OCL Constraints of
Analysis Classes

Model driven software development
Daniel Varro

Goals

* How to capture restrictions (constraints) of
analysis classes?

 How to capture pre- and postconditions of
operations?

What is OCL?

OCL = Object Constraint Language
OCL is not a programming language;

— not possible to write program logic or flow control
in OCL

OCL is a typed language

— each OCL expression has a type;

— types within OCL can be any class (kind of
Classifier)

Implementation issues are out of scope and

cannot be expressed in OCL

Where to use OCL?

To specify invariants on classes and types in the
class model

To specify type invariants for Stereotypes

‘0 describe pre- and postconditions on Operations
‘0 describe Guards

As a navigation language

To specify constraints on operations

Modeling Language Engineering: well-formedness
rules as invariants on the meta-classes in the
abstract syntax;

Expressing Invariants on
Entity Classes

Informal Constraints on

Q Championship

name : String
minParticipants : Integer
maxParticipants : Integer
status : ChampStatus

-
o —
—

ChampStatus

O
O
O
O

Announced
Started
Finished
Cancelled

Championship

What are the restrictions?
- nhame Is not empty
- minParticipants < maxParticipants
- minParticipants > 0
- maxParticipants > 0

Q Chalhpionship

First OCL constraints

name : String
minParticipants :
maxParticipants

: Integer
status : ChampStatus

Integer

= ChampStatus

o Announced
o Started

o Finished

o Cancelled

First OCL constraints

 Name is not empty

context Championship inv:
self.name <> "'

& Championship
name : String
minParticipants : Integer
maxParticipants : Integer
status : ChampStatus

:— ChampStatus
o Announced

o Started

o Finished

o Cancelled

First OCL constraints

 Name is not empty
_ context Championship inv:
name : String

minParticipants : Integer self.name ©

maxParticipants : Integer * Constraints on participants
status : ChampStatus

Q Championship

B EN EN K

:— ChampStatus
o Announced

o Started

o Finished

o Cancelled

First OCL constraints

[Ey | Name is not empty

© Championship context Championship inv:

name : String X
>
minParticipants : Integer self.name <

maxParticipants : Integer * Constraints on participants

: S . .o
status : ChampStatus context Champlon Shlp inv:
self.minParticipants >= O

B EN EN El

:— ChampStatus
o Announced
o Started

o Finished
o Cancelled

First OCL constraints

& © Name is not empty

© Championship context Championship inv:

name : String X
>
minParticipants : Integer self.name <

(®)
o
o maxParticipants : Integer * Constraints on participants
o

: S . .o
status : ChampStatus context Champlon Shlp inv:
self.minParticipants >= O

_ context Championship inv:
‘= ChampStatus self.maxParticipants >= 1

o Announced
o Started

o Finished

o Cancelled

First OCL constraints

ERey T ¢ Name is not empty

<
& Championship

context Championship inv:

name : String
minParticipants .

o
o
o maxParticipants
o

Tfitase self.name <>

. Integer [» Constraints on participants
status : ChampStatus

context Championship inv:

:— ChampStatus

self.minParticipants >= O

context Championship inv:
self.maxParticipants >= 1

o Announced
o Started

o Finished

o Cancelled

context Championship inv:
self.maxParticipants >=
self.minParticipants

First OCL constraints

Context Invariant

ey] * Name is not| Ampty

& Championship

, context Championship inv:
name : String

o (I |

o minParticipants : Integer Self‘n(_]me © o

o maxParticipants : Integer * Constraints on participants
a

tatus : ChampStat : .
s e context Championship inv:
self.minParticipants >= O

[—— context Championship inv:
“enumeration»

‘= ChampStatus self.maxParticipants >= 1
© Announced context Championship inv:

: ;?-tg-'rr ed, elf xaaxParticipants >=
2 FiniIshec Instance Of elf , . . .
o Cancelled the class Navigation

along attributes

R

Informal Constraints on Player

Q Player

b

o userName : String
o password : String
o realName : String
o hirth : Integer
o fage : Integer

* What are the restrictions?
- userName is not empty
- userName is unique
- 1800 < birth < 3000
- password is not empty

- age = current_year - birth

Informal Constraints on Player

Q Player

>

o userName : String
o password : String
o realName : String
o hirth : Integer
o fage : Integer

Informal Constraints on Player

Q Player

>

o userName : String
o password : String
o realName : String
o hirth : Integer
o fage : Integer

- 1800 < birth < 3000

Informal Constraints on Player

e - 1800 < birth < 3000

i context Player inv:

o userName : String) ~
o password : String self.birth >= 1800 and

S| o realName : String self.birth <= 3000
o hirth : Integer
o fage : Integer

Informal Constraints on Player

Logical
. 1800 ¢ birth < 3000 % Xﬂ}%a]

context Player inv:

o userName : 5tring) ~
o password : String self.birth >= 1800 and

S| o realName : String self.birth <= 3000
o hirth : Integer
o fage : Integer

, |
Q Player

Informal Constraints on Player

Logical
. 1800 ¢ birth < 3000 % Xﬂ}%a]

context Player inv:

o userName : 5tring) ~
o password : String self.birth >= 1800 and

S| o realName : String self.birth <= 3000
o hirth : Integer
o fage : Integer

, |
Q Player

Informal Constraints on Player

Logical
. 1800 ¢ birth < 3000 % Xﬂ}%a]

context Player inv:

o userName : 5tring) ~
o password : String self.birth >= 1800 and

S| o realName : String self.birth <= 3000
o hirth : Integer
o fage : Integer

, |
Q Player

Informal Constraints on Player

Logical
. 1800 ¢ birth < 3000 % Xﬂ}%a]

context Player inv:

o userName : 5tring) ~
o password : String self.birth >= 1800 and

S| o realName : String self.birth <= 3000
o hirth : Integer
o fage : Integer

, |
Q Player

Informal Constraints on Player

, Logical]
e 1800 < birth < 3000 AND

Q P'av‘f' _ context Player inv:
o userName : 5tring self.birth >= 1800 and

o password : String
S| o realName : String self.birth <= 3000
o hirth : Integer
o fage : Integer

 Name is unique

Informal Constraints on Player

, Logical
= B IBOOsberhsSOOO/: AND]

Q P'av‘f' _ context Player inv:
o userName : 5tring self.birth >= 1800 and

o password : String
o realName : String self.birth <= 3000
o hirth : Integer
o fage : Integer

 Name is unique

context Player inv:
Player.allInstances->forAll(pl, p2 |
pl<>p2 implies
pl.userName <> p2.userName)

Informal Constraints on Player

| oqgical
e - 1800 < birth < 3000 /: Zﬁ,‘ga]

Q P'aY‘f'P _ context Player inv:
o userName @ String self.birth >= 1800 and

o password : String .
o realName : String self.birth <= 3000

o hirth : Integer Get all instances
o fage : Integer

into a collection

context Player inv:
Player.allInstances->forAll(pl, p2 |
pl«>p2 implies
pl.userName <> p2.userName)

Informal Constraints on Player

, Logical
T 18005b|r"rh53000/: AND]

Q P'aY‘f’P _ context Player inv:
userName : String self.birth >= 1800 and

0o

o password : String .

o realName : String self.birth <= 3000
()

O

birth : Integer)
/actup : ini:t:: Get all mstances]

into a collection

context Player inv:
Player.allInstances->forAll
pl«>p2 implies

Universal quantification: For
all objects in the collection

Informal Constraints on Player

. Logical
—— 18005b|r’rh53000/: AND]

Q P'aY‘f’P _ context Player inv:
userName : String self.birth >= 1800 and

0o

o password : String .

o realName : String self.birth <= 3000
()

O

birth : Integer :
/):Lt;; : i::i:t::: Get all mstances]

into a collection

g;\;ex‘r Playér inv:
yer.allInstances->forAll

pl«>p2 implies

Universal quantification: For
all objects in the collection

Informal Constraints on Player

. Logical

o 1800 < birth < 3000 AND]
W'Player™ context Player inv:

userName : String self.birth >= 1800 and

password : String

()
o realName : String self.birth <= 3000
()

birth : Integer :
/):Lt;; : igi:t::: Get all mstances]

into a collection

[If p1 # p2 Mexf Playér inv:
yer.allInstances->forAll{ " p2 |

— pl>n? imnlie

Then p1.userName #
p2.userName

p userNaméd Universal quantification: For
all objects in the collection

Informal Constraints on Player

. Logical
e 1800 < birth < 3000 AND]
Q e context Player inv:

userName : String self.birth >= 1800 and

password : String

()
o realName : String self.birth <= 3000
()

birth : Integer

fage : Integer Get all instances

into a collection
S

Logical
implication

[If p1 # p2 Mexf Player i
yer.allInsfances->forAll{ " p2 |

— pl>n? imnlie

Then p1.userName # : 30
userNam¢d Universal quantification: For
p2.userName P all objects in the collection

partic

Properties Automatically Induced
by Roles and Multiplicities

*

1 championships

patesin

- players

@ Championship - Or'gamzer. |
Championship -> Player
* | - organized 0r‘90nized :
Championship -> Set(Player)
organizes

championships:
Championship -> Player

1 |- organizer

" «Entity»

*

@ Player |<—

players:
Championship -> Set(Player)

You do not need to write such constraints in OCL!

Navigation along roles

3 @ Championship .

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players w
Q Player

*

partic

Navigation along roles

- Multiplicity 0..1
. [oo&m—

Championship

1 championships

* |- organized

organizes
patesin

1 |- organizer

- players w
Q Player

*

partic

Navigation along roles

*

- players

*

@ Championship
1 championships
* |- organized
organizes
patesin
1 |- organizer

Q Player <—

* Multiplicity 0..1
context Championship inv:
self.organizer.birth > 1976

Navigation along roles

* Multiplicity 0..1
+ W context Championship inv:

Championship .
{ championships self.or'gamzer.blr"rh >1976

* |- organized

ol ><

1 |- organizer

- players w
Q Player

*

participatesin

partic

Navigation along roles

*

@ Championship

1 championships

patesin

- players

* |- organized

organizes

1 |- organizer

*

Q Player <—

* Multiplicity 0..1
context Championship inv:
self.organizer.birth > 1976

self.players results in a collection
self.players.birth: the coll. of birth

years

Navigation along roles [2nyaituesf

compared with a
value

« Multiplicity O.."
3 @ Championship context Champion ip inv:
{ championships self.or'ganizer.bir’rh > 1976

- organized

. ><

self.players results in a collection
- organizer self.players.birth: the coll. of birth

patesin

- players

(Q Playef <—

*

Navigation along roles [2nyaituesf

compared with a
value

« Multiplicity O.."
Bl context Champion| Aip inv:
{ championships self.or'ganizer'.bir’rh > 1976
- organized * MU'tlleClty ¥ (many)

. ><

self.players results in a collection
- organizer self.players.birth: the coll. of birth

patesin

- players

(Q Player <—

*

: : C i
Navigation along roles [2nyaituesf

compared with a
value

« Multiplicity O.."
T . Char?lpionship) context Champlon Ip Inv:
{ championships self.or'ganizer'.bir’rh > 1976

Multiplicity * (many)
conte '

- organizecl

Anizes

patesin

self.players results in a collection
- organizer self.players.birth: the coll. of birth

players EREE—

@ Player <—

*

: : C i
Navigation along roles [2nyaituesf

compared with a
value

« Multiplicity O.."
T . Char?lpionship) context Champlon Ip Inv:
{ championships self.or'ganizer'.bir’rh > 1976

Multiplicity * (many)
conte '

- organizecl

Anizes

patesin

self.players results in a collection
- organizer self.players.birth: the coll. of birth

players EREE—

@ Player <—

*

: : C i
Navigation along roles [2nyaituesf

compared with a
value

« Multiplicity O.."
T . Char?lpionship) context Champlon Ip Inv:
{ championships self.or'ganizer'.bir’rh > 1976

Multiplicity * (many)
conte '

- organizecl

Anizes

patesin

self.players results in a collection
- organizer self.players.birth: the coll. of birth

players EREE—

@ Player <—

*

: : C i
Navigation along roles [2nyaituesf

compared with a
value

« Multiplicity O.."
T . Char?lpionship) context Champlon Ip Inv:
{ championships self.or'ganizer'.bir’rh > 1976

Multiplicity * (many)
conte '

- organizecl

Anizes

patesin

self.players results in a collection
- organizer self.players.birth: the coll. of birth

players EREE—

@ Player <—

*

partic

NaV|gat|On along roles /Onlyattributes of

*

@ Championship

1 championships

patesin

- players

* |- organized

organizes

1 |- organizer

*

Q Player <—

£\

an object can be
compared with a
value

» Multiplicity 0..° —
context ChampM inv:

self.organizer.birth > 1976
* Multiplicity * (many)
conte |

self.players results in a collection
self.players.birth: the coll. of birth

(operations on collections)

Consistency of
bidirectional associations

B

@ Championship

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players W
*

@ Player |<—

Consistency of
bidirectional associations

* |f a bidirectional association
. [T WEntt» .| exists between two objects then it
IS navigable from both directions

@ Championship

1 championships

- organizecl

Anizes
patesin

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

* |If a bidirectional association
[Entityy | exists between two objects then it
IS navigable from both directions

*

@ Championship

1 championships

- organizecl
: Collection = Single object
patesIn e Such an equality is invalid

1 |- organizer

-players [REREERE

Q Player <—

*

Consistency of
bidirectional associations

 |f a bidirectional association
[wEntt | exists between two objects then it
T~ is navigable from both directions

*

1 championships

- organizecl

.organizer.or

: Collection = Single object
aan Such an equality is invalid

patesin

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

 |f a bidirectional association
[wEntt | exists between two objects then it
T~ is navigable from both directions

*

1 championships

- organizecl

.organizer.or

: Collection = Single object
aan Such an equality is invalid

patesin

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

 |f a bidirectional association
[wEntt | exists between two objects then it
T~ is navigable from both directions

*

1 championships

- organizecl

.organizer.or

: Collection = Single object
aan Such an equality is invalid

patesin

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

* |If a bidirectional association
exists between two objects then it
IS navigable from both directions

*

@ Championship

1 championships

* |- organized

-organizer.or =self

: Collection = Single object
particlpatesIn ot ol Such an equality is invalid

1 |- organizer

context Championship inv:
@ Player < self.organizer.organized->

- players

*

Consistency of
bidirectional associations

* |If a bidirectional association
exists between two objects then it
IS navigable from both directions

*

@ Championship

1 championships

- organized

: Collection = Single object
aan Such an equality is invalid

patesin

1 |- organizer

- players

(Q Playef <—

*

Coll->includes(e):
Tests collection
membership: e €Coll

Consistency of
bidirectional associations

B

@ Championship

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players W
*

@ Player |<—

Consistency of
bidirectional associations

* |f a bidirectional association
. [T WEntt» .| exists between two objects then it
IS navigable from both directions

@ Championship

1 championships

- organizecl

Anizes
patesin

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

* |f a bidirectional association
[@&t | exists between two objects then it
T~ is navigable from both directions

*

1 championships

- organizecl

Anizes C
patesIn Incorrect: Constraint is
prescribed for all champs

1 |- organizer

plavers [ERGEIE

Q Player <—

*

Consistency of
bidirectional associations

 |f a bidirectional association
. [t | exists between two objects then it
T~ is navigable from both directions

1 championships

ext Player inv:

- organizecl

 nizes c.orqanizer = se o
patesIn Incorrect: Constraint is
prescribed for all champs

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

 |f a bidirectional association
. [t | exists between two objects then it
T~ is navigable from both directions

1 championships

ext Player inv:

- organizecl

 nizes c.orqanizer = se o
patesIn Incorrect: Constraint is
prescribed for all champs

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

 |f a bidirectional association
. [t | exists between two objects then it
T~ is navigable from both directions

1 championships

ext Player inv:

- organizecl

 nizes c.orqanizer = se o
patesIn Incorrect: Constraint is
prescribed for all champs

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

* |If a bidirectional association
exists between two objects then it
IS navigable from both directions

*

@ Championship

1 championships

ext Player inv:

* |- organized

orghnizes c.organizer = se -
participatesIn Encorrect: Constraint is

prescribed for all champs

1 |- organizer

- players

*

self.organized->forAll(c |
c.organizer = se

Consistency of
bidirectional associations

* |If a bidirectional association
exists between two objects then it
IS navigable from both directions

*

@ Championship

1 championships

ext Player inv:

- organized

 nizes c.orqanizer = se o
patesIn Incorrect: Constraint is
prescribed for all champs

1 |- organizer

- players

(Q Playef — context Player' Inv:
self.organized->fg

Coll->forAll(e|cond(e))
Quantifiers can only be

*

Consistency of
bidirectional associations

B

@ Championship

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players W
*

@ Player |<—

Consistency of
bidirectional associations

* |f a bidirectional association
. [T WEntt» .| exists between two objects then it
IS navigable from both directions

@ Championship

1 championships

- organizecl

Anizes
patesin

1 |- organizer

- players W

Q@ Player |<—

*

Consistency of
bidirectional associations

* |If a bidirectional association
[Entity» | exists between two objects then it
IS navigable from both directions

*

@ Championship

1 championships

context Championship inv:

self.players->forall(p |
. p.championships-> includes
patesIn (self))

1 |- organizer

- players «Entity»

@ Player [<—

- organized

*

Consistency of
bidirectional associations

 |f a bidirectional association
[wEntt | exists between two objects then it
-~ is navigable from both directions

*

1 championships

context Championship inv:

self.players->forall(p |
. p.championships-> includes
patesIn (self))

- organized

1 |- organizer context Player inv:

-players [EmE—C self.championships->forall(c

Q Player |=—

*

| c.players -> includes(self))

Consistency of
bidirectional associations

B

@ Championship

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players W
*

@ Player |<—

Consistency of
bidirectional associations

* The organizer of the
[ERte | championship organizes at least
© Championship one championship

*

1 championships

- organizecl

Anizes
patesin

1 |- organizer

players EREE—

@ Player <—

*

Consistency of

bidirectional associations

*

* The organizer of the
« — championship organizes at least
© Championship one championship

1 championships

patesin

- players

- organized

Context should No player is forced to
anizes be Championship organize a champs

- organizer

*

(Q Player <—

Consistency of
bidirectional associations

* The organizer of the

L[Enttyy | championship organizes at least

@ championship | one championship

.organized-> .
Context should No player is forced to
be Championship organize a champs

1 championships

* |- organized

organizes

participatesin

1 |- organizer

-plavers [ERTE—

@ Player |<—

*

Consistency of
bidirectional associations

* The organizer of the

L[Enttyy | championship organizes at least

@ championship | one championship

.organized-> .
Context should No player is forced to
be Championship organize a champs

1 championships

* |- organized

organizes

participatesin

1 |- organizer

-plavers [ERTE—

@ Player |<—

*

Consistency of
bidirectional associations

* The organizer of the

L[Enttyy | championship organizes at least

@ championship | one championship

.organized-> .
Context should No player is forced to
be Championship organize a champs

1 championships

* |- organized

organizes

participatesin

1 |- organizer

-plavers [ERTE—

@ Player |<—

*

partic

*

Consistency of
bidirectional associations

* The organizer of the
championship organizes at least

1 championships

patesin

- players

@ championship | one championship

*

- organized

Anizes

.organized-> .
Context should No player is forced to

be Championship | |_organize a champs

—— context Championship inv:

self.organizer.organized->
Q Player <— size >0

Consistency of
bidirectional associations

* The organizer of the

. [Entityr | championship organizes at least

@ championship | one championship

.organized-> .
Context should No player is forced to
be Championship organize a champs

1 championships

* |- organized

organizes

participatesin

1 |- organizer

- players

@ Player |<—

*

context Championship inv:

. a aran s (s f ara (P []

notEmpty

Application specific constraints

B

@ Championship

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players W
*

@ Player |<—

Application specific constraints

- Anplayer is allowed to organize

« = a single active championship at a
& Championship time

*

1 championships

- organized

Anizes
patesin

1 |- organizer

- players

(Q Player <—

*

Application specific constraints

*

‘«Entigy»

@ Championship

- Anplayer is allowed to organize

1 championships

patesin

- players

1

*

- organized

Anizes

- organizer

'«Entllty» 'FZ

@ Player |<—

a single active championship at a

time

context Player inv:
self.organized->forall(cl, c2 |
cl«>c2 implies
(cl.status = ChS::closed or
cl.status = ChS::cancelled) or
(c2.status = ChS::closed or
c2.status = ChS::cancelled))

Application specific constraints

*

‘«Entigy»

@ Championship

- Anplayer is allowed to organize

1 championships

patesin

- players

1

*

- organized

Anizes

- organizer

'«Entllty» 'FZ

@ Player |<—

a single active championship at a

time

context Player inv:
self.organized->forall(cl, c2 |
cl«>c2 implies
(cl.status = ChS::closed or
cl.status = ChS::cancelled) or
(c2.status = ChS::closed or
c2.status = ChS::cancelled))

context Player inv:
self.organized->select(c |
c.status = ChS::announced or

Application specific constraints

- Anplayer is allowed to organize

[Enae | a single active championship at a
@ Championship time

*

1 championships

context Player inv:

- organized self.organized->forall(cl, c2 |
cl«>c2 implies

nizes (cl.status = ChS::closed or

cl.status = ChS::cancelled) or

1 |- organizer (c2.status = ChS::closed or

-players [EmE—C c2.status = ChS::cancelled))

: @ Player |<— .
context Player inv:

qanized->select(c |

Values of an c.status = ChS::announced or
enumeration

patesin

Application specific constraints

B

@ Championship

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players W
*

@ Player |<—

Application specific constraints

A championship can only be
. [t | started when the sufficient
© Championship | 1, ;mber of participants are
present.

1 championships

- organizecl

Anizes
patesin

1 |- organizer

-players [REREERE

z Q Player <—

Application specific constraints

*

‘«Entigy»

@ Championship

1 championships

patesin

- players

- organized
Anizes

1 |- organizer

'«Entllty» 'FZ

*

@ Player |<—

A championship can only be

started when the sufficient

number of participants are

present.

context Championship inv:

self.status =
ChampStatus::started or
self.status =
ChampStatus::finished
implies
(self.players-»>size >=
self.minParticipants and

Application specific constraints

B

@ Championship

1 championships

* |- organized

organizes
participatesin

1 |- organizer

- players W
*

@ Player |<—

Application specific constraints

* Youth championship: the average

[%Entity» | age of participants is below 21.
& Championship

*

1 championships

- organized

Anizes
patesin

1 |- organizer

- players

(Q Player <—

*

Application specific constraints

* Youth championship: the average

[%Entity» | age of participants is below 21.
& Championship

*

1 championships

- organized

Anizes
patesin

1 |- organizer

- players

(Q Player <—

*

Application specific constraints

* Youth championship: the average

[%Entity» | age of participants is below 21.
& Championship

*

1 championships

- organized

Anizes
patesin

1 |- organizer

- players

(Q Player <—

*

Application specific constraints

* Youth championship: the average

[%Entity» | age of participants is below 21.
& Championship

*

1 championships

- organized

Anizes
patesin

1 |- organizer

- players

(Q Player <—

*

Application specific constraints

* Youth championship: the average
. [Entty | age of participants is below 21.

@ Championship

1 championships

- organizec
patesin i context Championship inv:
->
1 |- organizer (Self'players°096 SLII’I'\) /

plyers [E— (self.players-s>size) < 21
© Player |<—

*

Application specific constraints

*

«Entity»

@ Championship

1 championships

icipatesin

- players

1

*

- organizecl

Anizes

- organizer

«Entity»

@ Player |<—

Youth championship: the average
age of participants is below 21.

players.age is the collection of
the age attributes of players

context Cham 'onship inv:

players.age->sum can only be
applied to a collection that
contains numbers

An Overview of OCL Constructs

Types and Boole algebra in OCL

« All OCL expressions are « Boolean operators:

typed - band b2, b or b2,

OclAny: b xor b2, not b

The type that includes all If any part of a Boolean
others. E.g. x, y : OclAny expression fully determines the

result, then it does not matter
X=Yy . if some other parts of that

x and y are the same object. expression have unknown or
X <y undefined results.

- b implies b2
not (x = y). Truepif b is false or if b is true
x.oclType and b2 is true.

The t.ype of x. if b then el else e2 endif
X.isKindOf (T) If b is true the result is the
True if T is a supertype value of e1; otherwise, the
(transitive) of the type of x. result is the value of e2.

T.allInstances : Collection
All the instances of type T.

Overview of
Collection Valued Terms

o Size:

c->size: Integer

Number of elements in the
collection; for a bag or
sequence, duplicates are
counted as separate items.

c->sum: Integer

Sum of elements in the
collection. Elements must be
numbers

c->count(e): Integer

The number of times that e is
In C.

c->isEmpty: Boolean

Same as (c-»>size = 0).

c->notEmpty: Boolean
Same as (not c->isEmpty).

* Equality

c = c2 : Boolean

« Collection membership

c->includes(e): Boolean;
c->exists (x| x=e).

c->excludes(e): Boolean;
hot c->includes(e).

c->includesAll(c2): Boolean;
czincludes all the elements in
c2.

c->including(e): Collection
The collection that includes
all of c as well as e.

c->excluding(e): Collection
The collection that includes
all of c except e.

Overview of
Collection Valued Terms

« Existential quantifier: Selection:

- c->exists(x | P): Boolean; - c->select(x | P): Collection
there is at least one element The collection of elements in
in ¢, named X, for which ¢ for which P is true.

— Equivalent is: c->select(P)

Filtering:

predicate P is true.

— Equivalent notation is:
c->exists(P), . _
c->exists(x: Type | P(x)) - c->reject(x | P): Collection

» Universal quantifier: c->select(x | not P).
- c>forAll(x | P): Boolean: — Equivalent is: c->reject(P)

for every element in c, Collection:
named X, predicate P is true. - coscollect(x | E) : Bag

— Equivalent notation is: The bag obtained by
c->forAll(P) applying E to each element

c->forAll(x:Type | P) of ¢, named x.
c.attribute : Collection
The collection(of type of c)
consisting of the attribute of

Sets, Bags, Sequences

Definition:

Set{1,2,5,88}

Set{ ‘apple’, ‘'orange’, 'strawberry’}
Sequence{ 1, 3,45, 2,3}
Sequence{ 'ape’, 'nut’ }

Bag{l, 3,4,3,5}

Sequence{ 1..(5+4) } =

Sequence{ 1..9} =
Sequence{1,2,3,4,5,6,7,8,9}
Set{ Set{l, 2}, Set{3, 4} }

= Set{ 1, 2, 3, 4} (flattening)

Traditional operations are defined
(union, intersection, etc.)

Conversion from
Collection:

- c->asSet: Set
A set corresponding to the
collection (duplicates are
dropped, sequencing is lost).

- c->asSequence: Sequence
A sequence corresponding to
the collection.

- c->asBag: Bag
A bag corresponding to the
collection.

Comments:

Expressing Pre- and
Postconditions of Operations

OCL Constraints of Operations

[—— Precondition: a condition

¢ ChampionshipManager that should hold before
TR executing the operation
® announceChampionship () — denoted by pre:

@ cancelChampionship ()
@ startChampionship ()

® closeChampionship () * Postcondition: a condition
@ enterChampionship () that should hold after
executing the operation

— denoted by post:

Constraints of
Enter Championship

TS| © Signature

© ChampionshipManager void enterChampionship(
® Croateparings () Championship aChamp,

@ announceChampionship () Player aPlayer)

@ cancelChampionship () . "
@ startChampionship () Precondition
® closeChampionship () - aPlayer is not yet a participant

@ enterChampionship ()

- aChamp is announced
* Postcondition
- aPlayer becomes a participant

Constraints of
Enter Championship

& ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Constraints of
nter Championship

context ChampionshipManager ::
enterChampionship(

The context is now
an operation
(and not a class)

. _ Championship aChamp,
o Champlonsm Player aPlayer)

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Constraints of

The context is now
an operation
(and not a class)

S Championsm

pre: refers to the preconditijj7
t)

(and not a class invarian

@ cancelChampionship ()
@ startChampionship ()
@ closeChampionship ()

® enterChampionship ()

nter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)
pre:
aPlayer.championships -> excludes
(aChamp) and

Constraints of

The context is now
an operation
(and not a class)

S Championsﬁip/M;agT

pre: refers to the precondition .

(and not a class invarianM

nter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)

pre.
aPlayer.championships -> excludes

not exists / excludej/
alternate solutions)

@ closeChampionship ()

@ enterChampionship ()

(aChamp) and

not aChamp.players -> exists(p |
p = aPlayer) and

aChamp.status = ChS::announced

Constraints of

The context is now
an operation
(and not a class)

S Championsﬁip/M;agT

pre: refers to the preconditijj
)

(and not a class invariant

nter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)
pre.
aPlayer.championships -> excludes

not exists / excludey//
alternate solutions)

@ closeChampionship ()

@ enterChampionship ()

(aChamp) and

not aChamp.players -> exists(p |

p = aPlayer) and

aChamp.status = ChS::announced
post:

aPlayer.championships =

aPlayer.championships@pre ->

including(aChamp) and

Constraints of
nter Championship

- context ChampionshipManager ::
an operation ! |
(and not a class) enterChampionship(

_ ﬁ// Championship aChamp,
© ChampionshipManager Player aPlayer)

The context is now

pre: refers to the preconditiont7pr.e,
(and not a class |n'var|an'u aPlayer.championships -> excludes

hot exists / excludej/ (aChamp) and
alternate solutions) hot aChamp.players -> exists(p |
@ closeChampionship () p = aPlayer) and
® enterChampionship (') aChamp.status = ChS::announced
post:

[Both roles of an bﬂPlayer‘.championships =
a

ssoc should be Seﬂ aPlayer.championships@pre ->
including(aChamp) and

If omitted, the operation ma :
change the sﬁatus - y aChamp.players -> includes(aPlayer)

Constraints of
nter Championship
The context is now

- context ChampionshipManager ::
an operation ! |
(and not a class) enterChampionship(

ﬁ// Championship aChamp,
© ChampionshipManager

- Player aPlayer)
pre: refers to the p_recopdition 7pr‘e:
(e oL &) GERE myananﬂ(j aPlayer.championships -> excludes

not exists / excludes: B// (aChamp) and

alternate solutions not aChamp.players -> exists(p |

@pre refers to the value of a p = aPlayer) and
term before the operation aChamp.status = ChS::announced

IS
executed ﬁs’r:

[Both roles of an bﬂPlayer‘.championships =
a

ssoc should be Sy aPlayer.championships@pre ->

including(aChamp) and
If omitted, the operation may

change the status of a aChamp.players -> includes(aPlayer)

Constraints of
Announce Championship

[—— Signature
«Control»

¢ ChampionshipManager Championship announceChampionship(
String aName,

Player anOrganizer,

Integer aMinParticipant,

Integer aMaxParticipant)

» createPairings ()

» announceChampionship ()
» cancelChampionship ()

» startChampionship ()

» closeChampionship () * Precondition:

» enterChampionship () — Min and max values are between
bounds

— Organizer does not have active
champs
* Postcondition:

— The collection of championship
instances includes a new one with

Constraints of
Announce Championship

¢ ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Constraints of

Announce Championship

The context is now

an operation context ChampionshipManager ::
(and not a class)

nnounceChampsionship(String
S Championsm aName.,

Player anOrganizer,
Integer aMinParticipant,

@ createPairings ()

» announceChampionship ()
» cancelChampionship ()

» startChampionship ()

» closeChampionship ()

» enterChampionship ()

Integer aMaxParticipant)

Constraints of
Announce Championship

The context is now

an operation context ChampionshipManager ::
(and not a class)

nnounceChampsionship(String
@ Championsﬁip/l\dm aName.,

Player anOrganizer,
Integer aMinParticipant,
Integer aMaxParticipant)

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()
@ startChampionship (

o () %‘e:
o cIoseChampionsth (aMinParticipant >= 0 and
)

@ enterChampionshi aMaxParticipant > 0 and

pre: refers to the precondition aMinParticipant <= aMaxParticipant)
[(and not a class invariant) and

anOrganizer.organized->forall(¢ |
c.status = ChS::cancelled or
c.status = ChS::closed)

Constraints of
Announce Championship

—e—

& ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Constraints of
Announce Championship

W post: -- Solution 1

. : Championship.allInstances ->
© ChampionshipManager exists(c | c.name = aName and

c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and
c.organizer = anOrganizer

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Constraints of
Announce Championship

post: -- Solution 1

anOrgahizer.organized Championship.allInstances ->
should be set as well exists(c | c.name = aName and

c.minParticipant = aMinParticipant and

CreateParngs i MoPart i .
announceChampionship ¢.max QFT'C'_PG"E‘ aMaxrarticipant an
cancelChampionship () . c.organizer = anOrganizer

startChampionship () and
closeChampionship () anOrganizer.organized -> includes(c))

enterChampionship ()

©
©
©
©
©
@

Constraints of
Announce Championship

post: -- Solution 1

anOrgahizer.organized Championship.allInstances ->
should be set as well exists(c | c.name = aName and

c.minParticipant = aMinParticipant and

CreateParngs i MoPart i .
announceChampionship ¢.max QFT'C'_PG"E‘ aMaxrarticipant an
cancelChampionship () . c.organizer = anOrganizer

startChampionship () and
closeChampionship () anOrganizer.organized -> includes(c))

enterChampionship ()

©
©
©
©
©
@

Constraints of
Announce Championship

, . post: -- Solution 1
anr'ganizer'.or'ganized Championship.allInstances ->

should be set as well exists(c | c.name = aName and

c.minParticipant = aMinParticipant and

CreateParngs i MoPart i .
announceChampionship ¢.max QPT'C'PGHE‘ aMaxFarticipant an
cancelChampionship () . c.organizer = anOrganizer

startChampionship () and
closeChampionship () anOrganizer.organized -> includes(c))

enterChampionship ()

©
e
©
©
©
@

post: -- Solution 2
Championship.allInstances =
Championship.allInstances@pre->
including(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and

Constraints of
Announce Championship

P post: -- Solution 1
anr'ganizer'.or'ganized Championship.allInstances ->

should be set as well exists(c | c.name = aName and

c.minParticipant = aMinParticipant and

CreateParngs Asibn sy
announceChampionship ¢.maxrar 'C'Pano‘ aMiaxFarticipant an
cancelChampionship () . c.organizer = anOrganizer

startChampionship () and
closeChampionship () anOrganizer.organized -> includes(c))

enterChampionship ()

o
©
o
©
©
o

post: -- Solution 2
Championship.

C ip.allInstances@pre->
Epre refers to the value of a term _zTiding(c | c.name = aName and
before the operation is executed] . minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and

Constraints of
Start Championship

TS| © Signature

© ChampionshipManager void startChampionship(
® CreatePaings () Championship aChamp)

@ announceChampionship () e Precondition
@ cancelChampionship ()

@ startChampionship () - aChamp is announced
® closeChampionship () — the number of participants is
@ enterChampionship () between limits

* Postcondition
- aChamp is started

Constraints of
Start Championship

& ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Constraints of
Start Championship

context ChampionshipManager ::
startChampsionship(

¢© ChampionshipManager Championship aChatnp)

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Constraints of
Start Championship

W

& ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

context ChampionshipManager ::
startChampsionship(
Championship aChamp)

pre.
aChamp.status = ChS::announced
aChamp.players -> size >=
aChamp.minParticipant and
aChamp.players -> size <=
aChamp.maxParticipant

Constraints of
Start Championship

e e context ChampionshipManager ::
ob

: : startChampsionship(
& ChampionshipManager Championship aChamp)

@ createPairings () pre:
@ announceChampionship ()
@ cancelChampionship ()

aChamp.status = ChS::announced

@ startChampionship () C‘ChC‘mP-P@YQ"'S .->‘S|ze >=
® closeChampionship () aChamp.minParticipant and

® enterChampionship () aChamp.players -> size <=
aChamp.maxParticipant

post:
aChamp.status = ChS::started

Constraints of
Cancel Championship

[————— Signature

© ChampionshipManager void cancelChampionship(
® CreatePaings () Championship aChamp)

@ announceChampionship () e Precondition

® cancelChampionship () _
@ startChampionship () - aChamp is announced

@ closeChampionship () e Postcondition
@ enterChampionship ()

- aChamp is cancelled

Constraints of
Cancel Championship

© ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

Can

Constraints of
cel Championship

[Eehtop | context ChampionshipManager ::

& ChampionshipManager cancelChampsionship(

Championship aChamp)

@ createPairings ()

@ cancelChampionship (
@ startChampionship ()

@ enterChampionship (

@ announceChampionship ()

@ closeChampionship ()

)

)

Constraints of
Cancel Championship

& ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

[Eontop | context ChampionshipManager ::

cancelChampsionship(
Championship aChamp)

pre.
aChamp.status = ChS::announced

Constraints of
Cancel Championship

& ChampionshipManager

@ createPairings ()

@ announceChampionship ()
@ cancelChampionship ()

@ startChampionship ()

@ closeChampionship ()

@ enterChampionship ()

T tontor | confext ChampionshipManager ::

cancelChampsionship(
Championship aChamp)
pre.
aChamp.status = ChS::announced
post:
aChamp.status = ChS::cancelled

What restrictions cannot be
captured in OCL?

Verbal Requirements

* Requirements:
— A player should register and log in before using the system
— Each registered player may announce a championship.

— Each player is allowed to organize a single championship
at a time.

— Players may join (enter) a championship on a web page

— When the sufficient number of participants are present, the
organizer starts the championship.

— After starting a championship, the system must
automatically create the pairings in a round-robin system.

— If the championship is not started yet (e.g. the number of
participants does not reach a minimum level), the organizer
may cancel the championship

Verbal Requirements

* Requirements:
— A player should register and log in before using the system
— Each registered player may announce a championship.

— Each player is allowed to organize a single championship
at a time.

— Players may join (enter) a championship on a web page

— When the sufficient number of participants are present, the
organizer starts the championship.

— After starting a championship, the system must
automatically create the pairings in a round-robin system.

— If the championship is not started yet (e.g. the number of
participants does not reach a minimum level), the organizer
may cancel the championship

Temporal constraints!!!

Verbal Requirements

* Requirements:
— A player should register and log in before using the system
— Each registered player may announce a championship.

— Each player is allowed to organize a single championship
at a time.

— Players may join (enter) a championship on a web page

— When the sufficient number of participants are present, the
organizer starts the championship.

— After starting a championship, the system must
automatically create the pairings in a round-robin system.

— If the championship is not started yet (e.g. the number of
participants does not reach a minimum level), the organizer
may cancel the championship

emporal constra G (not (started B cancel))

Verbal Requirements

* Requirements:
— A player should register and log in before using the system
— Each registered player may announce a championship.

— Each player is allowed to organize a single championship
at a time.

— Players may join (enter) a championship on a web page

— When the sufficient number of participants are present, the
organizer starts the championship.

— After starting a championship, the system must
automatically create the pairings in a round-robin system.

— If the championship is not started yet (e.g. the number of
participants does not reach a minimum level), the organizer
may cancel the championship

Temporal constraints!!!

Verbal Requirements

* Requirements:
— A player should register and log in before using the system
— Each registered player may announce a championship.

— Each player is allowed to organize a single championship
at a time.

— Players may join (enter) a championship on a web page

— When the sufficient number of participants are present, the
organizer starts the championship.

— After starting a championship, the system must
automatically create the pairings in a round-robin system.

mpionship is not started yet (e.g. the numbe

Temporal constraints!!!

Verbal Requirements

* Requirements:
— A player should register and log in before using the system
— Each registered player may announce a championship.

— Each player is allowed to organize a single championship
at a time.

— Players may join (enter) a championship on a web page

— When the sufficient number of participants are present, the
organizer starts the championship.

— After starting a championship, the system must
automatically create the pairings in a round-robin system.

— The organizer may cancel the championship ONLY IF
the championship is not started yet

G (started -> F (not(cancel)))

Next Lecture:
Architecture Modeling

* How to integrate existing components?

 Typical architectures of web applications

Questions

Can a single object act as a set?
— E.g. c.organizer.size

Referring to constraints
Return values?

If sg is not changed by an operation,
should we state it explicitly?

