I | i
[T = ans [T T

MUEGYETEM 178
Budapest University of Technology and Economics
Department of Measurement and Information Systems
Fault Tolerant Systems Research Group

Critical Architectures Laboratory
Spring Semester 2015/2016

Model-Driven SAT-Based Resource Allocation

Syllabus
vl.l

Author: Oszkar Semerith
(semerath@mit.bme.hu)

February 26, 2016

Contents

1__Introductionl
1.1 Overview: Reasoning on the Engineering Model|

1.2 Resource Allocation Problem of CPS|

2 SAT-Solving by the Alloy Analyzer
2.1 Boolean Satisfiability Problem|
|2_.2 The Alloy Language and Analyzer|

3.1 Navigation Constraints|
B.3.2 Cardinality Constraints|
B.3.3 Security Level Constraints|.

4 List of Questions|

WINDN

W W W

NNOYONON Q1 U > >

A

1 Introduction

1.1 Overview: Reasoning on the Engineering Model

The advancement of formal methods made it possible to effectively aid the formal analysis
of the modelling artifacts extensively used in model-driven engineering. In this laboratory
we aim to give an insight into the technological and theoretical background through the
analysis of data models by logic solvers.

[Figure T|shows the general approach of the analysis. Data models are typically defined in
a Domain, which defines the metamodel and the design rules. Usually, the analysis is based
on initial Partial Models, which define the design environment. The goal of the analysis is
to provide valid models satistying the design requirements. This is done by mapping the
modelling problem to a logic problem, which is then solved by advanced logic reasoners.
The result of the reasoning is a logic model, which can, in turn, be interpreted as a model of
the target domain. The basic procedure consists of the following three steps:

1. The artifacts of the modelling tool are mapped to a logic problem.
2. The logic problem is solved by a reasoner.

3. The result of the analysis is traced back to a model of the analyzed domain, which
satisfies the requirements.

Modelling Tool Logic Reasoner
© 5 Logi
L 2 Domain & > oglc
S g Problem
6)
5 2
€9 Partial
© > || .
4@ @ Models - @ Logic Model

Figure 1: Logic analysis of domain-specific models

The approach will be illustrated on a resource allocation problem in the Cyber-physical
system (CPS) domain.
The goal of this exercise are the following:

¢ To provide an introduction to automated logic analysis.
¢ To gain some experience with Boolean Satisfiability problems and the Alloy solver.

¢ As a continuation of the previous laboratory, we will overview how engineering prob-
lems can be mapped to logic problems in order to automatically provide solutions.

¢ In particular, to demonstrate how resource allocation problems of the CPS domain can
be automatized.

The output of the previous laboratory is an Alloy source file, which defines the main
concepts and relations of a CPS. In this laboratory, this code will be complemented with
logic constraints, and the logic problem will be processed by the Alloy Analyzer.

1.2 Resource Allocation Problem of CPS

Cyber-physical systems (CPS) are on one hand close to embedded systems as they are also built
from sensors, controllers and actuators, where the sensors gather heterogeneous informa-
tion from the environment, the controllers observe the gathered information and order the
actuators to modify the environment according to the observed information. On the other
hand, CPS systems are aiming to harvest the benefits of elastic cloud based resources to
provide even more complex automation services.

The mapping of the different tasks to the specific hardware is a challenging task, because
(1) the software and hardware architecture can be complex, (2) several design rules must be
adhered to, and (3) the developer sought to optimise different properties of the system, like
hardware cost-effectiveness or reliability. In this laboratory the software allocation problem
is mapped to a Boolean satisfiability problem, which is automatically solved by the Alloy
Analyzer.

2 SAT-Solving by the Alloy Analyzer

2.1 Boolean Satisfiability Problem

The Boolean Satisfiability Problem is a formally specified scheme of decision problems.

"A propositional logic formula, also called Boolean expression, is built from vari-
ables, operators AND (conjunction, also denoted by A), OR (disjunction, V), NOT
(negation, neg), and parentheses. A formula is said to be satisfiable if it can be
made TRUE by assigning appropriate logical values (i.e. TRUE, FALSE) to its
variables. The Boolean satisfiability problem (SAT) is, given a formula, to check
whether it is satisfiable. This decision problem is of central importance in various
areas of computer science, including theoretical computer science, complexity
theory, algorithmics, and artificial intelligence." [4]

The following example shows an example SAT-problem, where two tasks (¢, and ;) have
to be allocated to different computers (¢; and c;). The right hand side shows a possible
solution to the problem.

Problem Solution
Variables: Interpretation:

tic; = Task1l — Computer 1 tic; = TRUE

tica = Task1— Computer 2 tico = FALSE

toci = Task2 — Computer 1 toc; = FALSE

toco = Task 2 — Computer 2 toco = TRUE
Constraint: Satfied Constraint:

“((t1er Atacy) V ((trea Ataca))) | "(TAF)V(FAT)) =T

SAT is a decidable fragment of logic problems and there are several advanced SAT-solver
applications which are able to effectively solve SAT problems.

2.2 The Alloy Language and Analyzer

Alloy provides a logic language for describing graph-structures and conveniently define
constraints with higher-order logic expressions (quantified with 3 and V) expressions and

3

relational algebra (join operators, C, U, N). The Alloy Analyzer tool translates the logic
problem to pure SAT, solves it and visualises the results.
Some advantages of the Alloy Analyzer are listed below:

It has been actively developed for more than 10 years. The application is stable and
proven.

The Analyzer tool is a light-weight, small and multiplatform Java application.

It has been used in a wide range of applications from finding holes in security mecha-
nisms to designing telephone switching networks.

It provides a tool that is able to consistently solve a wide and well-defined range of
problems.

It is very well-documented, and thus easy to learn and use.

It is easily incorporated in automated workflows or integrated into a research proto-

type.

To learn the use of the Alloy Analyizer, read the following manuals: [3] (Only File System
Lesson I-IV are needed). Make yourself familiar with the reference manuals at [2]. You can
download and try the Alloy Analyzer at [1].

3 Tasks

In preparation for the class, read the tutorial and familiarize yourself with the referred man-

uals.

Download Alloy Analyzer, and check some examples. During the class, do the tasks

listed below.

3.1

Initial Model Generation

Try the Alloy Analyzer with the result of the previous lecture.

1.

3.2

Start the the Alloy Analyzer, and load the final code generated in the previous labora-
tory.

. Try to execute the satisfiability problem. If the code contains any syntax error, correct

it. Certainly, the analyzer is able to find a valid instance easily.

. Generate some examples and examine random graph outputs. In the next steps addi-

tional facts will be added to the code in order to generate models representing valid
CPS configurations.

Structural Constraints

Add structural constraints to the Alloy problem in order to represent valid models.

Important: You only need to edit the Alloy code for this specific metamodel, not the
generic code generator of the previous laboratory!

Important: Generate models after each step with small scopes to check your solution.

4

¢ Important: Do not generate string attributes, or add exactly 3 String to thescope
of the run configuration in order to represent names in the logic the problem. (Other-
wise the problem will be unsatisfiable, because it tries to create models without any
strings, what contradicts the lower multiplicity of an attribute.)

¢ Important: If you have scalability issues, try to remove unnecesary generic supertypes
(like EObject, NamedElement, CPSElement) from the problem.

1. It is challenging to represent integers as a (Boolean) SAT problem. In order to tackle
this difficulty, extract the attribute slot to individual objects. Those objects will repre-
sent the resources of the computers. [Figure 2| shows the new metamodel. Implement
this change in the Alloy code.

|] Task [0..] tasks [1.1] allocatedTo % Computer ’

= severity : Severity = low [0..1] requiredBy

[1..1] providedby ’

[1..*] requiredSlots [1..*] slots

]

Figure 2: New Slot type

2. Visualise the new metamodel with Execute | Show Metamodel. The result should be

similar to the one illustrated on

CyberPhysicalSystem
N

N
includedTasks \\

Task N
severity: Severity \\\mcmm,deHputm:»
N
N

extends
extends/extends extends

’AirConditioner lController

SmokeDetector Alarm

dBYequiredSlots
exter

Figure 3: Metamodel of the CPS visualised by Alloy Analyzer

3. Define the inverse directions in the metamodel (navigation to the opposite direction).

4. Define the containment hierarchy in this metamodel: There should be one
CyberPhysicalSystem, and each object should be connected to it (containment re-
lation).

3.3 Additional Validation Constraint
3.3.1 Navigation Constraints

1. Tasks uses the slots of the Computer to which they are allocated.

5

2. Controller controls only a non-controller task.

3. Each Task except the controller has to be deployed to MicroControllers.

3.3.2 Cardinality Constraints

1. A microcontroller has 1-3 slots.

2. A server provides up to 10 slots.

3.3.3 Security Level Constraints

Write the following fact which defines that the AirConditioner is a Low Severity Level task:

fact{ AirConditioner.severity in Low }

1. What would be be the difference if the operator "in" would be changed to the operator

=" in the code?

Extend the model with the following constraints:
2. The Light can be Medium or High severity.
3. The Smoke Detectors and Alarms are Critical tasks.

4. The controllers severity is equal with the controlled unit severity.

3.3.4 Advanced Constraints

1. Critical and noncritical tasks can not be mixed in a computer.

2. Controller tasks in one computer should control different tasks. It is unnecesary to
deploy multiple controllers with the same target to a computer.

In the end, the Alloy Analyzer generates valid instance models that satisfy each require-
ment. A possible result which contains each type of element is depicted in The
following scope is used for this model:

run {} for

exactly 1 CyberPhysicalSystem,
exactly 2 MicroController,
exactly 1 Server,

exactly 7 Slot,

exactly 1 Controller,

exactly 1 SmokeDetector,
exactly 1 Alarm,

exactly 1 Light,

exactly 1 AirConditioner

CyberPhysicalSystem

includedTasks

asks includedTasks

— includedC oy
Controller SmokeDetector
severity: Critical severity: Critical

Light AirConditioner
g severity: Medium severity: Low

includedTasks

_included ters
\H]LU((:‘(puters

Aarm
severity: Critical

Figure 4: Example of a CPS that contains each type of (Slots are excluded)

3.4 Software Configuration Allocation

shows an example software configuration of two controllers, a Smoke Detector and
a Light module.

1. Create a fact that ensures the generated models contain this initial structure. (Pay
attention to the)

2. Show an example configuration.

3. Prove that the allocation can not be realized without at least two MicroController. It
can be checked for the scope 50 with the following scope:

run {} for 50 but exactly 1 MicroController

Controller0 Controllert
(includedTasks) (includedTasks)
severity: Critical severity: Medium

controls controls

SmokeDetector Light
(allocatedTo, includedTasks, tasks) (includedTasks)
severity: Critical severity: Medium

Figure 5: A concrete software configuration

4 List of Questions

Read this document and the referred [3] tutorial, then answer the following questions:

1. Define the signature of a Folder type which contains arbitrary number of
subfolders!

2. Write an example to abstract signatures and inheritance!

What kind of multiplicities are available in the Alloy language?
Define a scope for generating a model with 10 Folder!

What is the difference between the "="and the "in" operators?

S

What does it mean if the Alloy Analyzer shows the following message: "Instance found.
Predicate is consistent."?

7. What does it mean if the Alloy Analyzer shows the following message: "No instance
found. Predicate may be inconsistent."?

1. sig Folder { subfolder: set Folder }

2. abstract sig A extends B{ ...}

3. lone = 0..1, one = 1..1, some = 1..%, set = 0..*
4. run {} for 10 Folder

5. "A=B" means that that the two set is equivalent (A = B), "A in B"meansthat A C B

6. The logic problem is satisfiable, and the tool is able to show an example model for the
given scope.

7. The SAT-problem is unsatisfiable for the given scope.

References

[1] Alloy analyzer. http://alloy.mit.edu/alloy/download.html.

[2] Alloy language: Referrence Manual. http://alloy.mit.edu/alloy/
documentation/book—-chapters/alloy—-language—reference.pdf.

[3] Alloy Tutorial: File System Lesson I-IV. http://alloy.mit.edu/alloy/
tutorials/online/frame-FS—1.htmll

[4] SAT-Problem. |http://en.wikipedia.org/wiki/Boolean_satisfiability_
problem.

http://alloy.mit.edu/alloy/download.html
http://alloy.mit.edu/alloy/documentation/book-chapters/alloy-language-reference.pdf
http://alloy.mit.edu/alloy/documentation/book-chapters/alloy-language-reference.pdf
http://alloy.mit.edu/alloy/tutorials/online/frame-FS-1.html
http://alloy.mit.edu/alloy/tutorials/online/frame-FS-1.html
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

	Introduction
	Overview: Reasoning on the Engineering Model
	Resource Allocation Problem of CPS

	SAT-Solving by the Alloy Analyzer
	Boolean Satisfiability Problem
	The Alloy Language and Analyzer

	Tasks
	Initial Model Generation
	Structural Constraints
	Additional Validation Constraint
	Navigation Constraints
	Cardinality Constraints
	Security Level Constraints
	Advanced Constraints

	Software Configuration Allocation

	List of Questions

