relationships found in the data.
The recipients of this information are people who have never seen the raw data.

On the other hand, the analyst – who ideally has a solid knowledge of the context and spent
a couple of hours with data munging – would like to focus on discovering patterns on a plot.
She knows exactly the input data set was, what axes X and Y contain, etc. Thus, in these
cases, performance beats aesthetics in priority. The goal of our plots in this laboratory is to
gain a better understanding of the system under analysis. Therefore, do not expect plots,
which – at least with their default settings – will be publication-ready or even nice-looking.

EDA typically uses low-dimensional visualizations, the most common plot types are the
following.11

• Histograms and boxplots for one-dimensional numerical variables;

• Barcharts for one-dimensional categorical variables;

• Scatterplots for visualization of two numerical variables;

• Mosaic plots for visualization of two categorical variables.

Sometimes high dimensional plot types are useful as well like scatterplot matrices and par-
allel coordinates, however, simpler dimension increasing methods such coloring and group-
ing are worth considering before you use more complicated visualizations.

The grammar of graphics and the ggplot2 package

Wilkinson’s „The grammar of graphics” (1999) is a definitive book on the area of data visual-
ization. Its concept of general geometric objects (bars, lines, points, etc.) and their aesthetic
features (size, color, etc.) opened a new way of thinking among visualization people. It
became natural in the 2000s and is present in most visualization tools nowadays (Tableau,
IBM Watson Analytics Visualization Dashboard, Microsoft Power BI).

ggplot2 is an open-source implementation of the grammar of graphics paradigm [3]. During
the laboratory, its usage is recommended but not required, you can use any visualization
framework.12

10Nice examples here: http://goo.gl/8O6buk and here: http://goo.gl/Crc7uW
11A great source to learn the basic visualizations is the Visual Analysis chapter here: http://goo.gl/

5blwrK
12 The concept can be learned from several sources, you may want to check out http://blog.echen.

me/2012/01/17/quick-introduction-to-ggplot2/ or http://tutorials.iq.harvard.edu/R/
Rgraphics/Rgraphics.html
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4 List of Questions

1. The reservation logs have typically a wide format. How would it look like in a long
format? Which R function would you use to do transformation?

>head(reservations, n = 10)
reservation_id time_of_reservation start_of_reservation

end_of_reservation length_of_reservation VM_type host_ID
5337 2014.01.24 15:20 2014.01.24 15:27 0.1786 Windows7 394
5338 2014.01.24 15:32 2014.01.24 15:33 0.0867 Windows7 396
5339 2014.01.24 15:33 2014.01.24 16:25 0.9272 Windows7 397
5340 2014.01.27 7:48 2014.01.27 16:00 8.2022 Windows7 397
5341 2014.01.27 11:31 2014.01.27 11:46 0.3050 ITLab1 MIT2 Client 396
5342 2014.01.28 7:07 2014.01.28 7:09 0.0475 ITLab1 MIT2 Client 396
5343 2014.01.28 7:30 2014.01.28 7:32 0.1044 ITLab1 MIT2 Client 397
5344 2014.02.01 11:32 2014.02.01 11:51 0.3300 ITLab1 MIT2 Client 396
5345 2014.02.01 11:41 2014.02.01 11:51 0.2011 NFS Server 397

Listing 4: The reservation log stored in a wide format

2. The ESX logs have typically a long format. How would it look like in a wide format?
Which R function would you use to do the transformation?

>head(esx_log)
Timestamp variable host_ID Instance Value
"2014.03.21.7:05:00" "cpu.usage.average" "394" "1" "1.57"
"2014.03.21.7:05:00" "mem.usage.average" "394" "" "31.33"
"2014.03.21.7:05:00" "net.transmitted" "394" "" "1.99"
"2014.03.21.7:05:00" "net.received" "394" "" "1.67"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "5" "2.68"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "7" "1.48"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "2" "1.37"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "3" "0.46"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "4" "1.89"
"2014.03.21.7:05:00" "cpu.usage.average" "394" "0" "1.97"

Listing 5: The reservation log is stored in a wide format

3. Assuming the above mentioned format of the reservation logs, how would you visu-
alize

• how many VMs the individual hosts have run overall the two years?

• the marginal distribution of reservation lengths?

• the marginal distribution of reservation lengths along the individual hosts?

• how the reservation affinity of a specific VM type has changed in time?

• how many instances the individual hosts have run from each VM type?

4. Assuming the above mentioned format of the reservation logs, how would you use the
ddply function to compute the median reservation length for each VM type?

5. Let’s assume that we have an extremely long ESX log in the long table used above and
we would like to compute, which happens more frequently: that the memory usage of
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a specific host is higher than its CPU usage or the opposite? Write MapReduce-based
pseudocode to solve the problem, indicating the exact input and output type of each
step.

6. How would you figure it out whether there is a strong the linear relationship is be-
tween the CPU and memory usage of a host.

7. You would like to transform the reservation log into a data frame containing four
columns: Timestamp, host_ID, VM_type and Number where a row represents how many
VMs a particular host have run in a particular minute. How would you do that? List
the steps or write pseudocode to transform the df.1 into the df.2.

>df.1
reservation_id start_of_reservation end_of_reservation VM_type

host_ID
5338 2014.01.24 15:32 2014.01.24 15:33 Windows7 396
5339 2014.01.24 15:32 2014.01.24 15:34 Windows7 397
5339 2014.01.24 15:33 2014.01.24 15:35 Windows7 397
5341 2014.01.24 15:33 2014.01.24 15:35 ITLab1 MIT2 Client 396

>df.2
Timestamp host_ID VM_type Number
2014.01.24 15:32 396 Windows7 1
2014.01.24 15:32 397 Windows7 1
2014.01.24 15:33 396 Windows7 1
2014.01.24 15:33 396 ITLab1 MIT2 Client 1
2014.01.24 15:33 397 Windows7 2
2014.01.24 15:34 396 ITLab1 MIT2 Client 1
2014.01.24 15:34 397 Windows7 2
2014.01.24 15:35 396 ITLab1 MIT2 Client 1
2014.01.24 15:35 397 Windows7 1

Listing 6: Example input and output

Environment

The VM you will work with has the following setup:

• R 3.2.2 apt-get install r-base r-base-dev

• RStudio 0.99 http://www.rstudio.com/products/rstudio/download/

• required packages: ggplot2, reshape2, plyr, knitr, rmarkdown, Rcpp, RJSONIO, bitops, di-
gest, functional, stringr, plyr, reshape2, caTools

• rmr-3.3.1. packages http://github.com/RevolutionAnalytics/RHadoop/
wiki/Downloads, easy install via GUI

• test scripts: http://home.mit.bme.hu/~ikocsis/notes/2013/10/23(r)
hadoop-sandbox-howto
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5 Exercises

To avoid the ad-hoc, unnecessary steps during the laboratory (which are quite typical in
every data analysis project), the exercises are this time a little more specific than usual. You
find the skeleton of the laboratory in .Rmd files, please, follow that guide and eventually
submit your report in that format (too) on GitHub.

Acknowledgments

The data you will use during the laboratory originates from our VCL system, being main-
tained by our VCL gurus, Áron Tóth and Dávid Cseh.
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