Program Verification II.
Critical Architectures Laboratory

Akos Hajdu, Tamas Toth
hajdua@mit.bme.hu

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Budapest University of Technology and Economics

Department of Measurement and Information Systems

mailto:hajdua@mit.bme.hu

INTRODUCTION

Topic of the Lab Session:

Implement a model chekcer based on
Counterexample-Guided Abstraction Refinement
(CEGAR)

Model Checking

Property

Model Checker

0 0

proof counterexample

initial
precision abstract
counterexample

Abstractor

refined
precision counterexample

VERIFICATION WORKFLOW

Abstraction

Given the CFA and a precision 1, we build an
abstract reachability tree

= An unwinding of the CFA to a rooted directed tree
= Each node is labeled by a set of literals over

o overapproximate the post-image of the parent

= Covering edges between nodes
o the covering node is not covered

o the nodes represent the same location

o the label of the covering node entails the label of the covered
node

Building the abstraction: step by step

Let precision T = {x < 3}.

assume x >= 3

Building the abstraction: step by step

Building the abstraction: step by step

In the initial state
all variables have an
arbitrary value

Building the abstraction: step by step

If from an
arbitrary state ..
x 1= 0 . we execute the
@ < a55|gnment
. we only obtain states
where x < 3 holds

Building the abstraction: step by step

(D

x := 0

assume x < 3

... then we can

Q x <3 pass the

assumption ...

... and still have x < 3

Building the abstraction: step by step

(D

x =0

assume x < 3

o=
X .
... and we
@ increment it ...

... X < 3 either holds or
not, thus we have an

arbitrary state

Building the abstraction: step by step

x =0

x <3

assume x < 3

assume x < 3 assume x >= 3

x <3

Building the abstraction: step by step

We can add a
covering edge

x <3

assume x < 3

Building the abstraction: result

= The abstract reachability tree represents an
overapproximation of all possible behaviors

" |t may contain spurious counterexamples:
a path to an error location that is not feasible

= Refinement: add new predicates to the precision

= Rebuild the tree based on the new precision

CEGAR: Tasks

artiall :
: P y implemented
implemented
CEGAR loop
initial .” RN
precision abstract

counterexample

Abstractor

refined

precision counterexample

partially
implemented

Pseudocode for the Abstractor

waitlist := { root }
while there exists an element n in waitlist do
remove n from waitlist
if n is an error node then
return counterexample path to n
else if there exists n” that may cover n then
add covering edge from n to n’
else
expandnw.r.t. 1
add all successors of n to waitlist
return the program is correct

LIST OF QUESTIONS

List of questions

Consider the program given on the next slide.

1. Build the abstraction for T = Q.
Is the abstraction safe?
(Does it prove the correctness of the program?)

2. Build the abstraction for m = {lock}.
Is the abstraction safe?

3. Build the abstraction for m = {lock, old = new}.
Is the abstraction safe?

lock = false;
do {
assert (!lock);
lock = true;
old = new;
if (%) |
lock = false;

new++,;

}
} while (new != old);

Example

lock := false

assume lock

lock := true

old := new assume new /= old

assume new = old

Solution (1)

lock := false

()

assume not Ilock

assume Ilock

Solution (2)

m = {lock}

lock := false - ~
P ~
N
N
@ —lock AN
assume \
not lock \\
G —lock ‘\
lock := true \
old := new \
\
@ lock lock := false 1
new := new + 1 :
lock —lock I
I
assume @ assume assume @ assume I
new = old new /= old new = old new /= old I

/
Jem (pa @O (D

assume Ilock \ /

\\ /
lock S~_7

Solution (3)

m = {lock, old = new}

lock := false]l = @ b ——-

N
—lock AN
assume \
not lock \\
—lock \\
lock := true \
old := new \
lock \
old = new \I
lock := false |
new := new + 1 I
I
1

lock
old = new

—lock
old +# new

assume /
new /= old /

assume
new = old

lock —lock
old = new old +# new

