
OCL Constraints of
Analysis Classes

Model driven software development
Dániel Varró

Goals

• How to capture restrictions (constraints) of
analysis classes?

• How to capture pre- and postconditions of
operations?

 What is OCL?
• OCL = Object Constraint Language
• OCL is not a programming language;

– not possible to write program logic or flow control
in OCL

• OCL is a typed language
– each OCL expression has a type;
– types within OCL can be any class (kind of

Classifier)
• Implementation issues are out of scope and

cannot be expressed in OCL

Where to use OCL?
• To specify invariants on classes and types in the

class model
• To specify type invariants for Stereotypes
• To describe pre- and postconditions on Operations
• To describe Guards
• As a navigation language
• To specify constraints on operations
• Modeling Language Engineering: well-formedness

rules as invariants on the meta-classes in the
abstract syntax;

Expressing Invariants on
Entity Classes

Informal Constraints on
Championship

• What are the restrictions?
– name is not empty

– minParticipants ≤ maxParticipants
– minParticipants ≥ 0
– maxParticipants > 0

First OCL constraints

First OCL constraints

• Name is not empty
context Championship inv:

self.name <> ''

First OCL constraints

• Name is not empty
context Championship inv:

self.name <> ''
• Constraints on participants

First OCL constraints

• Name is not empty
context Championship inv:

self.name <> ''
• Constraints on participants

context Championship inv:
self.minParticipants >= 0

First OCL constraints

• Name is not empty
context Championship inv:

self.name <> ''
• Constraints on participants

context Championship inv:
self.minParticipants >= 0

context Championship inv:
self.maxParticipants >= 1

First OCL constraints

• Name is not empty
context Championship inv:

self.name <> ''
• Constraints on participants

context Championship inv:
self.minParticipants >= 0

context Championship inv:
self.maxParticipants >= 1

context Championship inv:
self.maxParticipants >=
self.minParticipants

First OCL constraints

• Name is not empty
context Championship inv:

self.name <> ''
• Constraints on participants

context Championship inv:
self.minParticipants >= 0

context Championship inv:
self.maxParticipants >= 1

context Championship inv:
self.maxParticipants >=
self.minParticipants

Context Invariant

Instance of
the class Navigation

along attributes

Informal Constraints on Player

• What are the restrictions?
– userName is not empty

– userName is unique

– 1800 ≤ birth ≤ 3000
– password is not empty

– age = current_year - birth

Informal Constraints on Player

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

Logical
AND

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

Logical
AND

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

Logical
AND

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

Logical
AND

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

• Name is unique

Logical
AND

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

• Name is unique
context Player inv:

Player.allInstances->forAll(p1, p2 |
p1<>p2 implies
p1.userName <> p2.userName)

Logical
AND

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

• Name is unique
context Player inv:

Player.allInstances->forAll(p1, p2 |
p1<>p2 implies
p1.userName <> p2.userName)

Logical
AND

Get all instances
into a collection

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

• Name is unique
context Player inv:

Player.allInstances->forAll(p1, p2 |
p1<>p2 implies
p1.userName <> p2.userName)

Logical
AND

Get all instances
into a collection

Universal quantification: For
all objects in the collection

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

• Name is unique
context Player inv:

Player.allInstances->forAll(p1, p2 |
p1<>p2 implies
p1.userName <> p2.userName)

Logical
AND

Get all instances
into a collection

Universal quantification: For
all objects in the collection

If p1 ≠ p2

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

• Name is unique
context Player inv:

Player.allInstances->forAll(p1, p2 |
p1<>p2 implies
p1.userName <> p2.userName)

Logical
AND

Get all instances
into a collection

Universal quantification: For
all objects in the collection

If p1 ≠ p2

Then p1.userName ≠
p2.userName

Informal Constraints on Player

• 1800 ≤ birth ≤ 3000
context Player inv:

self.birth >= 1800 and
self.birth <= 3000

• Name is unique
context Player inv:

Player.allInstances->forAll(p1, p2 |
p1<>p2 implies
p1.userName <> p2.userName)

Logical
AND

Get all instances
into a collection

Universal quantification: For
all objects in the collection

If p1 ≠ p2

Then p1.userName ≠
p2.userName

Logical
implication

Properties Automatically Induced
by Roles and Multiplicities

organizer:
Championship -> Player

organized:
Championship -> Set(Player)

championships:
Championship -> Player

players:
Championship -> Set(Player)

You do not need to write such constraints in OCL!

Navigation along roles

Navigation along roles

• Multiplicity 0..1

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976

self.players results in a collection
self.players.birth: the coll. of birth

years

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976

self.players results in a collection
self.players.birth: the coll. of birth

years

Only attributes of
an object can be
compared with a

value

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976
• Multiplicity * (many)

self.players results in a collection
self.players.birth: the coll. of birth

years

Only attributes of
an object can be
compared with a

value

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976
• Multiplicity * (many)

context Championship inv:
self.players.birth > 1976

self.players results in a collection
self.players.birth: the coll. of birth

years

Only attributes of
an object can be
compared with a

value

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976
• Multiplicity * (many)

context Championship inv:
self.players.birth > 1976

self.players results in a collection
self.players.birth: the coll. of birth

years

Only attributes of
an object can be
compared with a

value

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976
• Multiplicity * (many)

context Championship inv:
self.players.birth > 1976

self.players results in a collection
self.players.birth: the coll. of birth

years

Only attributes of
an object can be
compared with a

value

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976
• Multiplicity * (many)

context Championship inv:
self.players.birth > 1976

self.players results in a collection
self.players.birth: the coll. of birth

years

Only attributes of
an object can be
compared with a

value

Navigation along roles

• Multiplicity 0..1
context Championship inv:

self.organizer.birth > 1976
• Multiplicity * (many)

context Championship inv:
self.players.birth > 1976

context Championship inv:
self.players-> …
(operations on collections)

self.players results in a collection
self.players.birth: the coll. of birth

years

Only attributes of
an object can be
compared with a

value

Consistency of
bidirectional associations

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions

Collection = Single object
Such an equality is invalid

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Championship inv:

self.organizer.organized=self
Collection = Single object
Such an equality is invalid

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Championship inv:

self.organizer.organized=self
Collection = Single object
Such an equality is invalid

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Championship inv:

self.organizer.organized=self
Collection = Single object
Such an equality is invalid

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Championship inv:

self.organizer.organized=self

context Championship inv:
self.organizer.organized->
includes(self)

Collection = Single object
Such an equality is invalid

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Championship inv:

self.organizer.organized=self

context Championship inv:
self.organizer.organized->
includes(self)

Coll->includes(e):
Tests collection

membership: e ∈Coll

Collection = Single object
Such an equality is invalid

Consistency of
bidirectional associations

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions

Incorrect: Constraint is
prescribed for all champs

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Player inv:

self.organized->exists(c |
c.organizer = self)

Incorrect: Constraint is
prescribed for all champs

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Player inv:

self.organized->exists(c |
c.organizer = self)

Incorrect: Constraint is
prescribed for all champs

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Player inv:

self.organized->exists(c |
c.organizer = self)

Incorrect: Constraint is
prescribed for all champs

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Player inv:

self.organized->exists(c |
c.organizer = self)

context Player inv:
self.organized->forAll(c |
c.organizer = self)

Incorrect: Constraint is
prescribed for all champs

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Player inv:

self.organized->exists(c |
c.organizer = self)

context Player inv:
self.organized->forAll(c |
c.organizer = self)

Incorrect: Constraint is
prescribed for all champs

Coll->forAll(e|cond(e))
Quantifiers can only be
applied to collections

Consistency of
bidirectional associations

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Championship inv:

self.players->forall(p |
p.championships-> includes
(self))

Consistency of
bidirectional associations

• If a bidirectional association
exists between two objects then it
is navigable from both directions
context Championship inv:

self.players->forall(p |
p.championships-> includes
(self))

context Player inv:
self.championships->forall(c
| c.players -> includes(self))

Consistency of
bidirectional associations

Consistency of
bidirectional associations

• The organizer of the
championship organizes at least
one championship

Consistency of
bidirectional associations

• The organizer of the
championship organizes at least
one championship

Context should
be Championship

No player is forced to
organize a champs

Consistency of
bidirectional associations

• The organizer of the
championship organizes at least
one championship
context Player inv:

self.organized->size > 0
Context should

be Championship
No player is forced to
organize a champs

Consistency of
bidirectional associations

• The organizer of the
championship organizes at least
one championship
context Player inv:

self.organized->size > 0
Context should

be Championship
No player is forced to
organize a champs

Consistency of
bidirectional associations

• The organizer of the
championship organizes at least
one championship
context Player inv:

self.organized->size > 0
Context should

be Championship
No player is forced to
organize a champs

Consistency of
bidirectional associations

• The organizer of the
championship organizes at least
one championship
context Player inv:

self.organized->size > 0

context Championship inv:
self.organizer.organized->
size > 0

Context should
be Championship

No player is forced to
organize a champs

Consistency of
bidirectional associations

• The organizer of the
championship organizes at least
one championship
context Player inv:

self.organized->size > 0

context Championship inv:
self.organizer.organized->
size > 0

context Championship inv:
self.organizer.organized->
notEmpty

Context should
be Championship

No player is forced to
organize a champs

Application specific constraints

Application specific constraints
• A player is allowed to organize

a single active championship at a
time

Application specific constraints
• A player is allowed to organize

a single active championship at a
time
context Player inv:

self.organized->forall(c1, c2 |
c1<>c2 implies
(c1.status = ChS::closed or
 c1.status = ChS::cancelled) or
(c2.status = ChS::closed or
 c2.status = ChS::cancelled))

Application specific constraints
• A player is allowed to organize

a single active championship at a
time
context Player inv:

self.organized->forall(c1, c2 |
c1<>c2 implies
(c1.status = ChS::closed or
 c1.status = ChS::cancelled) or
(c2.status = ChS::closed or
 c2.status = ChS::cancelled))

context Player inv:
self.organized->select(c |
c.status = ChS::announced or

Application specific constraints
• A player is allowed to organize

a single active championship at a
time
context Player inv:

self.organized->forall(c1, c2 |
c1<>c2 implies
(c1.status = ChS::closed or
 c1.status = ChS::cancelled) or
(c2.status = ChS::closed or
 c2.status = ChS::cancelled))

context Player inv:
self.organized->select(c |
c.status = ChS::announced or Values of an

enumeration

Application specific constraints

Application specific constraints
• A championship can only be

started when the sufficient
number of participants are
present.

Application specific constraints
• A championship can only be

started when the sufficient
number of participants are
present.
context Championship inv:

self.status =
ChampStatus::started or
self.status =
ChampStatus::finished
implies
(self.players->size >=
 self.minParticipants and

Application specific constraints

Application specific constraints
• Youth championship: the average

age of participants is below 21.

Application specific constraints
• Youth championship: the average

age of participants is below 21.

Application specific constraints
• Youth championship: the average

age of participants is below 21.

Application specific constraints
• Youth championship: the average

age of participants is below 21.

Application specific constraints
• Youth championship: the average

age of participants is below 21.

context Championship inv:
(self.players.age->sum) /
(self.players->size) < 21

Application specific constraints
• Youth championship: the average

age of participants is below 21.

context Championship inv:
(self.players.age->sum) /
(self.players->size) < 21

players.age is the collection of
the age attributes of players

players.age->sum can only be
applied to a collection that

contains numbers

An Overview of OCL Constructs

Types and Boole algebra in OCL

• All OCL expressions are
typed
– OclAny:

The type that includes all
others. E.g. x, y : OclAny

– x = y
x and y are the same object.

– x <> y
not (x = y).

– x.oclType
The type of x.

– x.isKindOf (T)
True if T is a supertype
(transitive) of the type of x.

– T.allInstances : Collection
All the instances of type T.

• Boolean operators:
– b and b2, b or b2,

b xor b2, not b
If any part of a Boolean
expression fully determines the
result, then it does not matter
if some other parts of that
expression have unknown or
undefined results.

– b implies b2
True if b is false or if b is true
and b2 is true.

– if b then e1 else e2 endif
If b is true the result is the
value of e1; otherwise, the
result is the value of e2.

Overview of
Collection Valued Terms

• Size:
– c->size: Integer

Number of elements in the
collection; for a bag or
sequence, duplicates are
counted as separate items.

– c->sum: Integer
Sum of elements in the
collection. Elements must be
numbers

– c->count(e): Integer
The number of times that e is
in c.

– c->isEmpty: Boolean
Same as (c->size = 0).

– c->notEmpty: Boolean
Same as (not c->isEmpty).

• Equality
– c = c2 : Boolean

• Collection membership
– c->includes(e): Boolean;

c->exists (x | x = e).
– c->excludes(e): Boolean;

not c->includes(e).
– c->includesAll(c2): Boolean;

c includes all the elements in
c2.

– c->including(e): Collection
The collection that includes
all of c as well as e.

– c->excluding(e): Collection
The collection that includes
all of c except e.

Overview of
Collection Valued Terms

• Existential quantifier:
– c->exists(x | P): Boolean;

there is at least one element
in c, named x, for which
predicate P is true.

– Equivalent notation is:
c->exists(P),
c->exists(x:Type | P(x))

• Universal quantifier:
– c->forAll(x | P): Boolean;

for every element in c,
named x, predicate P is true.

– Equivalent notation is:
c->forAll(P)
c->forAll(x:Type | P)

• Selection:
– c->select(x | P): Collection

The collection of elements in
c for which P is true.

– Equivalent is: c->select(P)
• Filtering:

– c->reject(x | P): Collection
c->select(x | not P).

– Equivalent is: c->reject(P)
• Collection:

– c->collect(x | E) : Bag
The bag obtained by
applying E to each element
of c, named x.

– c.attribute : Collection
The collection(of type of c)
consisting of the attribute of
each element of c.

Sets, Bags, Sequences
Definition:
Set{ 1, 2, 5, 88 }
Set{ ’apple’, ’orange’, ’strawberry’}
Sequence{ 1, 3, 45, 2, 3 }
Sequence{ ’ape’, ’nut’ }
Bag{1, 3, 4, 3, 5 }
Sequence{ 1..(5+4) } =
Sequence{ 1.. 9 } =
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }
Set{ Set{1, 2}, Set{3, 4} }
= Set{ 1, 2, 3, 4} (flattening)
Traditional operations are defined

(union, intersection, etc.)

• Conversion from
Collection:
– c->asSet: Set

A set corresponding to the
collection (duplicates are
dropped, sequencing is lost).

– c->asSequence: Sequence
A sequence corresponding to
the collection.

– c->asBag: Bag
A bag corresponding to the
collection.

• Comments:
– --

Expressing Pre- and
Postconditions of Operations

OCL Constraints of Operations
• Precondition: a condition

that should hold before
executing the operation
– denoted by pre:

• Postcondition: a condition
that should hold after
executing the operation
– denoted by post:

Constraints of
Enter Championship

• Signature
void enterChampionship(

Championship aChamp,
Player aPlayer)

• Precondition
– aPlayer is not yet a participant

– aChamp is announced

• Postcondition
– aPlayer becomes a participant

Constraints of
Enter Championship

Constraints of
Enter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)

The context is now
an operation

(and not a class)

Constraints of
Enter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)

pre:
aPlayer.championships -> excludes
(aChamp) and

The context is now
an operation

(and not a class)

pre: refers to the precondition
(and not a class invariant)

Constraints of
Enter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)

pre:
aPlayer.championships -> excludes
(aChamp) and

	 not aChamp.players -> exists(p |
p = aPlayer) and
aChamp.status = ChS::announced

The context is now
an operation

(and not a class)

pre: refers to the precondition
(and not a class invariant)

not exists / excludes:
alternate solutions

Constraints of
Enter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)

pre:
aPlayer.championships -> excludes
(aChamp) and

	 not aChamp.players -> exists(p |
p = aPlayer) and
aChamp.status = ChS::announced

post:
aPlayer.championships =
aPlayer.championships@pre ->
including(aChamp) and

The context is now
an operation

(and not a class)

pre: refers to the precondition
(and not a class invariant)

not exists / excludes:
alternate solutions

Constraints of
Enter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)

pre:
aPlayer.championships -> excludes
(aChamp) and

	 not aChamp.players -> exists(p |
p = aPlayer) and
aChamp.status = ChS::announced

post:
aPlayer.championships =
aPlayer.championships@pre ->
including(aChamp) and

	 aChamp.players -> includes(aPlayer)

The context is now
an operation

(and not a class)

pre: refers to the precondition
(and not a class invariant)

not exists / excludes:
alternate solutions

If omitted, the operation may
change the status of a

champ

Both roles of an
assoc should be set

Constraints of
Enter Championship

context ChampionshipManager ::
enterChampionship(
Championship aChamp,
Player aPlayer)

pre:
aPlayer.championships -> excludes
(aChamp) and

	 not aChamp.players -> exists(p |
p = aPlayer) and
aChamp.status = ChS::announced

post:
aPlayer.championships =
aPlayer.championships@pre ->
including(aChamp) and

	 aChamp.players -> includes(aPlayer)

The context is now
an operation

(and not a class)

pre: refers to the precondition
(and not a class invariant)

not exists / excludes:
alternate solutions

If omitted, the operation may
change the status of a

champ

Both roles of an
assoc should be set

@pre refers to the value of a
term before the operation is

executed

Constraints of
Announce Championship

• Signature
Championship announceChampionship(

String aName,
Player anOrganizer,
Integer aMinParticipant,
Integer aMaxParticipant)

• Precondition:
– Min and max values are between

bounds
– Organizer does not have active

champs

• Postcondition:
– The collection of championship

instances includes a new one with

Constraints of
Announce Championship

Constraints of
Announce Championship

context ChampionshipManager ::
announceChampsionship(String
aName,
Player anOrganizer,
Integer aMinParticipant,
Integer aMaxParticipant)

The context is now
an operation

(and not a class)

Constraints of
Announce Championship

context ChampionshipManager ::
announceChampsionship(String
aName,
Player anOrganizer,
Integer aMinParticipant,
Integer aMaxParticipant)

pre:
(aMinParticipant >= 0 and
 aMaxParticipant > 0 and
 aMinParticipant <= aMaxParticipant)
and
anOrganizer.organized->forall(c |
c.status = ChS::cancelled or
c.status = ChS::closed)

The context is now
an operation

(and not a class)

pre: refers to the precondition
(and not a class invariant)

Constraints of
Announce Championship

Constraints of
Announce Championship

post: -- Solution 1
Championship.allInstances ->
exists(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and
c.organizer = anOrganizer

Constraints of
Announce Championship

post: -- Solution 1
Championship.allInstances ->
exists(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and
c.organizer = anOrganizer

 and
anOrganizer.organized -> includes(c))

anOrganizer.organized
should be set as well

Constraints of
Announce Championship

post: -- Solution 1
Championship.allInstances ->
exists(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and
c.organizer = anOrganizer

 and
anOrganizer.organized -> includes(c))

anOrganizer.organized
should be set as well

Constraints of
Announce Championship

post: -- Solution 1
Championship.allInstances ->
exists(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and
c.organizer = anOrganizer

 and
anOrganizer.organized -> includes(c))

post: -- Solution 2
Championship.allInstances =
Championship.allInstances@pre->
including(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and

anOrganizer.organized
should be set as well

Constraints of
Announce Championship

post: -- Solution 1
Championship.allInstances ->
exists(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and
c.organizer = anOrganizer

 and
anOrganizer.organized -> includes(c))

post: -- Solution 2
Championship.allInstances =
Championship.allInstances@pre->
including(c | c.name = aName and
c.minParticipant = aMinParticipant and
c.maxParticipant = aMaxParticipant and

anOrganizer.organized
should be set as well

@pre refers to the value of a term
before the operation is executed

Constraints of
Start Championship

• Signature
void startChampionship(

Championship aChamp)
• Precondition

– aChamp is announced
– the number of participants is

between limits
• Postcondition

– aChamp is started

Constraints of
Start Championship

Constraints of
Start Championship

context ChampionshipManager ::
startChampsionship(
Championship aChamp)

Constraints of
Start Championship

context ChampionshipManager ::
startChampsionship(
Championship aChamp)

pre:
aChamp.status = ChS::announced
aChamp.players -> size >=
aChamp.minParticipant and
aChamp.players -> size <=
aChamp.maxParticipant

Constraints of
Start Championship

context ChampionshipManager ::
startChampsionship(
Championship aChamp)

pre:
aChamp.status = ChS::announced
aChamp.players -> size >=
aChamp.minParticipant and
aChamp.players -> size <=
aChamp.maxParticipant

post:
aChamp.status = ChS::started

Constraints of
Cancel Championship

• Signature
void cancelChampionship(

Championship aChamp)
• Precondition

– aChamp is announced

• Postcondition
– aChamp is cancelled

Constraints of
Cancel Championship

Constraints of
Cancel Championship

context ChampionshipManager ::
cancelChampsionship(
Championship aChamp)

Constraints of
Cancel Championship

context ChampionshipManager ::
cancelChampsionship(
Championship aChamp)

pre:
aChamp.status = ChS::announced

Constraints of
Cancel Championship

context ChampionshipManager ::
cancelChampsionship(
Championship aChamp)

pre:
aChamp.status = ChS::announced

post:
aChamp.status = ChS::cancelled

What restrictions cannot be
captured in OCL?

Verbal Requirements
• Requirements:

– A player should register and log in before using the system
– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, the

organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
– If the championship is not started yet (e.g. the number of

participants does not reach a minimum level), the organizer
may cancel the championship

Verbal Requirements
• Requirements:

– A player should register and log in before using the system
– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, the

organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
– If the championship is not started yet (e.g. the number of

participants does not reach a minimum level), the organizer
may cancel the championship

Temporal constraints!!!

Verbal Requirements
• Requirements:

– A player should register and log in before using the system
– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, the

organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
– If the championship is not started yet (e.g. the number of

participants does not reach a minimum level), the organizer
may cancel the championship

G (not (started B cancel))Temporal constraints!!!

Verbal Requirements
• Requirements:

– A player should register and log in before using the system
– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, the

organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
– If the championship is not started yet (e.g. the number of

participants does not reach a minimum level), the organizer
may cancel the championship

G (not (started B cancel))Temporal constraints!!!

Verbal Requirements
• Requirements:

– A player should register and log in before using the system
– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, the

organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
– If the championship is not started yet (e.g. the number of

participants does not reach a minimum level), the organizer
may cancel the championship

G (not (started B cancel))Temporal constraints!!!

Verbal Requirements
• Requirements:

– A player should register and log in before using the system
– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, the

organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
– The organizer may cancel the championship ONLY IF

the championship is not started yet

G (started -> F (not(cancel)))

Next Lecture:
Architecture Modeling

• How to integrate existing components?

• Typical architectures of web applications

Questions

• Can a single object act as a set?
– E.g. c.organizer.size

• Referring to constraints
• Return values?
• If sg is not changed by an operation,

should we state it explicitly?

