
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Fault Tolerant Systems Research Group

Critical Architectures Laboratory
Spring Semester 2017/2018

Distributed Data Storage in NoSQL Databases

Syllabus
v1.4

Author: Gábor Szárnyas
(szarnyas@mit.bme.hu)

March 8, 2018

1 Introduction

This document contains the theoretical and practical background for the Distributed Data Storage in
NoSQL Databases session of the Critical Architectures Laboratory course. The purpose of this session is
to demonstrate the practical side of replication and distributed data storage (lecture notes in Hun-
garian are available in [15]).

1.1 Big Data and the NoSQL Movement

Since the 1980s, database management systems based on the relational data model dominated the
database market. Relational databases have a number of important advantages: precise mathemat-
ical background, understandability, mature tooling and so on. However, due to their rich feature
set and the strongly connected nature of their data model, relational databases often have scalability
issues [13]. They are typically optimized for transaction processing, instead of data analysis (see data
warehouses for an exception). In practice, these render them impractical for a number of use cases,
e.g. running complex queries on large data sets.

In the last decade, large organizations struggled to store and process the huge amounts of data they
produced. This problem introduces a diverse palette of scientific and engineering challenges, called
Big Data challenges.

Big Data challenges spawned dozens of new database management systems. Typically, these systems
broke with the strictness of the relational data model and utilized simpler, more scalable data models.
These systems dropped support for the SQL query language used in relational databases and hence
were called NoSQL databases1 [4]. Because relational databases are not suitable for large-scale model-
driven applications, we experimented with numerous NoSQL databases.

2 Concepts

2.1 Consistency in a Distributed System

2.1.1 The CAP-theorem

In 1999, Eric Brewer, a professor at Berkeley University published a set of informal requirements for
a distributed system, called the CAP properties. Next year, in the keynote speech of PODC (Princi-
ples of Distributed Computing), he presented the CAP-conjecture [8]. The conjecture states that in
any given moment, a web service can only guarantee two of the following properties: consistency,
availability, partition tolerance. The concepts are roughly defined as follows [9]:

Consistency Consistency means if and how a system is in a consistent state after the execution of an
operation. A distributed system is typically considered to be consistent if after an update operation
of some writer all readers see his updates in some shared data source. (Nevertheless there are several
alternatives towards this strict notion of consistency as we will see below.) See Figure 1.

Availability Availability means that a system is designed and implemented in a way that allows it
to continue operation (i.e. allowing read and write operations) if e.g. nodes in a cluster crash or some
hardware or software parts are down due to upgrades. See Figure 2.

1The community now mostly interprets NoSQL as ”not only SQL”.

1

V = V0 V = V1

read V

V0

read V

V1

C1 C2N1 N2

Figure 1: The V data item is not consistent, clients C1 and C2 see different values

V = V0 V = V1

read V

N/A

read V

V1

C1 C2N1 N2

Figure 2: The V data item is not available for client C1

Partition tolerance Partition tolerance is the the ability of the system to continue operation in the
presence of network partitions. These occur if two or more ”islands” of network nodes arise, which
(temporarily or permanently) cannot connect to each other. Some people also understand partition
tolerance as the ability of a system to cope with the dynamic addition and removal of nodes (e.g. for
maintainance purposes; removed and again added nodes are considered an own network partition
in this notion).

The conjecture was formalized and proved in 2002 by two researchers in MIT (Massachusetts Insti-
tute of Technology), Seth Gilbert and Nancy Lynch [11]. In this form, the CAP-theorem defines a
limitation for all distributed systems.

In short, the CAP-theorem can be stated as follows: in a distributed system in the case of network
partition, the operations of the system will not be atomic and/or the data elements will be unavail-
able.

Formally: in a distributed system running on an asynchronous network, the system cannot guarantee
the following properties:

• availability,

• atomic consistency.

2.2 Replication

Replication, consistency and availability are strongly correlated. We use the following notations [16]:

• N – the number of nodes that store a replica of the data.

2

• W – the number of replicas that need to acknowledge the receipt of the update before the
update completes.

• R – the number of replicas that are contacted when a data object is accessed through a read
operation.

Quorum protocols enforce that the following inequalities holds:

1. W > N/2

2. W +R > N

The first condition guarantees that any two write quorums have a mutual node, which makes it
possible to preserve the order of subsequent writes. The second guarantees that each read quorum
and write quorum overlap, so that we will not read stale data.

2.3 Sharding

Sharding is the process of determining the location of each data item in a distributed system. Some-
times this process is called partitioning or segmenting.

3 Apache Cassandra

Figure 3: The logo of Apache Cassandra

Cassandra is one of the most widely used NoSQL databases [2]. Originally developed by Face-
book [14], Cassandra is now an Apache project. Cassandra is a column family database with ad-
vanced fault-tolerance mechanisms. It allows the application to balance between availability and
consistency by allowing it to tune the consistency constraints. Cassandra is used mainly by Web 2.0
companies, including Digg, Netflix, Reddit, SoundCloud and Twitter. It is also used for research
purposes at CERN and NASA [5].

3.1 Data Model

Cassandra uses the column family data model. A column family is similar to a table of a relational
database: it consists of rows and columns. However, unlike in a relational database’s table, the rows
do not have to have the same fixed set of columns. Instead, each row can have a different set of
columns. This makes the data structure more dynamic and avoids the problems associated with
NULL values.

3

3.2 Serialization and Client Options

Cassandra uses the Apache Thrift framework [3] for serializing data. Like Cassandra, Thrift was
originally developed by Facebook, but unlike Cassandra it is still used there.

The most straightforward option is to use the command-line CQL Shell for Apache Cassandra provided
by the bin/cqlsh executable. While new Cassandra projects are encouraged to use CQL (the official
Java driver is available at [10]), there are also Thrift-based ORM libraries available (e.g. [12]).

3.3 Sharding in Cassandra

3.3.1 Consistent Hashing

To distribute the data across the cluster, Cassandra uses a partitioner mechanism. The basic parti-
tioners distribute the rows evenly based on their key’s hash value using consistent hashing.

In a cluster with n nodes, the naïve method for determining the location for a row with key x is
computing h(x) mod n, where h(x) is the hash function. Currently, Cassandra provides partitioners
based on the MD5 and the Murmur3 hash functions2. However, this approach has a serious limita-
tion: if we remove or add nodes to the cluster, we have to recompute the hash values and possibly
relocate almost all rows in the cluster. To avoid this, Cassandra uses a special kind of hashing called
consistent hashing.

The ring is divided into ranges equal to the number of nodes, with each node being responsible for
one or more ranges of the data. Before a node can join the ring, it must be assigned a token. The token
value determines the node’s position in the ring and its range of data. The ring is walked clockwise
until it locates the node with a token value greater than that of the row key. Each node is responsible
for the region of the ring between itself (inclusive) and its predecessor (exclusive). With the nodes
sorted in token order, the last node is considered the predecessor of the first node; hence the ring
representation3 [7].

For example, consider a simple four-node cluster, where all of the row keys managed by the cluster
are in the range of 0 to 100. Each node is assigned a token that represents a point in this range. In
this example, the token values are 0, 25, 50 and 75. The first node (with token 0), is responsible for
the wrapping range (76+), the second node (with token 25) is responsible for the data range 1 − 25,
and so on [7]. Figure 4 shows the token ring for this cluster.

3.3.2 Virtual Nodes

In older versions of Cassandra (prior to version 1.2), you had to calculate and assign a single token
to each node in a cluster. Each token determined the node’s position in the ring and its portion of
data according to its hash value. Although the design of consistent hashing used in older versions
(compared to other distribution designs), allowed moving a single node’s worth of data when adding
or removing nodes from the cluster, it still required substantial effort to do so.

Starting in version 1.2, Cassandra changed this paradigm from one token and range per node to many
tokens per node. This paradigm is called virtual nodes (vnodes). Vnodes allow each node to own a
large number of small partition ranges distributed throughout the cluster. Vnodes also use consistent
hashing to distribute data but using them doesn’t require token generation and assignment [1].

2From Cassandra 1.2, the default partitioner uses the Murmur3 hash function. Although the MD5 hash function has
important cryptographic properties, these are irrelevant for distributing data. Hence, the MD5-based partitioner is no
longer recommended.

3Note that consistent here is different from both the idea of consistency in data consistency and in the ACID (atomicity,
consistency, isolation, durability) properties guaranteed by transactions. It refers to the fact that tries to map the same rows
to the same machine, even if the number of machines (n) changes over time slightly.

4

Figure 4: Cassandra’s ring for data partitioning [7]

Figure 5: Virtual nodes in Cassandra

3.4 Cassandra Query Language

Cassandra provides the Cassandra Query Language (CQL).4 The reference for CQL3 is available
in [6]. CQL’s goal is to offer a query language similar to the Structued Query Language (SQL) used
in most relational databases.

CQL allows the user to set the data consistency on a per operation basis. The desired level can be
set with the CONSISTENCY [ANY | ONE | TWO | THREE | QUORUM | ALL | ...] command. The
CONSISTENCY command displays the current consistency level.

4Not to be confused with Cypher Query Language of the Neo4j graph database.

5

4 Exercises

4.1 Setting up the Environment

The topology consists of three machines (Figure 6), based on the same VMware virtual machine
image. The virtual image contains the following software components:

• Xubuntu 16.04 (64-bit)

• Apache Cassandra 3.10

• ClusterSSH

• tmux

host1host0 host2

Cassandra cluster

db0
(seed)

db1coordinator

Figure 6: Topology

4.1.1 Hostnames

Set hostnames on the database nodes Because the machines are based on the same image, they
have the same hostname (cassandra-vm). To distinguish between them, change the hostnames in
the /etc/hostname file to different ones, e.g. coordinator, db0, db1. Also change the hostname
associated with the 127.0.1.1 IP address in the /etc/hosts file as well5.

Set hostnames on the coordinator To allow easier access (e.g. when using ssh), add the hostnames
to the coordinator’s /etc/hosts file.

10.0.0.100 db0
10.0.0.101 db1

Listing 1: hosts file

This way, we connect to all database servers using Cluster SSH:

cssh db0 db1

4.1.2 Running Cassandra on a Single Node

In the provided virtual machines, Cassandra is already set up to run in a single node. This means
that the appropriate directory for storing the log files (logs/) and the data (data/) are created and

5This is due to a quirk in Debian-based Linux distributions. For details, visit http://qref.sourceforge.net/
quick/ch-gateway.en.html#s-net-dns.

6

http://qref.sourceforge.net/quick/ch-gateway.en.html#s-net-dns
http://qref.sourceforge.net/quick/ch-gateway.en.html#s-net-dns

their permissions are set. To run Cassandra, open a terminal emulator, navigate to the Cassandra
folder (~/apache-cassandra-*/) and run the following command:

bin/cassandra -f

The -f switch forces Cassandra to run in foreground mode.

4.1.3 Restarting Cassandra

If Cassandra runs in foreground mode, simply send the Ctrl + C interrupt signal to kill the process.
Else, send a termination signal with the following command:

pkill -f cassandra

To delete all previous data and restart the server, issue the following command:

rm -rf data/*; bin/cassandra -f

4.1.4 Running Cassandra on a Cluster of Nodes

The next step is to configure the Cassandra cluster. The main configuration file is stored in the
conf/cassandra.yaml file. Follow the documentation [6] and configure Cassandra to run in a
two node cluster.

4.2 Data Modeling

Create a database that stores road cars. Cars have a manufacturer, a type. Each car has a maximum
performance and a maximum torque value. Table 1 shows an example.

manufacturer type maximum performance maximum torque
Ford Focus 100 170
Mercedes E class 184 270

Table 1: Column family for storing cars

4.3 Replication and Consistency

To test Cassandra’s replication schema and consistency models, we define a few steps. The task is to
follow these steps, observe the cluster’s behaviour and try to explain it.

It is important to note that some of the steps may throw error messages as their expected behaviour.
In these cases, try to determine the reason of the error message and proceed to the next step.

Between the steps, you should delete all previous data (from the /var/lib/cassandra/ directory)
and restart the server.

4.3.1 Network Partition without Replication

1. Create a keyspace with the replication factor set to 1.

2. Create a column family and fill it with data.

3. Query the data from both db0 and db1.

7

4. Disconnect db0 from the network. The easiest way to do this is to disable the network interface
in VMware.

5. Query the data from db1.

6. Modify the data from db1, e.g. add new rows to the column family.

7. Reconnect db0 and query the data from db0.

4.3.2 Network Partition with Replication and Weak Consistency

1. Create a keyspace with the replication factor set to 2.

2. Create a column family and fill it with data.

3. Query the data from both db0 and db1.

4. Disconnect db0 from the network.

5. Query the data from db1.

6. Modify the data from db1, e.g. add new rows to the column family.

7. Disconnect db1 from the network.

8. Reconnect db0 from the network.

9. Also query and modify from db0. Modify the same rows as previously so it will conflict with
the previous write operations.

10. Reconnect db1 to the network.

11. Query the data from both db0 and db1.

4.3.3 Network Partition with Replication and Quorum Consistency

1. Create a keyspace with the replication factor set to 2.

2. Create a column family, fill it with data, query it and disconnect db0.

3. On db1, set the consistency to QUORUM.

4. Query and modify the data.

5. Observe how Cassandra interprets the Quorum Consistency.

4.4 Advanced Data Modeling

Cars have different powertrains (e.g. hybrid systems [17]). Each type can be described with different
parameters:

• Internal combustion engine: fuel type, displacement, maximum torque, maximum power

• Electric motor: maximum torque, maximum power

• Both: all of the above and the combined maximum torque and power values

The class hierarchy for different powertrain types are shown on Figure 7.

8

<<abstract>>

Powertrain

maximum power : Integer

Internal combustion engine

fuel type : Fuel type

Electric motor

displacement : Integer

maximum torque : Integer

Hybrid powertrain

<<enumeration>>

Fuel type

Petrol
Diesel

Figure 7: UML class diagram showing different powertrain types

1. Extend the cars column family to store the powertrain of each car.

2. Write a query that collects the cars with an internal combustion engine.

3. Write a query that collects the cars with an internal combustion engine or an electric motor.

5 Additional Exercises

Cars have different transmissions systems. The main categories are the following:

• Automatic

– fixed ratios: list of gear ratios, type (e.g. semi-automatic, dual-clutch, etc.)

– continuously variable (CVT): gear ratio range

• Manual: list of gear ratios

• No gearbox: gear ratio

Figure 8 shows the class hierarchy for different transmission types.

Extend the cars column family to store the transmission for each car. To store the list of gear ratios,
use CQL’s list collection type.

6 Tips

• Set the broadcast address to the IP address of the machine.

• The ssh-keygen -t rsa and ssh-copy-id commands come in handy.

• VM: Bridged. To get a new IP address (in case of collision), change the adapter to something
else (e.g. NAT) and change it back to Bridged.

(Fortunately, Disconnect & Reconnect does not assign a new IP address.)

9

Manual

Fixed ratio

ratio : Double

Automatic with fixed ratios

<<abstract>>

Transmission

<<abstract>>

Transmission with
discrete ratios

type : String

CVT

maximum ratio : Double
minimum ratio : Double

Figure 8: UML class diagram showing different transmission types

• Ctrl + Alt + T launches a terminal emulator application. You can open new tabs with the Ctrl +

+ T hotkey. Ctrl + D sends and end-of-transmission character, which closes the terminal.

• Use ifconfig to determine a machine’s IP address.

• The most important hotkeys for mcedit are the following:

– F7 – search

– + F7 – find next

– Ctrl + 0 – exit

• For nano, use Ctrl + W for search.

• If you use vim, you should already know the hotkeys ;-).

• Use the watch command to repeatedly run a tool, e.g.
watch -n 1 bin/nodetool status

• To check if Cassandra is running in the background, run:
ps aux | grep cassandr[a]
To repeat the check later, simply run !ps.

• Useful Bash hotkeys: Use and a lot. Ctrl + A jumps back to the start of the line, Ctrl +

U deletes the current line.

10

References

[1] Virtual nodes in Cassandra 1.2. http://www.datastax.com/dev/blog/
virtual-nodes-in-cassandra-1-2, December 2012.

[2] Apache Cassandra. http://cassandra.apache.org/, October 2013.

[3] Apache Thrift. http://thrift.apache.org/, October 2013.

[4] NoSQL Databases. http://nosql-database.org/, October 2013.

[5] Planet Cassandra – Companies. http://planetcassandra.org/Company/ViewCompany,
October 2013.

[6] Apache Cassandra 3.9 documentation. http://cassandra.apache.org/doc/3.9/, March
2017.

[7] Nick Bailey. Introduction to Cassandra architecture. https://www.slideshare.net/
nickmbailey/introduction-to-cassandra-architecture, June 2016.

[8] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the nineteenth
annual ACM symposium on Principles of distributed computing, PODC ’00, pages 7–, New York, NY,
USA, 2000. ACM.

[9] Christof Strauch. NoSQL Databases. http://www.christof-strauch.de/nosqldbs.
pdf, October 2013.

[10] DataStax. Java Driver for Apache Cassandra. https://github.com/datastax/
java-driver, October 2013.

[11] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[12] impetus-opensource. Kundera. https://github.com/impetus-opensource/Kundera,
October 2013.

[13] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August 2009.

[14] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[15] Majzik István. Többpéldányos adatkezelés. http://www.inf.mit.bme.hu/sites/
default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%
C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/
SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf.

[16] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009.

[17] Wikipedia. Hybrid vehicle drivetrain. http://en.wikipedia.org/wiki/Hybrid_
vehicle_drivetrain, October 2013.

11

http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2
http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2
http://cassandra.apache.org/
http://thrift.apache.org/
http://nosql-database.org/
http://planetcassandra.org/Company/ViewCompany
http://cassandra.apache.org/doc/3.9/
https://www.slideshare.net/nickmbailey/introduction-to-cassandra-architecture
https://www.slideshare.net/nickmbailey/introduction-to-cassandra-architecture
http://www.christof-strauch.de/nosqldbs.pdf
http://www.christof-strauch.de/nosqldbs.pdf
https://github.com/datastax/java-driver
https://github.com/datastax/java-driver
https://github.com/impetus-opensource/Kundera
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain
http://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain

	Introduction
	Big Data and the NoSQL Movement

	Concepts
	Consistency in a Distributed System
	The CAP-theorem

	Replication
	Sharding

	Apache Cassandra
	Data Model
	Serialization and Client Options
	Sharding in Cassandra
	Consistent Hashing
	Virtual Nodes

	Cassandra Query Language

	Exercises
	Setting up the Environment
	Hostnames
	Running Cassandra on a Single Node
	Restarting Cassandra
	Running Cassandra on a Cluster of Nodes

	Data Modeling
	Replication and Consistency
	Network Partition without Replication
	Network Partition with Replication and Weak Consistency
	Network Partition with Replication and Quorum Consistency

	Advanced Data Modeling

	Additional Exercises
	Tips

