
Structural Design in UML with
Analysis Classes

UML based modeling and analysis
Dániel Varró

Traditional OO Design

• A Class encapsulates
– Attributes of the class (instance)
– Operations performed on the class (instance)

• Appropriate for embedded systems where
– Classes are strongly related to real objects of the

system (e.g. Valve)
– Operations are strongly related a single class

E.g. openValve()
– Operations correspond to real operations

E.g. openValve() opens a real valve

• The tradition OO view turned out to be
problematic (especially in web applications)

Problems of OO Modeling in
Web Applications

• Where to put business functionality?
a) champ.enterChampionship(Player p)

b) player.enterChampionship(Championship c)

• Proposal:
ChampionshipManagement mngr;

mngr.enterChampionship(Championship c, Player p)

• Essence of the proposal:
– Encapsulate business functionality into a

separate interface (class): ChampionshipManager

– Make persistent business data reusable: Player

Problems of OO Modeling in
Web Applications

• Where to put GUI handler code?
a) championship.enterButtonClicked(Event e)
b) manager.enterButtonClicked(Event e)

• Proposal:
PlayerEnterChampForm form;
form.enterButtonClicked(Event e)

• Essence of the proposal:
– Encapsulate user interfaces into separate

classes: PlayerEnterChampForm

– Keep business functionality separated from
GUI handlers

How to Structure the Structure or
How to classify classes?

• Entity class (Entitás osztály):
– Persistent data

(used multiple times and in many UCs)
– Still exists after the UC terminates (e.g. DB storage)

• Boundary class (Határoló osztály):
– (User) interface between actors and the system
– E.g. a Form, a Window (Pane)

• Control class (Vezérlı osztály):
– Encapsulates business functionality

• Proposed in RUP (Rational Unified Process)

Analysis Classes

Rules of Thumb for
Analysis Classes

Structural restrictions for analysis classes
• Entity: only attributes (+get/set/find methods)
• Control: only methods: (at least) one method / UC
• Boundary: both attributes and methods

Relationship between analysis classes (Layers)
• Actors access only boundaries
• One boundary class for each Actor-UC relation
• Entities are only accessed by control objects
• Control objects may communicate with all entities,

boundaries, and control objects

Example:
Championship Manager

Verbal Requirements
• Design a system for organizing championships of

table games (chess, go, backgammon, etc.)
• Requirements:

– A player should register and log in to the system before
using it.

– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present,

the organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.

Verbal Requirements (cont.)
• Requirements (cont.):

– If the championship is not started yet (e.g. the number
of participants does not reach a minimum level), the
organizer may cancel the championship

– The actual game is played between existing clients,
which is outside the scope of the system system.

– Both players should report the result and the moves
after each game using a web form. A win scores 1
point, a draw ½, and a loss 0.

– If players report contradicting results, the organizer
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty.

– When all games are finished, the organizer should
close the championship by announcing the winner.
Then he or she may start organizing a new
championship.

Requirements (cont.)

• A game should be finished within a given
deadline (time limit).

• If none of the two players have reported
the result within this deadline, then both
players are considered to be losers.

• If only one player has reported the result,
then his (or her) version is considered to
be the official result.

Championship Management

Control and Entity Classes for
Championship Management

Boundary Classes for
Championship Management

Detailed design of boundary classes will come later

Abstract class:
no instances
are allowed

(italic)

Relationship between
Analysis Classes

User Management

Organization of Analysis Models

• Analysis Model
– Championship Management Package

• Analysis Elements Package
– Entity classes
– Control classes
– Boundary classes
– Enumerations
– Subpackages

• Collaborations (Not discussed today)

– Game Management Package
– User Management Package

Syntactic Best Practice of
Class Diagrams

• Limit the number of classes in a single diagram.
Divide large diagrams into smaller ones

• Naming:
– Class: domain-specific noun
– Operations: with a strong action verb
– Attributes: descriptive noun

• Level of details
– Analysis-level vs. Design-level
– Do not mix them!

• Preferrable arrangement of relations
– Associations: horizontal
– Generalizations: vertical

Structure Modeling with
Entity Classes and Associations

Traditional Classes
Class
• name
• attributes (attribútumok)

– Visibility (láthatóság)

– Type (típus)
– Initial value (kezdıérték)

• methods (metódusok)
– Visibility (láthatóság)

– Type (típus)
– Query vs. Manipulation

Class

+public : Type=(100,100)

#protected: Boolean=false

-private: Integer

+publicMethod(): String

-privateMethod(Integer anInt)

Entity Classes
Entity Class
• name
• attributes (attribútumok)

– Visibility: private / irrelevant

– Type: important
– Initial value: rarely relevant

• methods (metódusok)
– Only Find and Create

in the analysis model

– Only Get/Set in the design model

EntityClass

-private: String = "MyStr"

findEntity(Integer id) : EntityClass

create() : EntityClass

Associations between
Entity Classes

Association (Asszociáció):
relationship between (objects of) classes

• Name (név)
• Role (szerep)

(for each Assoc. End)
– Role name (szerep név)
– Navigability (navigálhatóság)

– Multiplicity (multiplicitás)
– Type (típus)

• Composition (Aggregation) vs. Reference

A

B

ascName

+roleB

+roleA

Type of
a role

Navigable
role

Non
navigable
role

Notation Guide
Composition:

at most one container

Reference

Assoc. nameRole name

Navigability: one can
access white player from
a game but not vice versa Multiplicity

at most one

Multiplicity
should be 1 for

aggregation

Multiplicity
many

Property = Association + Attribute

Properties as Attributes Properties as Associations

These notations are formally equivalent

Multiplicity:
1

Multiplicity:
*

Best practice: Properties of
Built-in classes vs. User classes

Built-in classes +
Enumeration Type:

Attributes

User classes:
Associations

What is Bad Design/Smell here?

• Properties of a user defined
type (class) should rather
be denoted explicitly
– OK, if multiplicity is 1

• Naming of associations:
– prefer verbs to nouns
– OK: participatesIn,

participantsOf

• Naming of roles:
– 1: singular
– *: plural
– OK: players, championships

What is Bad Design/Smell here?

• Arrays in attributes
– Solution:

an organizes association

• Explicit lists
– Solution:

a single playsIn association

• NOTE:
Lists and arrays are
programming constructs
and not domain elements!

organizers[]

Entity Classes in
Championship Management

NOTE: Game is not fully defined in this diagram

Mapping of UML Classes to Java

AssertionsConstraints

MethodOperation

AttributeAggregation

Collection<<Class>>0..* Association

Attribute (Field, Prop)0..1 Association

Attribute (Field, Prop)Attribute

ClassClass

JavaUML

Implemention in (Pseudo) Java
class Championship {

private String name;
private Player organizer;
private Collection players;

}

How to set normal attributes?
this.setName(newName);

How to set collections?
this.getPlayers().add(player);

player.getChampionships().add(this);

How to automate?
See a lecture on EMF and
code generation

Derived Properties

• A derived property can be
calculated from others

• Consequence:
it need not be persisted

• Example:
age = currYear - birth

Enumerations

• Enumeration:
– a fixed set of symbolic values

– represented as a class with
values as attributes

• Usage:
– Frequently define possible states
– Use enumerations instead of hard-wired

String literals whenever possible

Generalization (Inheritance)

Generalization

Aim: Lift up common attributes
and methods to the superclass

Parent class is more general
than its children classes

When to avoid generalization?

• What happens if a
started championship
is finished?

• Problem: Retyping of an
object is required

• NOTE:
Use status attribute with
enumeration values to
store the state of an
object that can change

Classification vs. Generalization

1. Fido is a Poodle

2. A Poodle is a Dog
3. Dogs are Animals

4. A Poodle is a Breed
5. A Dog is a Species

� 1+2 = Fido is a Dog

� 1+2+3 = Fido is an Animal
! 1+4 = Fido is a Breed

! 2+5 = A Poodle is a Species

Classification vs. Generalization

1. Fido is a Poodle

2. A Poodle is a Dog
3. Dogs are Animals

4. A Poodle is a Breed
5. A Dog is a Species

� 1+2 = Fido is a Dog

� 1+2+3 = Fido is an Animal
! 1+4 = Fido is a Breed

! 2+5 = A Poodle is a Species

• Generalization
(SupertypeOf) is transitive

• Classification (InstanceOf)
is NOT transitive

Classification vs. Generalization

Interfaces vs. Abstract Classes

Interfaces vs. Abstract Classes

Interface
inheritance

Class
inheritance

Interface

Abstract
method

Abstract
class

Implements

Requires
interface

Overriding

Class-level (Static) Attributes

Example: How to Find a Player

• Use a class-level
(static) attribute to
store all instances

• Acceptable in pure
Java

• NOT in Web apps

• Use a distinct
(singleton) container
– create
– find
– delete

• Content
– Get/Set

How to Express Restrictions?

A simple modeling problem

• A component aggregates ports with the following
restrictions

• Disjointness: a port can be either
– input ports or
– output ports
– but not both

• Completeness:
All ports are categorized into these two groups

• We should be able to collect input and output
ports separately from a component

Restrictions with Generalization

Advantages:
• Input and output

ports are disjoint
• Type checking

Disadvantages:
• Type of a port

cannot be changed
after creation

• Operations
common for input
and output ports?

Restrictions with (OCL) Constraints

Advantages
• the type of a port

can be changed
dynamically

Disadvantages:
• constraints are needed

to express
– Disjointness of input

and output ports
– Completeness of input

and output ports

• lack of type checking

Restrictions with
Enumeration + Attribute

Advantages
• Disjoint
• Complete
• Dynamic changes
Disadvantages
• Access time of in/out

ports is increased
• Lack of type checking

Next Lecture: Interactions

• How to capture flows of interaction
(scenarios)?

• How do analysis classes interact?

Milestone: Analysis Classes for
Championship Manager

User Management Use Cases

User Management
Analysis Classes

Championship Management

Entity Classes in
Championship Management

Championship Manager:
Control and Boundary Classes

Game Management Use Cases

Game Management
Analysis Classes

Game Management Entity Classes

Példányosítás vs. Öröklés

• Fifi egy uszkár

• Az uszkár egy kutya
• A kutya állat

• Az uszkár egy fajta
• A kutya egy faj

