Structural Design in UML with
Analysis Classes

UML based modeling and analysis
Daniel Varro

Traditional OO Design

« A Class encapsulates
— Attributes of the class (instance)
— Operations performed on the class (instance)

e Appropriate for embedded systems where

— Classes are strongly related to real objects of the
system (e.g. Valve)

— Operations are strongly related a single class

E.g. openValve() () Valve

— Operations correspond to real operations [o status

E.g. openValve() opens a real valve @ openvalve ()

.. ! @ closeValve
+ The tradition OO view turned out to be ()
problematic (especially in web applications)

Problems of OO Modeling In
Web Applications

* Where to put business functionality?

a) champ.enterChampionship(Player p)
b) player.enterChampionship(Championship c)

* Proposal:
ChampionshipManagement mngr;

mngr.enterChampionship(Championship c, Player p)
* Essence of the proposal.

— Encapsulate business functionality into a
separate interface (class): ChampionshipManager

— Make persistent business data reusable: Player

Problems of OO Modeling In
Web Applications

 Where to put GUI handler code?

a) championship.enterButtonClicked(Event e)
b) manager.enterButtonClicked(Event e)

* Proposal:

PlayerEnterChampForm form;
form.enterButtonClicked(Event e)

 Essence of the proposal.

— Encapsulate user interfaces into separate
classes: PlayerEnterChampForm

— Keep business functionality separated from
GUI handlers

How to Structure the Structure or
How to classify classes?

Analysis Classes
Entity class (Entitas osztaly): Q

— Persistent data
(used multiple times and in many UCSs)

— Still exists after the UC terminates (e.g. DB storage)

Boundary class (Hatarolo osztaly): @

— (User) interface between actors and the system
— E.g. a Form, a Window (Pane)

Control class (Vezerld osztaly): @
— Encapsulates business functionality

Proposed in RUP (Rational Unified Process)

Rules of Thumb for

Analysis Classes

Structural restrictions for analysis classes

« Entity: only attributes (+get/set/find methods)

e Control: only methods: (at least) one method / UC
 Boundary: both attributes and methods

Relationship between analysis classes (Layers)
o Actors access only boundaries

 One boundary class for each Actor-UC relation
e Entities are only accessed by control objects

 Control objects may communicate with all entities,
boundaries, and control objects

Example:
Championship Manager

Verbal Requirements

e Design a system for organizing championships of
table games (chess, go, backgammon, etc.)

 Requirements:
— A player should register and log in to the system before
using it.
— Each registered player may announce a championship.

— Each player is allowed to organize a single championship
at a time.

— Players may join (enter) a championship on a web page

— When the sufficient number of participants are present,
the organizer starts the championship.

— After starting a championship, the system must
automatically create the pairings in a round-robin system.

Verbal Reguirements (cont.)

Requirements (cont.):

— If the championship is not started yet (e.g. the number
of participants does not reach a minimum level), the
organizer may cancel the championship

— The actual game is played between existing clients,
which is outside the scope of the system system.

— Both players should report the result and the moves
after each game using a web form. A win scores 1
point, a draw Y2, and a loss 0.

— If players report contradicting results, the organizer
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty.

— When all games are finished, the organizer should
close the championship by announcing the winner.
Then he or she may start organizing a new
championship.

Requirements (cont.)

« A game should be finished within a given
deadline (time limit).
* If none of the two players have reported

the result within this deadline, then both
players are considered to be losers.

* If only one player has reported the result,
then his (or her) version is considered to
be the official result.

Championship Management

Announce Championship

Cancel Championship

<—> Create Pairings

® -

Close Championship

-

Enter Championship

Control and Entity Classes for
Championship Management

ttl:c:ntm|b w Bty e
ﬁ ChampionshipManager & Championship
o name | String
@ createPairings () o minParticipants @ Integer
@ announceChampionship [) o maxParticipants @ Integer
@ cancelChampionship () o status ; ChampStatus
@ startChampionship [)
@ closeChampionship)
@ enterChampionship { —
aenLImeration:
— ChampStatus
o Announced
o Started
o Finishec
o Cancelled

Boundary Classes for
Championship Management

ﬁbStraCt class: mch;fuundaryn ;
no instances T —

are allowed / A

___(italic)

«BoLifdary» «Bounflary s
Ho PlayerEnterChampForm Ho OrganizerClgseChampForm

«BoLincary s «Boundary» «Bounclary»
HO UserViewParticipants HY OrganizerStartChampForm HY OrganizerCancelChampForm

«Bouncary» «Bounclary»
HO UserViewStandingsForm HY OrganizerAnnounceChampForm

Detailed design of boundary classes will come later

Relationship between
Analysis Classes

|-ﬁl.lser Lugln Fnrm

-

-

oy

iI'IitiEltEE‘EU'E-HIIEES functio

ML Llser ‘-I'-'Elt:nme Form

W

& Player
o Lisertame ;o String
o password : String

L Mandades] o realMame ; String
O
O

¢ User Manager

Birth : Integer
fage : Integer

@ registerUser [)
@ loginUser |)
@ welcomelser {)

User Management

Organization of Analysis Models

* Analysis Model

— Championship Management Package

e Analysis Elements Package
— Entity classes
— Control classes
— Boundary classes
— Enumerations
— Subpackages

» Collaborations (Not discussed today)
— Game Management Package
— User Management Package

Syntactic Best Practice of

Class Diagrams

Limit the number of classes in a single diagram.
Divide large diagrams into smaller ones
Naming:

— Class: domain-specific noun

— Operations: with a strong action verb

— Attributes: descriptive noun

Level of detalls

— Analysis-level vs. Design-level

— Do not mix them!

Preferrable arrangement of relations

— Associations: horizontal
— Generalizations: vertical

Structure Modeling with
Entity Classes and Associations

Traditional Classes

Class
* name
o attributes (attribdtumok)
— Visibility (lathatosag)
— Type (tipus)
— Initial value (kezdéertek)
 methods (metddusok)
— Visibility (lathat6sag)

— Type (tipus)
— Query vs. Manipulation

Class

+public : Type=(100,100)
#protected: Boolean=false
-private: Integer

+publicMethod(): String
-privateMethod(Integer anint)

Entity Classes

Entity Class
* name

o attributes (attribdtumok)
— Visibility: private / irrelevant

EntityClass

— Type: important

o -private: String = "MyStr"
— Initial value: rarely relevant

° methOdS (metédUSOk) findEntity(Integer id) : EntityClass
— On Yy Find and Create create() : EntityClass

In the analysis model
— Only Get/Set in the design model

Assoclations between
Entity Classes
Association (Asszociacio):.
relationship between (objects of) classes
 Name (név)

Non
 Role (szerep) : navigable
(for each Assoc. End) ioleA

— Navigability (navigalhatosag)

+roleB

— Multiplicity (multiplicitas)
— Type (tipus)

B Type of
a role

 Composition (Aggregation) vs. Reference

Multiplicity
should be 1 for
aggregation

Notation Guide

Composition:
at most one container

Multiplicity
many

“Entity s] Zﬂ/ -
ﬂﬂhampim _r1ship ame

1 playedIn *

7=

a BTy
i Game

Reference i

Navigability: one can
access white player from —
a game but not vice versa Multiplicity

Lty
& Player

/ at most one

= U

Role name

~ whitePlkaer plavﬁ%

ASSOC. hame

Property = Association + Attribute

Properties as Attributes

[ttty | /Wultlplluty.
& Championship | 1 p

o organizer ; Playef

Properties as Associations

\
o players : F’Iayer</|\/|U|tip|iCityZ
\L D

_

BTty
& Player

o championships @ Championship
o pname ; String

s ERTiTy e
& Championship

+ | - championships

participants

#*

- players

«Entitys 1

@ Player |=

- arganizer

These notations are formally equivalent

Best practice: Properties of
Built-in classes vs. User classes

«Entity»
@ Championship

[User classesw * | - championships

Associations

partigipants

* | - players
Built-in classes + |
Enumeration Type: «Entity» 1

_ & Player =
Attributes ———=\ame sting | - organizer

What is Bad Design/Smell here?

. * Properties of a user defined
BNy
@ championship \ type (class) should rather
o organizer : Player 1\be denoted explicitly
— OK, if multiplicity is 1
 Naming of associations:

parti:ipantﬁ\ — prefer verbs to nouns
— OK: participatesin,

* E|'|-.'|I'|'||.IILIII'|E-|‘|I|-I

" |player participantsOf
ﬁEgEﬂt::r « Naming of roles:
— 1: singular
— *: plural

— OK: players, championships

What is Bad Design/Smell here?

BNty . .
@ Championship \ « Arrays In attributes

| organizers]] M — Solution:

1 J championship an organizes association
plgyers | o Explicit lists
1| - playerlist _ Solution:
(J PlayerList | ge——"" a single playsin association
; e NOTE:

Lists and arrays are
programming constructs

T and not domain elements!

partic

Entity Classes In
Championship Management

« Eﬁﬁn o _) S
* @ Championship ﬁnn_nunshuj gmnes}'_riﬁmwﬁ:
— = @ Game
1 championships 1 playedIn

* |- organizedChamps

organizes

patesIn AsBlack

0.1

- arganizer

| - blackPlayer
- players

@ Player = U1

o - whitePlayer playsAsWhit

e

NOTE: Game is not fully defined in this diagram

Mapping of UML Classes to Java

UML Java

Class Class

Attribute Attribute (Field, Prop)
0..1 Association Attribute (Field, Prop)
0..* Association Collection<<Class>>
Aggregation Attribute

Operation Method

Constraints Assertions

Implemention in (Pseudo) Java

class Championship {
private String hame;
private Player organizer;
private Collection players;

«Entity»
&) Championship
o name ; String
o minParticipants : Integer
o maxParticipants ; Integer
o status | ChampStatus

*

- qhampionships

—_

* |- organizedChamps

participatesIn organizes

1 |- crganizer

s BTy
& Player

- players

*

How to set normal attributes?
this.setName(newName);

How to set collections?
this.getPlayers().add(player);
player.getChampionships().add(this);

How to automate?
See a lecture on EMF and
code generation

Derived Properties

* A derived property can be

«Entity» calculated from others
& Player

o hirth : Integer
o fage : Integer

 Consequence:

It need not be persisted

e Example:
age = currYear - birth

Enumerations

e Enumeration:

| ienumeratinnn
— a fixed set of symbolic values Sl
— represented as a class with ° C:;'fz"r':l
values as attributes o Finished

e Usage:
— Frequently define possible states

— Use enumerations instead of hard-wired
String literals whenever possible

Generalization (Inheritance)

Generalization

Parent class is more general

. . _Trl
than its children classes «Entity»
& User

o name | String

a BTy BTy ! ity e [Ey
& Organizer @ Player & Organizer & Player
o pame ; String o name ; String

Aim: Lift up common attributes
and methods to the superclass

When to avoid generalization?

@ Championship « What happens if a
started championship
IS finished?

* Problem: Retyping of an

«Entity» aEntitys ObJeCt IS req u I red
) StartedChamp & FinishedChamp . N O-I-E .
Use status attribute with

enumeration values to

ETTY s Store the state of an
© Championship Zchampstatus | object that can change
o status : ChampStatus o Announced
o Started
o Finished
o Cancelled

a bk b E

Classification vs. Generalization

Fido is a Poodle v 1+2 = Fido is a Dog
A Poodle is a Dog v 1+2+3 = Fido is an Animal
Dogs are Animals | 1+4 = Fido Is a Breed

A Poodleisa Breed ! 2+5 = A Poodle is a Species
A Dog Is a Species

a bk b E

Classification vs. Generalization

Fido s a Poodle v 1+2 = Fido is a Dog

A Poddle is a Do v 1+2+3 = Fido is an Animal
Dogs are Anima | 1+4 = Fido Is a Breed

A Poodlg,is a Breedy, ! 2+5 = A Poodle is a Species
A Dogws\a Species

e Generalization
(SupertypeOf) Is transitive

» Classification (InstanceOf)
IS NOT transitive

Classification vs. Generalization

= Animal

|

i~ Dog aInstantiates i) Species

==

(JPoodle | .Instantiates (-} Breed

N
alstantiates

i+ Fido

Interfaces vs. Abstract Classes

Interfaces vs. Abstract Classes

[Interfacew\ «interfacer

—" [&¥ Collection

Interface
Inheritance

@ equals ()
@ acld [)

Abstract
class

(= Order | rec Lires €9 List

W{H'T&bs'trar:'ﬂ_ist AbStraCt]

@ edquals

Requires
Interface

Implements

@ gel () —
@ acd () Class
e

%‘heritanc

| (*) ArrayList
® get [) /(Overriding]

@add (=T

Class-level (Static) Attributes

Example: How to Find a Player

e Use a class-level e Use a distinct
(static) attribute to (singleton) container
store all iInstances — create
« Acceptable in pure — find
Java — delete
« NOT in Web apps « Content
— Get/Set
i Playerl
o players @ Collection
o userMame | String O PayerStore *— II'L'I‘I'?%,' - E:E:T:ITE.".I 0
@ findPlayer [) ® fndPlaver S
@ getlserMame () @ r:::aatrﬂjglc:yrirj[) : SR
@ createPlayer ()

How to Express Restrictions?

A simple modeling problem

A component aggregates ports with the following
restrictions

Disjointness: a port can be either
— Input ports or

— output ports

— but not both

Completeness: S
All ports are categorized into these two groups

We should be able to collect input and output
ports separately from a component

Restrictions with Generalization

«Entity» “Entity»
@ Component @ Port * Input and output

— ports are disjoint

1/1 ¢ * Type checking
Disadvantages:

- outPorts [Entitys | [«Entity» | ® Type of a port
- ~| @ OutputPort & InputPort cannot b a Ch an g e d
after creation

- inForts

e QOperations
common for input
and output ports?

&

Restrictions with (OCL) Constraints

ys

«Entity»

© Component | gcomponen - port:

Advantages

*N;M:Iutﬁ:rta e the type of a port

e

1 +*

- outputPort
Y

N

BNty

..| & Port

o name

can be changed
dynamically

Disadvantages:

e constraints are needed
to express
— Disjointness of input
and output ports
— Completeness of input
and output ports

» lack of type checking

Restrictions with
Enumeration + Attribute

Advantages
“Entity s “Entity T3lal
@ Component | - componen - port: - @ Port * DISJOInt
= o name
1 * o kind : Portkind ’ Complete
e Dynamic changes
“anumeration: Disadvantages
= PortKind . .
ot e Access time of in/out
° outport ports Is increased

» Lack of type checking

Next Lecture: Interactions

 How to capture flows of interaction
(scenarios)?

« How do analysis classes interact?

Milestone: Analysis Classes for
Championship Manager

User Management Use Cases

in Without Registration
Reqgister User

C—jiﬁ}mndn Login Failed O

Login User Mistyped Password

<

Welcome User

User Management
Analysis Classes

|-ﬂl.lser Lugln Fnrm

P

oy

ilwitiatesﬂﬁtmm:ggs functio

ML Llser WEI::nmE Form

ﬁ User Manager

@ registerUser [)
@ loginUser |)
@ welcomelser {)

LiserMame © String
password : String
realdame @ String
Birth : Integer
fage : Integer

Championship Management

Announce Championship

Cancel Championship

<—> Create Pairings

® -

Close Championship

-

Enter Championship

partic

#*

Entity Classes In
Championship Management

E%ﬁﬁ y . .
“hampionship

@ Championship

>

- Lames

1 championships

patesin

- players

1

* |- organizedChamps

organizes

#*

& Player

- arganizer

e

0.1

- blackPlayer

0.1

-
playedIn "

- wEntitys J

&' Game

AsBlack

- whitePlayer

playsAsWhite

Championship Manager:

Control and Boundary Classes
W

& ChampionshipManager

Lise @ createPairings ()

champManagerForm LeEr ——
H@ ChampManagerForm | "= = @ announceChampionship ()

@ cancelChampionship ()
@ startChampionship ()
@ closeChampionship ()
@ enterChampionship ()

HY OrganizerStartChampForm

HY OrganizerAnnounceChampForm

HY OrganizerCancelChampForm HY OrganizerCloseChampForm || HJ) PlayerEnterChampForm

Game Management Use Cases

-,

!

Player

@

O

Report Result

sinclucles ,_,O

L —
-
-

Organizer

=" Authorize Organizer
‘ o winclucless
S T >
Judge Result

Review Game

Game Management

Analysis Classes

Hy) PlayerReportResultForm

Hy OrganizerJudgeResultForm

e e —

& GameManager

@ reportResult |)
@ jucgeResult |)
@ authorizeCrganizer {)
@ reviewGame [)

& Result

o moves String
o result : Resultkind

W

&) Game
o deadline ; Date

Game Management Entity Classes

.1 reportedByWhiteIn

yhiteResult

L e SR

@ Result 0.1 1

= maves: : Sting < ortedByOrganizer
o result ; Resultkind finalFEsit

. | o Game

o ceadline | Date

8 iy 1

- I:ulat_'lﬂea'l:ﬁf]mtEdE"'Elack

‘= ResultKind
o whiteWins

o hlackWins
o draw

Példanyositas vs. Oroklés

Fifi egy uszkar

Az uszkar egy kutya
A kutya allat

Az uszkar egy fajta
A kutya eqgy faj

