
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Program Verification II.
Critical Architectures Laboratory

Ákos Hajdu, Tamás Tóth
hajdua@mit.bme.hu

1

mailto:hajdua@mit.bme.hu


INTRODUCTION

2



Topic of the Lab Session:

Implement a model chekcer based on
Counterexample-Guided Abstraction Refinement

(CEGAR)

3



Model Checking

4

Model Checker

System Property

✓ ✗

proof counterexample



CEGAR

5

Abstractor

✓ ✗

Refiner

initial
precision

proof counterexample
refined

precision

abstract
counterexample



VERIFICATION WORKFLOW

6



Abstraction

Given the CFA and a precision 𝜋, we build an
abstract reachability tree

 An unwinding of the CFA to a rooted directed tree

 Each node is labeled by a set of literals over 𝜋

o overapproximate the post-image of the parent

 Covering edges between nodes

o the covering node is not covered

o the nodes represent the same location

o the label of the covering node entails the label of the covered 
node

7



Building the abstraction: step by step

8

ℓ0

ℓ1

ℓ2

ℓ3

x := 0

x := x + 1

assume x < 3

assume x >= 3

Let precision 𝜋 = 𝑥 < 3 .



Building the abstraction: step by step

9

ℓ0



Building the abstraction: step by step

10

ℓ0 ⊤
In the initial state

all variables have an 
arbitrary value



Building the abstraction: step by step

11

ℓ0 ⊤

ℓ1 𝑥 < 3

x := 0

If from an 
arbitrary state …

… we execute the 
assignment …

… we only obtain states 
where x < 3 holds



Building the abstraction: step by step

12

ℓ0 ⊤

ℓ1 𝑥 < 3

x := 0

ℓ2

assume x < 3

𝑥 < 3

if x < 3 …

… then we can 
pass the 

assumption …

… and still have x < 3



Building the abstraction: step by step

13

ℓ0 ⊤

ℓ1 𝑥 < 3

x := 0

ℓ2

assume x < 3

𝑥 < 3

ℓ1

x := x + 1

⊤

if x < 3 …

… and we 
increment it …

… x < 3 either holds or 
not, thus we have an 

arbitrary state



Building the abstraction: step by step

14

ℓ0 ⊤

ℓ1 𝑥 < 3

x := 0

ℓ2

assume x < 3

𝑥 < 3

ℓ1

x := x + 1

⊤

ℓ2 ℓ3

assume x >= 3

𝑥 ≥ 3

assume x < 3

𝑥 < 3



Building the abstraction: step by step

15

ℓ0 ⊤

ℓ1 𝑥 < 3

x := 0

ℓ2

assume x < 3

𝑥 < 3

ℓ1

x := x + 1

⊤

ℓ2 ℓ3

assume x >= 3

𝑥 ≥ 3

assume x < 3

𝑥 < 3

We can add a 
covering edge



Building the abstraction: result

16

ℓ0 ⊤

ℓ1 𝑥 < 3

x := 0

ℓ2

assume x < 3

𝑥 < 3

ℓ1

x := x + 1

⊤

ℓ2 ℓ3

assume x >= 3

𝑥 ≥ 3

assume x < 3

𝑥 < 3



Refinement

 The abstract reachability tree represents an 
overapproximation of all possible behaviors

 It may contain spurious counterexamples:
a path to an error location that is not feasible

 Refinement: add new predicates to the precision

 Rebuild the tree based on the new precision

17



CEGAR: Tasks

18

Abstractor

✓ ✗

Refiner

initial
precision

proof counterexample
refined

precision

abstract
counterexample

CEGAR loop

partially 
implemented

partially 
implemented

implemented



Pseudocode for the Abstractor

waitlist := { root }

while there exists an element n in waitlist do

remove n from waitlist

if n is an error node then

return counterexample path to n

else if there exists n’ that may cover n then

add covering edge from n to n’

else

expand n w. r. t. π

add all successors of n to waitlist

return the program is correct
19



LIST OF QUESTIONS

20



List of questions

Consider the program given on the next slide.

1. Build the abstraction for 𝜋 = ∅.
Is the abstraction safe?
(Does it prove the correctness of the program?)

2. Build the abstraction for 𝜋 = 𝑙𝑜𝑐𝑘 .
Is the abstraction safe?

3. Build the abstraction for 𝜋 = 𝑙𝑜𝑐𝑘, 𝑜𝑙𝑑 = 𝑛𝑒𝑤 .
Is the abstraction safe?

21



Example

lock = false;

do {

assert(!lock);

lock = true;

old = new;

if (*) {

lock = false;

new++;

}

} while (new != old);

22



Example

23

ℓ0

ℓ1

lock := false

ℓ2
assume lock

ℓ3

assume not lock

ℓ4

lock := true

old := new

ℓ5

ℓ6

lock := false

new := new + 1

assume new = old

assume new /= old



Solution (1)

24

ℓ0

ℓ1

ℓ3ℓ2

⊤

⊤

⊤⊤

𝜋 = ∅

lock := false

assume lock assume not lock



Solution (2)

25

ℓ0

ℓ1

ℓ3

⊤

¬𝑙𝑜𝑐𝑘

lock := false

assume

not lock

¬𝑙𝑜𝑐𝑘

ℓ4

lock := true

old := new

𝑙𝑜𝑐𝑘

ℓ5

lock := false

new := new + 1

ℓ5

¬𝑙𝑜𝑐𝑘𝑙𝑜𝑐𝑘

ℓ6 ℓ6ℓ1 ℓ1𝑙𝑜𝑐𝑘 𝑙𝑜𝑐𝑘 ¬𝑙𝑜𝑐𝑘¬𝑙𝑜𝑐𝑘

ℓ2

assume

new = old

assume

new = old

assume lock

assume

new /= old

assume

new /= old

𝑙𝑜𝑐𝑘

𝜋 = 𝑙𝑜𝑐𝑘



Solution (3)

26

ℓ0

ℓ1

ℓ3

⊤

¬𝑙𝑜𝑐𝑘

lock := false

assume

not lock

¬𝑙𝑜𝑐𝑘

ℓ4

lock := true

old := new 𝑙𝑜𝑐𝑘
𝑜𝑙𝑑 = 𝑛𝑒𝑤

ℓ5

lock := false

new := new + 1

ℓ5
¬𝑙𝑜𝑐𝑘

𝑜𝑙𝑑 ≠ 𝑛𝑒𝑤
𝑙𝑜𝑐𝑘

𝑜𝑙𝑑 = 𝑛𝑒𝑤

ℓ6 ℓ1
¬𝑙𝑜𝑐𝑘

𝑜𝑙𝑑 ≠ 𝑛𝑒𝑤

assume

new = old

assume

new /= old

𝑙𝑜𝑐𝑘
𝑜𝑙𝑑 = 𝑛𝑒𝑤

𝜋 = 𝑙𝑜𝑐𝑘, 𝑜𝑙𝑑 = 𝑛𝑒𝑤


