
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Fault Tolerant Systems Research Group

Critical Architectures Laboratory
Spring Semester 2018/2019

Dependability Modeling

Syllabus and Exercises
v0.11

Authors: Kristóf Marussy
(marussy@mit.bme.hu)

Attila Klenik
(klenik@mit.bme.hu)

András Vörös
(vori@mit.bme.hu)

March 6, 2019

Contents

1 Introduction 2

2 Modeling formalisms and tools 2
2.1 Running example . 3

2.2 Dynamic fault trees . 3

2.2.1 Elements and notation . 4

2.2.2 Fault tree construction . 6

2.2.3 Analytic solution . 7

2.3 Continuous-time Markov chains . 9

2.3.1 Example model . 9

2.3.2 Reward analysis . 11

3 Exercises 12
3.1 Documentation requirements . 13

3.2 Case study . 13

3.3 Dynamic fault tree tasks . 14

3.4 Continuous-time Markov chain tasks . 14

1

1 Introduction

In addition to functional requirements, systems and their architectures must also satisfy
numerous extra-functional requirements. Dependability, i.e., the ability to provide service
in which reliance can be justifiably placed is one of the most significant categories of
such requirements. In IT services Service Level Agreements (SLA) capture the desired
dependability attributes, while safety-critical systems must not exceed the Tolerable Hazard
Rates (THR) prescribed by standards.

Stochastic modeling is a mathematically precise approach to reason about the dependability
attributes of the design alternatives of systems.

In this syllabus, we will briefly review some concepts in formalisms for dependability
modeling, and the analysis of stochastic models. We also introduce the tools needed for the
laboratory. In the last section, students may find the exercises.

Before the laboratory, students are advices to review the related materials of the Systems
Engineering, Software and Systems Verification, and Formal Methods courses.

2 Modeling formalisms and tools

When ensuring the satisfaction of extra-functional requirements in systems engineering, we
can calculate dependability measures either by simulation or analytic solution of stochastic
models. The models capture the dependability attributes of the architecture of the system.

Simulation supports a broader range of behaviors. For example, it can easily incorporate
arbitrary probability distributions. However, the interpretation of simulation results requires
care, because we must ensure that the simulation was run for the appropriate number of
cases and amount of time.

Analytic solutions always provide accurate answers up to user-specified tolerance. Tomake the
analysis tractable, solvers typically handle more constrained stochastic modeling languages
than simulators.

In the next subsections, we discuss two commonly used stochastic modeling formalisms
that are especially amenable for analytic solutions. We also illustrate the use of the Storm
probabilistic model checker on these formalisms.

After introducing our running example, we turn to Fault Trees (FT) [Sta+02] for reliability
analysis. Fault trees are a non-state-based formalism, which means we cannot explicitly
model the state of system components other than their failures. This assumption greatly
simplifies their analysis.

The Storm toolset also supports Dynamic Fault Trees (DFT), which enable some stateful
modeling, for example, cold, warm, and hot spares. Analysis with such constrained state
spaces is possible at a modest additional complexity.

In contrast, Continuous-Time Markov Chains (CTMC) are state-based models. Instead of
describing the system with a state graph of state nodes and transition edges, we use the more
compact representation offered by the PRISM language. Hence we will able to model state
as variables and transitions as programming language statements acting on the variables.

2

https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/bsc-t%C3%A1rgyak/informatikai-rendszertervez%C3%A9s/18/07_Safety_Evaluation.pdf
https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/bsc-t%C3%A1rgyak/informatikai-rendszertervez%C3%A9s/18/07_Safety_Evaluation.pdf
https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/education/software-and-systems-verification/18/11-SWSV-dependability-analysis.pdf
https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/education/formal-methods/18/EN_11a_SPN.pdf
http://www.stormchecker.org/
http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction

Web Server 1

Web Server 2

Database 1

Database 2

Storage
Subsystem

Internet Parallel Warm Spare

Figure 1: Example web service infrastructure

2.1 Running example

We illustrate reliability modeling with fault trees and Markov chains using the web service
infrastructure in Fig. 1.

The example infrastructure contains 2 web servers, 2 database servers, and a shared storage
subsystem. The web servers are in a parallel redundant configuration, i.e., both web servers
handle requests at the same time unless one of them has failed. Database Server 2 is a warm
spare for Database Server 1. If the first server is operating correctly, no queries are directed to
the second one. We will not examine the redundancies in the storage subsystem and will
instead consider it as a basic unit.

The dependability attributes of the components are as follows:

Component Failure rate Dormancy factor

Web Server 0.05 1
day 1.0

Database 0.01 1
day 0.8

Storage Subsystem 0.03 1
day 1.0

Table 1: Dependability attributes for the running example

The domancy factor of the database server reduces the failure rate of the warm spare database.
When a database is not currently responding to queries its failure rate is only 0.8 · 0.01 1

day .

2.2 Dynamic fault trees

Dynamic fault trees are a generalization of fault trees. In addition to basic events and standard
Boolean logic gates, they offer priority gates, sequence enforcers, spare gates and functional
dependencies to express some state-based fault tolerance strategies.

3

AND

AND Gate

OR

OR Gate

k/m

Vote Gate Priority AND
Gate

WSP

Warm Spare Gate
Primary Spares

p

Probabilistic
Dependency

Trigger

Basic
Event

FDEP

Functional
Dependency

Trigger

Sequence
Enforcer

Priority OR
Gate

Figure 2: Symbology for dynamic fault tree gates

2.2.1 Elements and notation

In this laboratory, we will use the textual Galileo1 language to describe dynamic fault trees.
Fig. 2 shows the graphical notations corresponding to DFT elements.

The top level event (Galileo: toplevel ‹name›;) correspond to whole system failure. This event
can be decomposed into failures of elementary components, which are called basic events, by a
series of gates. The basic events and gates supported by the Storm-DFT 2 [VJK16] tool, which
we will use in the laboratory, are as follows:

• Basic events (Galileo: ‹name› lambda=‹λ› dorm=‹dormancy›;) describe the independent
failures that may occur in the system. The time first failure since mission start is
exponentially distributed with a rate of λ, i.e., P(Tfail < t) � 1 − e−λt . When the basic
event is serving as awarm spare, its failure rate is reduced to dormancy ·λ. The dormancy
factor may be omitted if it is equal to 1.

• AND gates (Galileo: ‹name› and ‹input1› ‹input2› . . . ;) fail if all their inputs fail.

• OR gates (Galileo: ‹name› or ‹input1› ‹input2› . . . ;) fail if any of their inputs fail.

• Vote gates (Galileo: ‹name› ‹k›of‹m› ‹input1› ‹input2› . . . ;) must have exactly m inputs.
They fail if at least k of their m inputs fail. If one wishes to avoid specifying the number
of inputs, alternative textual notation vot‹k› is available.

• Priority AND gates (Galileo: ‹name› pand ‹input1› ‹input2› . . . ;) fail if all their inputs fail
in the specified order, i.e., input2 must fail after input1. By default, priority ANDgates are
inclusive, and fail when input1 and input2 fail simultaneously. If desired, inclusiveness
can be explicitly specified by the pand-inc keyword. The pand-ex keyword specifies

1https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm#Editing%20in%
20the%20Textual%20View

2http://www.stormchecker.org/documentation/usage/running-storm-on-dfts.html

4

https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm#Editing%20in%20the%20Textual%20View
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm#Editing%20in%20the%20Textual%20View
http://www.stormchecker.org/documentation/usage/running-storm-on-dfts.html

exclusive priority AND gates, which survive simultaneous failure. Inclusive and
exclusive gates can be graphically distinguished with the ≤ and < symbols, respectively.
Most commonly, priority AND gates represent failure avoidance strategies. If the
failure avoidance strategy connected to input1 is working correctly, failure of input2
does not affect the rest of the system, but if input1 fails first, the failure of input2 are
let through. Inclusive and exclusive variation can specify the response of the gates to
common-mode failures of the avoidance strategy and the monitored component.

• Priority OR gates (Galileo: ‹name› por ‹input1› ‹input2› . . . ;) only fail if input1 fails
before any other input. By default, priority OR gates are inclusive, i.e., fail if input1 fails
simultaneously with some other input. Inclusive and exclusive priority OR gates can be
specified with the por-inc and por-ex keywords, respectively.

• Warm spare gates (Galileo: ‹name› wsp ‹primary› ‹spare1› ‹spare2› . . . ;) maintain a pool
of spares. When the primary input fails, its first free spare is claimed. When the claimed
spare fails, the gate claims a new one (from left to right) until the pool of spares is
exhausted. If the last spare fails, the gate itself fails. Spares assigned to a spare gate
may not have any common events, but a spare can be assigned to multiple spare gates.
However, a spare can only be claimed by at most one spare gate at a time. Thus we
can model contention between subsystems for shares spares. Rates of basic events in
unclaimed spares are multiplied by their dormancy factors.
While Storm-DFT accepts the keywords csp and hsp for cold and hot spares, respectively,
they are treated as synonyms for warm spares.

• Functional dependencies (Galileo: ‹name› fdep ‹trigger› ‹input1› ‹input2› . . . ;) cause
their inputs to fail (provided they have not already failed) when their trigger event
fails. Every input except the trigger must be a basic event. The outputs of functional
dependencies are “dummy outputs”, because the event name will never actually fail.

• Probabilistic dependencies (Galileo: ‹name› pdep=‹p› ‹trigger› ‹input1› ‹input2› . . . ;) act
similarly to functional dependencies. However, their inputs only fail with probability p
the failure of the trigger. The probabilistic dependency has a single underlying random
choice. If it causes one of its inputs to fail, all of them will fail, too.

• Sequence enforcers (Galileo: ‹name› seq ‹input1› ‹input2› . . . ;) ensure that their inputs
only fail in the specified order, i.e., input2 will never fail unless input1 has already failed.
Similarly to the dependencies, their outputs are “dummy”.

The fault tree must not contain any loops, because an event cannot transitively depend on
itself. However, limited forms of circular dependencies can be introduced with functional
and probabilistic dependencies [Sta+02, Fig. 8-7]. It is not necessary to connect “dummy”
outputs to the tree in Storm-DFT. However, they may be connected to an OR gate without a
change in semantics.

We recommend choosing meaningful names for event and gates for two reasons as follows:
Firstly, the names aid in the comprehension of the fault tree. Secondly, single-character
identifiers may cause a puzzling parse error in Galileo models. Pay attention when referring
to fault tree elements, because unresolved references, e.g., typos in names, may lead to silent
failures and corrupt the analysis output.

5

OR

Service Failure

AND

Web Server
Cluster Failure

Web Server 2
Failure

Web Server 1
Failure

WSP

Database
Cluster Failure

Database 2
Failure

Database 1
Failure

Storage Subsystem
Failure

Figure 3: Example web service fault tree

2.2.2 Fault tree construction

As an example, we construct a dynamic fault tree model for the system presented in
Section 2.3.1. The reader is invited to follow along in Fig. 3, which shows the finished model
using the graphical syntax of DFTs (see Fig. 2 for a legend). For a more thorough introduction
to fault tree construction, we refer the interested reader to the presentation by Ericson [Eri99].

First, we start with the top level failure event “Service Failure”. Events on the second level
of the tree, which correspond to subsystem level failures, are connected with an OR gate.
Either of those subsystem-level failures triggers system failure.

The event “Web Server Cluster Failure” is decomposed into the two basic events “Web Server
1 Failure” and “Web Server 2 Failure” by an AND gate corresponding to parallel redundancy.

The event “Database Cluster Failure” use decomposed using a warm spare gate. “Database
Server 1 Failure” is the primary event, while “Database Server 2 Failure” serves as a spare.
Until the gate claims the spare, its failure rate is multiplied by the dormancy factor.

“Storage Subsystem Failure” is a single point of failure (SPOF) of the service.

Cut sets of the fault tree are sets of basic events the simultaneous failures of which cause the
top level event to fail. Minimal cut sets are cut sets no proper subsets of which are cut sets. In
Fig. 3, minimal cut sets are as follows:

• {Web Server 1 Failure,Web Server 2 Failure}

• {Database 1 Failure,Database 2 Failure}

6

• {Storage Subsystem Failure}

We may see that a SPOF is a minimal cut set of exactly one element.

We can encode the DFT using the Galileo language as follows:

toplevel service;
service or web_cluster database_cluster storage; // Service Failure
web_cluster and web_1 web_2; // Web Server Cluster Failure
web_1 lambda=0.05; // Web Server 1 Failure
web_2 lambda=0.05; // Web Server 2 Failure
database_cluster wsp database_1 database_2; // Database Cluster Failure
database_1 lambda=0.01 dorm=0.8; // Database 1 Failure
database_2 lambda=0.01 dorm=0.8; // Database 2 Failure
storage lambda=0.03; // Storage Subsystem Failure

Listing 1: Example Galileo model

The usual file extension for Galileo models is dft. If the following, we will assume that the
code in Listing 1 is saved as example.dft.

2.2.3 Analytic solution

Mean-time-to-first-failure (MTFF) analysis determines the expected time of failure of the
top level event of the DFT. Formally, let the random variable Ttoplevel denote the time-to-first-
failure (TFF) of the top level event. Then the MTFF is the expected value E[Ttoplevel].
We can perform MTFF analysis by invoking storm-dftwith the --expectedtime option. The
--dftfile option specifies the path of the DFT.

$ storm-dft --dftfile example.dft --expectedtime
Storm-dft 1.3.1 (dev)

Date: Tue Feb 26 17:54:58 2019
Command line arguments: --dftfile example.dft --expectedtime
Current working directory: /home/meres

--
Model type: CTMC (sparse)
States: 10
Transitions: 22
Reward Models: none
State Labels: 2 labels

* failed -> 1 item(s)
* init -> 1 item(s)

Choice Labels: none
--
Times:
Exploration: 0.007s
Building: 0.000s
Bisimulation: 0.000s
Modelchecking: 0.006s

7

Total: 0.014s
Result: [16.86431329]

Listing 2: MTFF analysis with Storm-DFT

Strorm-DFT has determined that the MTFF is 16.86431329days. The unit of days comes
from Listing 1, where we specified the failure rates in 1

day . In general, the unit of MTFF is
always the reciprocal of the unit of the failure rates. Pay special attention that each failure
rate is specified with the same unit, otherwise the analysis results with be incorrect.

The answer is accurate up to the relative numerical precision of the DFT solver, which is set
to 10−6 by default. This means the true MTFF of the system is between (1 − 10−6) · MTFF
and (1+ 10−6) ·MTFF. The precision can be changed by the --precision option, for example,
passing --precision 1e-8 on the command line sets the precision to 10−8.

Another possible analysis determines the probability of failure at specific point of time t
since mission start. Formally, the reliability function r(t) � 1 − P(Ttoplevel < t) captures the
probability of correct operation.

Let us determine the reliability at t � 10days. In Storm-DFT, the --timebound option initiates
reliability analysis.

$ storm-dft --dftfile example.dft --timebound 10.0
Storm-dft 1.3.1 (dev)

Date: Tue Feb 26 18:08:48 2019
Command line arguments: --dftfile example.dft --timebound 10.0
Current working directory: /home/meres

--
Model type: CTMC (sparse)
States: 10
Transitions: 22
Reward Models: none
State Labels: 2 labels

* failed -> 1 item(s)
* init -> 1 item(s)

Choice Labels: none
--
Times:
Exploration: 0.001s
Building: 0.000s
Bisimulation: 0.000s
Modelchecking: 0.007s
Total: 0.009s
Result: [0.3790103367]

Listing 3: Reliability analysis with Storm-DFT

The output is the probability of failure. Thus r(10days) ≈ 1 − 0.3790103367 up to the relative
precision of 10−6. Pay attention again to the units. The time bound passed on the command
line is interpreted in days, because failure rates were specified as 1

days .

To determine the reliability at multiple, evenly spaced points of time, we may use the

8

--timepoints ‹start› ‹end› ‹increment› command line option.

For further information on the supported command line options of storm-dft, please run the
command storm-dft --help. We especially recommend reading through the general, dft,
and dftIO sections of manual.

2.3 Continuous-time Markov chains

Markov chains are state-based stochastic models, which are popular in dependability and
performability evaluation. Compared to fault trees, they make relatively few assumptions
about the behavior of the system. In particular, failure processes (transitions) can only depend
on the active state of the systems, but not on the past trajectory of the system, or the time
spent so far in the active state.

In this laboratory, we will use the PRISM language for describing CTMCs. In contrast with
the low-level specification of stochastic models in terms of individual states and transitions,
PRISM enables a concise description with variables and commands that update them. Thus
we can write stochastic models as if they were ordinary, imperative programs.

2.3.1 Example model

The PRISM model for the web service from Section illustrates below some of concepts of the
PRISM language. We will also highlight some features specific to the Storm model checker.

For a complete description of the language, we refer to the PRISM Manual3, especially to the
section on CTMCs 4.

ctmc

const int web_cluster_size = 2;
const int db_cluster_size = 2;
const double web_fail = 0.05;
const double db_fail = 0.01;
const double dorm = 0.8;
const double storage_fail = 0.03;

module web_cluster
web_up : [0..web_cluster_size] init web_cluster_size;
// Failure rates of parallel redundant web servers are summed.
<> web_up > 0 -> web_up * web_fail : (web_up' = web_up - 1);

endmodule

module db_cluster
db_up : [0..db_cluster_size] init db_cluster_size;
// The dormancy factor reduces the failure rates of spare database servers.
<> db_up > 0 -> db_fail * (1 + (db_up - 1) * dorm) : (db_up' = db_up - 1);

endmodule

3http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
4http://www.prismmodelchecker.org/manual/ThePRISMLanguage/CTMCs

9

http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
http://www.prismmodelchecker.org/manual/ThePRISMLanguage/CTMCs

module storage
storage_up : bool init true;
<> storage_up -> storage_fail : (storage_up' = false);

endmodule

// The system fails if one of the modules fails entirely.
formula failed = (web_up = 0 | db_up = 0 | !storage_up);

// A single unit of reward is gained per unit time in every state.
rewards "elapsed"

true : 1.0;
endrewards

Listing 4: Example PRISM model

The ctmc keyword in the first line denotes that we are describing a CTMC. If we omit it,
PRISM interprets the model as a Markov Decision Process (MDP) instead.

Constant declarations introduced with the const keyword can hold common parameters.

The model consists of modules, which are defined within module. . . endmodule blocks. Mod-
ules contain local variables and guarded commands.
Local variables can be read by any module, but can be only modified by their containing
module. Variable definitions are of the form ‹name› : ‹type› init ‹initial›;, where type may be
either a bounded integer type [‹lower›..‹upper›] (both bounds are inclusive) or the Boolean
type bool. In the initial state of the CTMC, the variable is initialized to the value initial.
Markovian commands are of the form <> ‹guard› -> ‹rate› : (‹var›' = ‹value›);. If guard is
satisfied in the current state of the CTMC, a transition with rate rate is added to the state
obtained by setting the local variable var to value. The prime sign (') denotes the assignment
updates the variable in the next state of the CTMC. The expression value can refer to the
current (old) state of the variable without the prime sign. Multiple assignments can be
combined by the & operator, e.g., (‹var1›' = ‹value1›) & (‹var2›' = ‹value2›). Transitions with
the same guard, e.g., <> ‹guard› -> ‹rate1› : ‹assignments1› + ‹rate2› : ‹assignments2›;, can be
also combined with the + operator.

In PRISM compatibility mode, which is enabled with the --prismcompat command line
option, the Storm tool also accepts Markovian commands in CTMCs written as probabilistic
commands. These commands are introduced by the [] symbols instead of <>. Optionally, they
can have a label, which is written as [‹label›]. The PRISM manual relies on this alternative
notation. However, we do not recommend it, because the notation preferred by Storm
emphasizes the difference between CTMCs and discrete-time model more.

Formula definitions, which are introduced by the formula keyword, hold common expression
that can be reused throughout the model and its properties.

Rewards structures associate reward rates to the states of the CTMC. The amount of reward
gained (or cost spent) is a state equals the reward rate multiplied by the amount of time
spend in the state. Reward structures are defined within rewards. . . endrewards blocks. While
names of modules, variables, and formulas are unquoted, rewards names must be surrounded
by double quotes. Each reward structure can have multiple reward elements, which are
written as ‹guard› : ‹value›;. In states where the predicate guard holds, value amount of reward
is gained per unit of time. Values for reward elements with overlapping guards are summed.

10

The usual file extension for CTMCs described using the PRISM language is .sm (Stochastic
Model). In the following we will assume the model from Listing 4 is saved as example.sm.

2.3.2 Reward analysis

In this laboratory, we will perform reward analysis using the Storm probabilistic model
checker5 [Deh+17], a model model checker for probabilistic systems. Storm supports a wide
range of algorithms, formalisms, and languages, including DFTs and the PRISM language.

Queries to be answered by analytic solutions of PRISM models can be expressed using the
PRISM property specification language. We recommend reading through the relevant parts
of the PRISM manual6, especially the section on reward-based properties7.

Reward-based queries are of the form R{‹reward›}=?[‹prop›], where reward is a reward structure
defined in the model (see Section 2.3.1) and prop is a reward property. Some examples of the
supported reward properties are as follows:

• Reachability rewards “F ‹pred›” calculate the expected accumulated (integrated) reward
until a state satisfying the predicate pred is reached.

• Cumulative rewards “C <= ‹time›” calculate the expected accumulated reward until time
units of time elapse since starting the model from its initial state.

• Instantaneous rewards “I = ‹time›” calculate the expected reward rate time units of time
after starting the model from its initial state.

Notice that
∫ t

0 R{"rew"}=?[I = τ] dτ � R{"rew"}=?[C <= t], i.e., the cumulative reward
can be obtained by integrating the instantaneous reward.

• Steady-state rewards “S” calculate the expected reward rate in steady state of the model,
when a sufficient amount of time has allowed the transient behaviors to pass. We may
write limt→∞ R{"rew"}=?[I = t] � R{"rew"}=?[S], i.e., the steady-state reward is the
limit of the instantaneous reward.

As an example, we may calculate the MTFF in Listing 4 by accumulating "elapsed", the
reward rate of which equals 1.0 in every state, until the formula failed holds. This query can
be written as R{"elapsed"}=?[F failed].

PRISM properties can be passed to Storm using the --prop command line option.

$ storm --prism example.sm --prop 'R{"elapsed"}=?[F failed]'
Storm 1.3.1 (dev)

Date: Fri Mar 1 00:56:22 2019
Command line arguments: --prism example.sm --prop 'R{"elapsed"}=?[F failed]'
Current working directory: /home/meres

Time for model input parsing: 0.000s.

5http://www.stormchecker.org/
6http://www.prismmodelchecker.org/manual/PropertySpecification/Introduction
7http://www.prismmodelchecker.org/manual/PropertySpecification/Reward-basedProperties

11

http://www.stormchecker.org/
http://www.prismmodelchecker.org/manual/PropertySpecification/Introduction
http://www.prismmodelchecker.org/manual/PropertySpecification/Reward-basedProperties

Time for model construction: 0.012s.

--
Model type: CTMC (sparse)
States: 12
Transitions: 20
Reward Models: elapsed_time
State Labels: 3 labels

* deadlock -> 0 item(s)
* (((web_up = 0) | (db_up = 0)) | !(storage_up)) -> 8 item(s)
* init -> 1 item(s)

Choice Labels: none
--

Model checking property "1": R[exp]{"elapsed"}=? [F (((web_up = 0) | (db_up = 0)
) | !(storage_up))] ...

Result (for initial states): 16.86431329
Time for model checking: 0.000s.

Listing 5: Reliability analysis with Storm

Storm has determined that the MTFF of the system is 16.86431329days, which matches our
results from Section 2.2.3. Considerations from that section regarding the careful choice of
units and the relative numerical tolerance of the solver (10−6 by default) apply here, too.

Occasionally, we may specify a property that cannot be handled by the default analysis
engine of Strorm. In this case, an alternative equation solver may be selected by passing the
--eqsolver option. For example, --eqsolver eigen sets Eigen8 as the equation solver.

For further information on the supported command line options of storm, please run the
command storm --help. We especially recommend reading through the general, io, and
build sections of manual.

3 Exercises

In this laboratory we will study the construction and analysis of stochastic models for
evaluating the dependability of IT systems.

To complete this laboratory, you will need

• the Storm probabilistic model checker, version 1.3.1-dev, and its Storm-DFT tool,

• a text editor for creating model files,

• a spreadsheet program or a scripting environment (e.g., Python with matplotlib) for
basic calculations and plotting.

We installed Strom 1.3.1-dev, various text editors, and Python to the virtual machine available
from the course homepage9. As a spreadsheet program, we recommend online office suites,
such as Google Sheets.

8http://eigen.tuxfamily.org/index.php?title=Main_Page
9https://inf.mit.bme.hu/edu/courses/kalab

12

http://eigen.tuxfamily.org/index.php?title=Main_Page
https://inf.mit.bme.hu/edu/courses/kalab

For installing Storm to your own computer, see the Strom documentation10. Storm does not
presently support Windows. It must be built from source on Linux and OS X, which may
take a long time and may sometimes require manual intervention. Therefore, if you want to
use Storm on your own physical machine, please compile and install it in advance.

3.1 Documentation requirements

We kindly ask students to document every design decision, if any, necessitated by the lack of
information in the specification or the exercises.

Similarly to other sessions, please upload the documentation in Markdown to the GitHub
Wiki of your repository. Any supplementary files, including stochastic models, may be placed
into a directory named dependability-analysis in the repository itself.

The documentation should contain, at the very least,

• stochastic models (.dft and .sm files) produced for each task,

• (informal) descriptions of the models and their corresponding design decisions,

• results of analytic solutions of models, as well as and other computations,

• evaluation and explanation of the results.

After completing the laboratory, feel free to include any comments on the tasks and the
syllabus. Your comments will aid us greatly in improving the session for future iterations.

3.2 Case study

The system shown in Fig. 4 will serve as our case study throughout the laboratory.

The case study consists of two web servers (Web-1, Web-2), two domain controllers (DC-1,
DC-2), a database server (SQL), and an application server (App). The servers are connected
to a network switch (Sw). The web servers are in a parallel redundant configuration. Domain
controller DC-1 is the primary one, while DC-2 is a warm spare.

We will assume that failure and repair times are exponentially distributed. The dependability
attributes of components are as follows:

Component Mean time to failure Mean time to repair Dormancy factor

Web server (Web) 20days 24hours 0.8
Domain controller (DC) 25days 24hours 0.8
Database server (SQL) 30days 48hours 1.0
Application server (App) 35days 72hours 1.0
Network switch (Sw) 60days 12hours 1.0

Table 2: Dependability attributes for the case study

10http://www.stormchecker.org/documentation/installation/installation.html

13

http://www.stormchecker.org/documentation/installation/installation.html

Web-1

Web-2 SQLApp

Internet Parallel
DC-1 DC-2

Warm
Spare

Sw

Figure 4: Architecture of the case study

3.3 Dynamic fault tree tasks

1. Create a DFT model for case study from Section 3.2.

2. What are the minimal cut sets of the DFT? What are the single points of failure?

3. Determine the MTFF of the system.

4. Determine the values of the reliability function r(t) � 1−probability of failure at time t
for t � 1, 2, . . . , 30days. Present the values on a plot, where the x axis is time, and the y
axis is the probability of correct operation.

5. Modify your model so that the web servers are put into a warm spare configuration
instead of parallel redundancy. How does the MTFF change?

6. Modify the DFT to allow the spare domain controller also be used as a web server.
Hence, there should be two spare web servers, one of which may also be a spare domain
controller. How does the MTFF depend on the order in which the spares for Web-1 are
claimed? Which order should be used in production?

7. The spare domain controller is activated by fault tolerance agents that are replicated
across the primary web server, the application server and the SQL server. When two
of the three replicas vote for enabling the spare domain controller, it takes over the
responsibilities of the failed primary controller. The fault tolerance agents have a failure
rate of 0.003 1

day . Agents also fail if their host server fails. You do not have to model
similar agents for the spare web servers. Determine the MTFF of the system.

3.4 Continuous-time Markov chain tasks

8. Create a CTMC reliability model for case study from Section 3.2, ignoring any modifi-
cations to the system in Section 3.3. Use PRISM modules to structure you model.

9. Determine the MTFF of the system. Check whether the results match DFT analysis.

14

10. Extend your model to obtain an availability model by adding component repairs. What
is the steady-state availability of the system?

11. The daily cost of operation is $5 for a web server, $6 for a domain controller and $3 for a
spare domain controller. Determine the total cost for the first 10 days of operation, as
well as the steady-state hourly cost.

12. How does the steady-state availability and cost change if the number of web servers
is increased to 3? How do the metrics change if we increase the number of domain
controllers to 3 instead? All new domain controllers are added as warm spares. If you
could add only a single server to the system, which modification would you prefer?

Acknowledgement

Version 0.11 of this document was supported by the ÚNKP-18-3 New
National Excellence Program of the Ministry of Human Capacities.

References
[Deh+17] Christian Dehnert et al. “A Storm is Coming: A Modern Probabilistic Model

Checker”. In: CAV 2017. LNCS 10427. Springer, 2017, pp. 592–600. DOI: 10.
1007/978-3-319-63390-9_31. arXiv: 1702.04311 [cs.SE].

[Eri99] Clifton A. Ericson II. “Fault Tree Analysis”. In: COP 4331 - Processes for Object-
Oriented Software Development. University of Central Florida, 1999. URL: http:
//cs.ucf.edu/~hlugo/cop4331/ericson-fta-tutorial.pdf.

[Sta+02] Michael Stamatelatos et al. “Dynamic Fault Tree Analysis”. In: Fault Tree Handbook
with Aerospace Applications. Version 1.1. NASA Office of Safety and Mission
Assurance, NASA Headquarters, 2002, pp. 97–108. URL: https://kscddms.
ksc.nasa.gov/Reliability/Documents/Fault_Tree_Handbook_with_Aerospace_
Applications_August_2002.pdf#page=110.

[VJK16] Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen. “Advancing Dynamic
Fault Tree Analysis - Get Succinct State Spaces Fast and Synthesise Failure
Rates”. In: SAFECOMP 2016. LNCS 9922. Springer, 2016, pp. 253–265. DOI:
10.1007/978-3-319-45477-1_20. arXiv: 1604.07474 [cs.SE].

15

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://arxiv.org/abs/1702.04311
http://cs.ucf.edu/~hlugo/cop4331/ericson-fta-tutorial.pdf
http://cs.ucf.edu/~hlugo/cop4331/ericson-fta-tutorial.pdf
https://kscddms.ksc.nasa.gov/Reliability/Documents/Fault_Tree_Handbook_with_Aerospace_Applications_August_2002.pdf#page=110
https://kscddms.ksc.nasa.gov/Reliability/Documents/Fault_Tree_Handbook_with_Aerospace_Applications_August_2002.pdf#page=110
https://kscddms.ksc.nasa.gov/Reliability/Documents/Fault_Tree_Handbook_with_Aerospace_Applications_August_2002.pdf#page=110
https://doi.org/10.1007/978-3-319-45477-1_20
https://arxiv.org/abs/1604.07474

	Introduction
	Modeling formalisms and tools
	Running example
	Dynamic fault trees
	Elements and notation
	Fault tree construction
	Analytic solution

	Continuous-time Markov chains
	Example model
	Reward analysis

	Exercises
	Documentation requirements
	Case study
	Dynamic fault tree tasks
	Continuous-time Markov chain tasks

