
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Program Verification I.
Critical Architectures Laboratory

Tamás Tóth
totht@mit.bme.hu

1

mailto:totht@mit.bme.hu


INTRODUCTION

2



Topic of the Lab Session:

Implement a simple bounded model checker
for a restricted fragment of the

C programming language

3



Bounded Model Checking

4

Bounded Model Checker

System Property

𝑘

✓ ✗

Counterexample exists of length at most k



BMC for Programs

5

Bounded Model Checker

Source code assert calls

𝑘

✓ ✗

Assertion violation in at most k steps

.c source

with



VERIFICATION WORKFLOW

6



BMC Workflow

7

i := 0 ✓

Transform error path to 
SMT problem

Check with SMT solver

✗Extract CEX from model

Get next error path of 
length i

i++

[i > k]

[i ≤ k]

[none]

[some] : error path

[UNSAT]

[SAT] : model

counterexample

SMT problem

CFA

Transform 
source to CFA

.c source



Source code with Assertions
bool linearSearch(int[] a, int l, int u, int e) {

for (int i = l; i <= u; i++) {

if (a[i] == e) {

return true;

}

}

assert(!contains(a, l, u, e));

return false;

}

8

assert() calls
mark a requirement at the 
given point of control flow



Control Flow Automata (CFA)

9

ℓ0

ℓ1

i := l

ℓ2

assume i > u

ℓ3

assume i <= u

ℓ4

assume not

contains(…)

ℓ8ℓ5

assume

contains(…)

return false

ℓ6

ℓ7

assume

a[i] = e

return true

assume

a[i] /= e

i := i + 1

initial location

final locationerror location

conditions and assertions 
are mapped as assume

statements



(Bounded) Unwinding of a CFA

10

ℓ0

ℓ1

ℓ2 ℓ3

ℓ5 ℓ4

ℓ8

ℓ7

ℓ8

ℓ6

ℓ1

ℓ2

ℓ5 ℓ4

ℓ3

ℓ7 ℓ6

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑘 = 4

𝑘 = 5

𝑘 = 6



(Bounded) Unwinding of a CFA

11

𝑘 = 3

ℓ0

ℓ1

ℓ2 ℓ3

ℓ5 ℓ4

ℓ8

ℓ7

ℓ8

ℓ6

ℓ1

ℓ2

ℓ5 ℓ4

ℓ3

ℓ7 ℓ6

Error path of length 3



(Bounded) Unwinding of a CFA

12

ℓ0

ℓ1

ℓ2 ℓ3

ℓ5 ℓ4

ℓ8

ℓ7

ℓ8

ℓ6

ℓ1

ℓ2

ℓ5 ℓ4

ℓ3

ℓ7 ℓ6

𝑘 = 6

Error path of length 6



Error Paths

13

ℓ0

ℓ1

ℓ2

ℓ5

i := l

assume i > u

assume

contains(a, l, u, e)

i := l;

assume i > u;

assume

contains(a, l, u, e)

Simple program representing the error path:
contains only assignments and assumptions

Error path



Checking error paths

14

i := l;

assume i > u;

assume exists (j : integer) :

(j >= l and j < u and a[j] = e)

𝑖0 = 𝑙
𝑖0 > 𝑢
∃ 𝑗 ∶ 𝐼𝑛𝑡 ∶ (𝑗 ≥ 𝑙 ∧ 𝑗 < 𝑢 ∧ 𝑎 𝑗 = 𝑒)

Program path

can be taken for some inputs a, l, u, e
iff

SMT problem

is satisfiable.



Transforming Statements to SMT

▪ Introduce a fresh constant symbol for the variable 
in the left-hand side in each assignment

▪ Refer to the freshest constant symbol accordingly

15

x := a

y := b

tmp := a

a := b

b := tmp

assume y >= a

assume x >= b

𝑥0 = 𝑎0
𝑦0 = 𝑏0
𝑡𝑚𝑝0 = 𝑎0
𝑎1 = 𝑏0
𝑏1 = 𝑡𝑚𝑝0
𝑦0 ≥ 𝑎1
𝑥0 ≥ 𝑏1



BMC Workflow: Tasks

16

i := 0 ✓

Transform error path to 
SMT problem

Check with SMT solver

✗Extract CEX from model

Get next error path of 
length i

i++

[i > k]

[i ≤ k]

[none]

[some] : error path

[UNSAT]

[SAT] : model

counterexample

SMT problem

CFA

Transform 
source to CFA

Implemented

Implemented Implemented

Optional

.c source



LIST OF QUESTIONS

17



List of questions

1. Transform the following program to CFA form:

18

int lock = 0;

int old, new;

do {

assert(!lock);

lock = true;

old = new;

if (nondet_bool()) {

lock = false;

new++;

}

} while (new != old)

2. Determine the program paths that represent the three 
shortest error paths of the program

3. Transform the paths to SMT problems

4. Give an argument for their unsatisfiability



SOLUTIONS

19



Solution (1)

20

ℓ0

ℓ1

lock := false

ℓ2ℓ3

assume lock assume not lock

ℓ4

lock := true

ℓ5

old := new

ℓ6

ℓ8

ℓ7

ℓ9

lock := false

new := new + 1

assume new = old

assume new /= old



Solution (2)(3)(4)

21

lock := false;

assume lock;

lock := false;

assume not lock;

lock := true;

old := new;

assume new /= old;

assume lock;

lock := false;

assume not lock;

lock := true;

old := new;

lock := false;

new := new + 1;

assume new /= old;

assume lock;

¬𝑙𝑜𝑐𝑘0
𝑙𝑜𝑐𝑘0

¬𝑙𝑜𝑐𝑘0
¬𝑙𝑜𝑐𝑘0
𝑙𝑜𝑐𝑘1
𝑜𝑙𝑑0 = 𝑛𝑒𝑤0

𝑛𝑒𝑤0 ≠ 𝑜𝑙𝑑0
𝑙𝑜𝑐𝑘1

¬𝑙𝑜𝑐𝑘0
¬𝑙𝑜𝑐𝑘0
𝑙𝑜𝑐𝑘1
𝑜𝑙𝑑0 = 𝑛𝑒𝑤0

¬𝑙𝑜𝑐𝑘2
𝑛𝑒𝑤1 = 𝑛𝑒𝑤0 + 1
𝑛𝑒𝑤1 ≠ 𝑜𝑙𝑑0
𝑙𝑜𝑐𝑘2


