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INTRODUCTION
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Topic of the Lab Session:

Implement a simple bounded model checker
for a restricted fragment of the

C programming language
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Bounded Model Checking
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Bounded Model Checker

System Property

𝑘

✓ ✗

Counterexample exists of length at most k



BMC for Programs
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Bounded Model Checker

Source code assert calls

𝑘

✓ ✗

Assertion violation in at most k steps

.c source

with



VERIFICATION WORKFLOW
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BMC Workflow
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i := 0 ✓

Transform error path to 
SMT problem

Check with SMT solver

✗Extract CEX from model

Get next error path of 
length i

i++

[i > k]

[i ≤ k]

[none]

[some] : error path

[UNSAT]

[SAT] : model

counterexample

SMT problem

CFA

Transform 
source to CFA

.c source



Source code with Assertions
bool linearSearch(int[] a, int l, int u, int e) {

for (int i = l; i <= u; i++) {

if (a[i] == e) {

return true;

}

}

assert(!contains(a, l, u, e));

return false;

}
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assert() calls
mark a requirement at the 
given point of control flow



Control Flow Automata (CFA)
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ℓ0

ℓ1

i := l

ℓ2

assume i > u

ℓ3

assume i <= u

ℓ4

assume not

contains(…)

ℓ8ℓ5

assume

contains(…)

return false

ℓ6

ℓ7

assume

a[i] = e

return true

assume

a[i] /= e

i := i + 1

initial location

final locationerror location

conditions and assertions 
are mapped as assume

statements



(Bounded) Unwinding of a CFA
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ℓ0

ℓ1

ℓ2 ℓ3

ℓ5 ℓ4

ℓ8

ℓ7

ℓ8

ℓ6

ℓ1

ℓ2

ℓ5 ℓ4

ℓ3

ℓ7 ℓ6

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑘 = 4

𝑘 = 5

𝑘 = 6



(Bounded) Unwinding of a CFA
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𝑘 = 3

ℓ0

ℓ1

ℓ2 ℓ3

ℓ5 ℓ4

ℓ8

ℓ7

ℓ8

ℓ6

ℓ1

ℓ2

ℓ5 ℓ4

ℓ3

ℓ7 ℓ6

Error path of length 3



(Bounded) Unwinding of a CFA
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ℓ0

ℓ1

ℓ2 ℓ3

ℓ5 ℓ4

ℓ8

ℓ7

ℓ8

ℓ6

ℓ1

ℓ2

ℓ5 ℓ4

ℓ3

ℓ7 ℓ6

𝑘 = 6

Error path of length 6



Error Paths
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ℓ0

ℓ1

ℓ2

ℓ5

i := l

assume i > u

assume

contains(a, l, u, e)

i := l;

assume i > u;

assume

contains(a, l, u, e)

Simple program representing the error path:
contains only assignments and assumptions

Error path



Checking error paths
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i := l;

assume i > u;

assume exists (j : integer) :

(j >= l and j < u and a[j] = e)

𝑖0 = 𝑙
𝑖0 > 𝑢
∃ 𝑗 ∶ 𝐼𝑛𝑡 ∶ (𝑗 ≥ 𝑙 ∧ 𝑗 < 𝑢 ∧ 𝑎 𝑗 = 𝑒)

Program path

can be taken for some inputs a, l, u, e
iff

SMT problem

is satisfiable.



Transforming Statements to SMT

▪ Introduce a fresh constant symbol for the variable 
in the left-hand side in each assignment

▪ Refer to the freshest constant symbol accordingly
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x := a

y := b

tmp := a

a := b

b := tmp

assume y >= a

assume x >= b

𝑥0 = 𝑎0
𝑦0 = 𝑏0
𝑡𝑚𝑝0 = 𝑎0
𝑎1 = 𝑏0
𝑏1 = 𝑡𝑚𝑝0
𝑦0 ≥ 𝑎1
𝑥0 ≥ 𝑏1



BMC Workflow: Tasks
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i := 0 ✓

Transform error path to 
SMT problem

Check with SMT solver

✗Extract CEX from model

Get next error path of 
length i

i++

[i > k]

[i ≤ k]

[none]

[some] : error path

[UNSAT]

[SAT] : model

counterexample

SMT problem

CFA

Transform 
source to CFA

Implemented

Implemented Implemented

Optional

.c source



LIST OF QUESTIONS
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List of questions

1. Transform the following program to CFA form:
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int lock = 0;

int old, new;

do {

assert(!lock);

lock = true;

old = new;

if (nondet_bool()) {

lock = false;

new++;

}

} while (new != old)

2. Determine the program paths that represent the three 
shortest error paths of the program

3. Transform the paths to SMT problems

4. Give an argument for their unsatisfiability



SOLUTIONS
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Solution (1)
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ℓ0

ℓ1

lock := false

ℓ2ℓ3

assume lock assume not lock

ℓ4

lock := true

ℓ5

old := new

ℓ6

ℓ8

ℓ7

ℓ9

lock := false

new := new + 1

assume new = old

assume new /= old



Solution (2)(3)(4)
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lock := false;

assume lock;

lock := false;

assume not lock;

lock := true;

old := new;

assume new /= old;

assume lock;

lock := false;

assume not lock;

lock := true;

old := new;

lock := false;

new := new + 1;

assume new /= old;

assume lock;

¬𝑙𝑜𝑐𝑘0
𝑙𝑜𝑐𝑘0

¬𝑙𝑜𝑐𝑘0
¬𝑙𝑜𝑐𝑘0
𝑙𝑜𝑐𝑘1
𝑜𝑙𝑑0 = 𝑛𝑒𝑤0

𝑛𝑒𝑤0 ≠ 𝑜𝑙𝑑0
𝑙𝑜𝑐𝑘1

¬𝑙𝑜𝑐𝑘0
¬𝑙𝑜𝑐𝑘0
𝑙𝑜𝑐𝑘1
𝑜𝑙𝑑0 = 𝑛𝑒𝑤0

¬𝑙𝑜𝑐𝑘2
𝑛𝑒𝑤1 = 𝑛𝑒𝑤0 + 1
𝑛𝑒𝑤1 ≠ 𝑜𝑙𝑑0
𝑙𝑜𝑐𝑘2


