
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Fault Tolerant Systems Research Group

Critical Architectures Laboratory
Spring Semester 2017/2018

Dependability modeling

Syllabus
v0.10

Authors: Attila Klenik
(klenik@mit.bme.hu)

András Vörös
(vori@mit.bme.hu)

February 17, 2018

Contents

1 Introduction 2

2 Modeling formalisms 2

3 Fault tree models 2

3.1 Infrastructure . 2

3.2 Fault tree construction . 3

3.3 Dependability measures . 4

4 Stochastic activity network models 5

4.1 Atomic model composition . 7

4.2 Performance variable definition . 8

4.3 Study definition . 9

4.4 Transformer Selection . 9

4.5 Solver selection . 11

5 List of Questions 11

1

1 Introduction

Dependability modeling plays a more and more important role during the design of today’s
IT infrastructures. As the services perform more critical tasks nowadays, their unavailability
causes more loss of profit for companies (even up to millions of dollars per hour). In order
to plan for and predict these costs, we need to employ dependability modeling and use its
solid mathematical foundation.

The goal of this syllabus is to prepare students for the dependability laboratory by providing
a basic background for the needed modelling formalisms and tools, with the help of example
exercises.

Before the laboratory, it is recommended to review the following related materials of the
Design for Dependability and Formal Methods courses.

2 Modeling formalisms

In order to calculate dependability measures we can employ either:

• simulation,

• or analytic solutions.

The advantage of simulation is that we can use it with arbitrary models because of the lack of
constraints (distributions, special behaviors) present in case of analytic solution. However,
the results gathered during simulation are limited, and we have to take great care to ensure
that we run the simulation for the appropriate amount of cases and time.

On the other hand, analytic solutions provide accurate answers (to a certain degree), but
cannot be employed for every model due to its constraints, especially for some dynamic,
behavioural models.

In the next sections we discuss the non-state space-based fault tree and state space-
based stochastic activity network modeling (SAN) formalisms and demonstrate their usage
through some basic examples.

3 Fault tree models

In this section we introduce fault tree-based modeling and its usage through the TopEvent
FTA Express 2017 tool.

3.1 Infrastructure

Figure 1 shows a simple infrastructure for a web-based service. We will construct a fault tree
for this system.

The infrastructure consists of a web server cluster, a database cluster and a common disk
subsystem. Both the web server and database layers have built-in redundancy to increase
their availability, thus the system can tolerate a failed web server and database server.

2

https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA06_szolgaltatasbiztonsag_analizise.pdf
https://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/form%C3%A1lis-m%C3%B3dszerek/13/FM-2013_EA18a_SPN.pdf

Client Common Disk
Subsystem

SQL Server 2

SQL Server 1

Web Server 2

Web Server 1

Redundant web
servers

Redundant SQL
servers

Figure 1: Service infrastructure

3.2 Fault tree construction

First we start with the top-level failure event, this is denoted as Service Failure in Figure 2.
The second event level denotes subsystem failures and its nodes are connected to the top-
level with an OR gate (meaning that either of those failures can cause service failure). On the
last event level we see the atomic events, and their respective wirings to their subsystem-
level failures (using AND gates to denote redundancy). We can see, that the common disk
subsystem is a single point of failure (SPOF) in the system, since its failure on its own is
enough for a service level failure.

The same fault tree in TopEvent FTA is shown in Figure 3. The tool is intuitive to use.
Selecting a node in the tree, we can add child nodes to it by using the items in the Add Input
to Selected Item group on the ribbon. We can also easily reorder the elements by using their
context menus.

When a node is selected, a Preferences icon is displayed at its top-right corner. We can use
this special context menu to set (or change) the name, description and child gate type of
an intermediate event. Reconnecting sub-trees to other parents is not supported, so it is
inconvenient to delete middle nodes from the tree as it also deletes the sub-tree.

In case of basic events, there is an additional tab in the preferences window denoting the fail-
ure probability model of the event. As shown in Figure 4, we can assign a named probability
model for an event (this allows reusability of models between events) and set its parameters
depending on the model type.

3

Service Failure

OR

Web Server
Cluster Failure

SQL Server
Cluster Failure

Common Disk
Subsystem

Failure

AND

Web
Server 1

Down

Web
Server 3

Down

SQL
Server 1

Down

SQL
Server 2

Down

ANDDisk
Down

Figure 2: Service fault tree

3.3 Dependability measures

We characterize the reliability of a component with a failure rate taken from an exponential
distribution with a parameter of λ. In this case the expected time of failure will be 1/λ.

Let the failure rates be the following:

Component Failure rate (λ) in days
Web server 0.05
SQL server 0.01

Common disk 0.2

Setting the probability models of each event to Unrepairable with the given failure rates (leav-
ing the initial probability at 0) enables us to derive reliability measures of the system (since
we cannot repair components). It is recommended to create named probability models for
web server, database server and disk events and reuse them (as shown in Figure 5).

By clicking on the Evaluate Fault Tree item on the ribbon, a new evaluation item is added to
the Project Explorer. Selecting that item will enable us perform the evaluation for a given
mission time (with the default settings) by clicking again on (the different) Evaluate Fault
Tree item on the ribbon.

As a result, we gain unavailability diagrams and minimal cut sets, i.e. combination of events
that can cause system-level failure, for every complex event in the tree. We can export the
results in MS Excel format to visualize more than one evaluation in the same graph.

4

Figure 3: Fault tree in TopEvent FTA

4 Stochastic activity network models

In this section we introduce Möbius, an industrial tool for quantitative analysis of multiple
modeling formalisms (and their combinations). Möbius uses a simple linear workflow with
well-separated stages in order to provide flexible evaluation. These steps will be demon-
strated with the help of a simple running example. The stages are the following:

Atomic model composition for defining basic models (using multiple formalisms) as build-
ing blocks for composite models.

Composed model definition for building complex system out of atomic models. This step
is optional, and not in the scope of this laboratory.

Performance variable definition in order to formulate different reward measures based on
the current state and actions of the system.

Study definition for evaluation the defined rewards for multiple values of model parame-
ters.

Transformer selection for generating the state space of the model with its current parame-
ter values (defined by the current study).

Solver selection for actually calculating the rewards based on the probabilistic behavior
(state space) of the system.

5

Figure 4: Event probability settings

Figure 5: Different probability models

Be careful not to use spaces (or any whitespaces) and special characters throughout the project, since
most of the names in the model will be translated to native code variables! This can cause some shady
errors during analysis.

Detailed tutorials regarding Möbius can be found on its wiki page (much of which is out of
scope for this laboratory, but good for reference). It is highly recommended to review the

6

SAN section.

We will use only a subset of the SAN functionality Möbius provides, which will make them
equivalent to stochastic Petri nets.

4.1 Atomic model composition

First, let’s add a new atomic SAN model, and construct a model of a web server that can be
either in up (good) state, or down state, as depicted in Figure 6.

Figure 6: Example SAN for the web server

When adding places, we also have to give them a name, and an initial marking, as seen in
Figure 7. Place ws_up will have a marking of 1, the other place has 0.

Figure 7: Place settings

7

https://www.mobius.illinois.edu/wiki/index.php/SAN_Atomic_Formalism

Adding transitions requires a little more configuration beside naming it. We also have to
provide a firing delay with its distribution and parameter (rate), as demonstrated in Figure
8. The rate can be either a C++ expression or a complex statement containing explicit return
statements. In this case it is a simple expression of the form 0.05. For the description of case
quantity, please refer to the Möbius SAN wiki.

Figure 8: Transition settings

4.2 Performance variable definition

Once we successfully saved (and compiled) our SAN model, lets add a new Reward defi-
nitions to the project. The definition will build on the previous SAN model as component
child.

In the new window, we can define multiple reward variables, so let’s create one with the
name availability. On the right side we can configure the currently selected reward variable.

The availability can be calculated based on the states of the model, so this variable will be
a Rate Reward, with a reward function that will be evaluated for every state and weighted
with the probability of being in that state in a given time.

In order to reference the current marking of a place, we can use the model->place->Mark()
notation. Since we want to ”count” the probability of being in a functional state, our reward
function will be:

if (ws->ws_up->Mark() > 0) return 1.0;
return 0.0;

where ws is the name of our SAN model, and ws_up is the name of the place denoting an
operational state (see Figure 9).

8

Figure 9: Reward function definition

Beside the actual definition, we also need to state the logical time at which we want to
evaluate the reward variable. This can be done on the Time tab of the same window. We
want to evaluate the variable multiple time points, so we set the time points accordingly, as
seen in Figure 10.

Make sure not to set 0.0 as an actual time point, as it may cause the solver to fail without generating
an error message.

4.3 Study definition

This step allows us to evaluate previously defined rewards for multiple value combination
of model parameters. Since we do not have parameters, we simply create a new study and
leave it as it is (unfortunately we need this ”dummy” study to continue).

4.4 Transformer Selection

The next step consists of defining the state space traversal method for a given study. The
symbolic method is recommended for bigger state spaces. During this laboratory, the se-
lected method will not make a difference. Although perhaps the explicit method is better
suited for debugging.

If we set the Build Type to Normal, we can enable tracing during the algorithm execution.
We can start the state space generation by clicking Start State Space Generation. This is not
required, as the solver in the next step will do this for us, but it is useful for validation
purposes.

9

Figure 10: Time definition

Upon successful generation, we should see an output something like the following:

...
Updating modules... Done
Building State Space Generator for win32 architecture
Building for win32 systems on KLENIK-PC
Compiling win32 ...
ws
availability
simple
Done

**

State Generation initiated on Experiment_1 of ssg started at Tue
Mar 28 15:50:19 CEST 2017 ...

path=[c:/MobiusProject/Sample/Transformer/ssg/]
License File=C:\Users\aklen\AppData\Local\Temp\

mobius1974288483002388957license
There are no global variables.
SSG: SetTraceLevel: 0

Generated: 2 states
Computation Time (user + system): 8.000000e-003 seconds
State Generation of Experiment_1 on model ssg finished at Tue Mar

28 15:50:20 CEST 2017.

10

4.5 Solver selection

As the last step we select the numerical solver we would like to use to evaluate the reward
variables. Since we want to evaluate it at specific time points, we add a Transient solver to
the project (Figure 11). For the description of available solvers, refer to the corresponding
wiki page. We can provide the accuracy for the solver as the exponent of the 1E− [exponent]
expression. After clicking Solve, the results will be available in CSV format in the specified
file, under the $ProjectPath\Solver\SolverName directory.

Figure 11: Configuring the transient solver

5 List of Questions

This list of questions aims to help to prepare for the entry test of the laboratory:

1. Create a Petri net model for an infrastructure containing two redundant SQL servers
and a single web server!

2. Create a fault tree model for an infrastructure containing two redundant SQL servers
and a single web server, that depicts the ”Service failed” top-level event!

11

3. What does minimal cut sets mean in fault tree modeling?

4. What approximation/simplification can we use to evaluate an AND gate probability
based on its child event probabilities during fault tree analysis?

5. What approximation/simplification can we use to evaluate an OR gate probability
based on its child event probabilities during fault tree analysis?

6. What are the main steps Möbius uses to construct and evaluate models?

12

	Introduction
	Modeling formalisms
	Fault tree models
	Infrastructure
	Fault tree construction
	Dependability measures

	Stochastic activity network models
	Atomic model composition
	Performance variable definition
	Study definition
	Transformer Selection
	Solver selection

	List of Questions

