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Requirements analysis
• Requirements engineering (RE) is the process 

of identifying, organizing, and documenting the 
continuously changing requirements of a project

• Requirement: a condition or capability to which 
the system must conform

• An early identification of requirements is critical
for the quality of the system under design
– consistent?, complete? unambiguous?

• Gathering of requirements is a very complex
engineering task
– „Requirements do not come from the air”
– an iterative refinement process with regular control

Problems of Requirements Analysis
(Surveys)

• Failure of SW projects: 
– 1/3 never completed
– an additional 1/2 completed with

only partial success
• Causes of failure:

– Problems with requirements specification >50%
• 13%: lack of interaction with users
• 12%: incomplete requirements
• 11%: changing requirements
• 11%: irreal or unclear requirements
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Definition of requirements analysis
Identification of
• Goals: the objectives of the system

– Why do we need the SW?
• Services („operationalization”)

– What functionality do we need to design?
• Constraints

– Restrictions of the design process
(e.g. cost, deadlines)

• Responsibilities to each requirement
(SW vs. human)

Categorization of RE

• High-level (System-level) requirements
– Feature (FEAT): high-level product requirement from 

the customer’s point of view
– Stakeholder needs (NEED): 
– The agreement between the customer and the

system analyst documented in the vision document
• Low-level (Software-level) requirements

– Software requirements
– Actor: someone or something outside the system that 

interacts with the system
– Use case (UC): a functional requirement
– Supplementary requirement (SUPL):

a non-functional requirement
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Main documents of RE

• Use Case model
– Actors, Use Cases, Subsystems
– Scenarios as workflow

• Architectural description: 
Detailed textual description of
– Use cases
– Scenarios

• Glossary (Szójegyzék)
– Precise definition of common terms

• GUI prototype
– Communication with end users

Requirements of a Table Game
Championship Manager System
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Verbal Requirements
• Design a system for organizing championships of 

table games (chess, go, backgammon, etc.)
• Requirements:

– A player should register and log in to the system before
using it.

– Each registered player may announce a championship.
– Each player is allowed to organize a single championship 

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, 

the championship can be started by the organizer.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
Passive sentences should be avoided!

Verbal Requirements
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– Each player is allowed to organize a single championship 

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, 

the organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
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Verbal Requirements (cont.)
• Requirements (cont.):

– If the championship is not started yet (e.g. the number 
of participants does not reach a minimum level), the 
organizer may cancel the championship

– The actual game is played between existing clients, 
which is outside the scope of the modelled system.

– Both players should report the result and the moves  
after each game using a web form. A win scores 1 
point, a draw ½, and a loss 0.

– If players report contradicting results, the organizer 
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty. 

– When all games are finished, the organizer should
close the championship by announcing the winner. 
Then he or she may start organizing a new 
championship.

Missing Requirements

• A game should be finished within a given
deadline (time limit). 

• If none of the two players have reported the
result within this deadline, then both players are
considered to be losers. 

• If only one player has reported the result, then
his (or her) version is considered to be the
official result. 

• NOTE: New requirements will emerge during
UC analysis (especially when detailing UCs).  
An iterative requirements engineering process is 
highly recommended.
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Best Practice: Requirements

• A requirement should contain
– a short description
– a stand-alone sentence / paragraph

• English:
– Avoid passive sentences
– Use the following auxiliaries: 

• Positive: shall/must, should, may, 
• Negative: must not, may not

• Detail them with parameters:
– Priority, Status, Difficulty, Responsibility, Risk

Elements of Use Case Diagrams
by Example
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Definition of Use Cases

• Use cases (használati eset) capture the
functional requirements of a system

• UCs describe
– the typical interactions
– between the users of a system and
– the system itself, 
– by providing a narrative of how a system is used

• A set of scenarios tied together by a common
user goal

• Verb + Noun (Unique)!

M. Fowler: UML Distilled. 
3rd Edition. Addison-Wesley

From Verbal Requirements
to Use Cases

• Requirements:
– Each registered player may announce a championship.
– A player should register and log in to the system before

using it.
– Each player is allowed to organize a single championship 

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, 

the organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
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Verbal Requirements (cont.)
• Requirements (cont.):

– If the championship is not started yet (e.g. the number 
of participants does not reach a minimum level), the 
organizer may cancel the championship

– The actual game is played between existing clients, 
which is outside the scope of the system system.

– Both players should report the result and the moves  
after each game using a web form. A win scores 1 
point, a draw ½, and a loss 0.

– If players report contradicting results, the organizer 
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty. 

– When all games are finished, the organizer should
close the championship by announcing the winner. 
Then he or she may start organizing a new 
championship.

(Initial) Collection of Use Cases
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Definition of Actors

• Actor (aktor) is a role that a user plays with
respect to the system. 
– Primary actor: calls the system to deliver a service
– Secondary actor: the system communicates with them

while carrying out the service
• Relationship of UCs and Actors

– A single actor may perform many use cases; 
– A use case may have several actors performing it. 

• One person may act as more than one actor, 
– Example: A person may organize a championship

and may participate in another
• An actor is outside the boundary of the system

From Verbal Requirements
to Use Cases

• Requirements:
– Each registered player may announce a championship.
– A player should register and log in to the system before

using it.
– Each player is allowed to organize a single championship 

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present, 

the organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
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Verbal Requirements (cont.)
• Requirements (cont.):

– If the championship is not started yet (e.g. the number 
of participants does not reach a minimum level), the 
organizer may cancel the championship

– The actual game is played between existing clients, 
which is outside the scope of the system system.

– Both players should report the result and the moves  
after each game using a web form. A win scores 1 
point, a draw ½, and a loss 0.

– If players report contradicting results, the organizer 
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty. 

– When all games are finished, the organizer should
close the championship by announcing the winner. 
Then he or she may start organizing a new 
championship.

(Initial) Collection of Actors
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Relations between UCs and Actors

System-level overview

System
boundary

Association: 
actor initiates
or participates
in interaction

Contextual
Use Case

(outside the
system)

Actor
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Anti-pattern: UC diagrams

A generalization
of actors is 

missing

Overview of Actors

Actor
Generalization
(Inheritance)
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User Management

What happens if
• the user’s password is incorrect?
• a user is not registered, but attempts to login?

Extend relationship

The extension UC extends
core functionality by
handling unusual
(exceptional) situation

Base UC

Extension
UC

Too General
Description
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Refinement of Use Cases

Use Case
Generalization
(Inheritance)

How to handle
complex functionality?

Judge result = 
• Check if the organizer is 

the judge
• Analyze the game
• Decide on result
• Report the result
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Include relationship

The included UC 
breaks down the complex
core functionality into
more elementary steps

Base UC

Included
UC

Summary: UC Relations
• Association (Asszociáció)

– actor – use case
– the actor initiates (or participates) the use of

the system

• Extend (BĘvítés)
– use case – use case
– a UC may be extended by another UC 

(typically solutions for exceptional situations)
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Summary: UC Relations

• Generalization (Általánosítás)
– actor - actor
– use case – use case
– a UC or actor is more general / specific than

another UC or actor
• Include (Beszúrás)

– use case – use case
– a complex step is divided into elementary steps
– a functionality is used in multiple UCs

Best practices of UC analysis
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Best practices: Grouping
• Grouping UCs

– Identify functional building blocks
– Group them into packages
– NOTE: related by functionality, 

NOT by role
• Grouping actors:

– Keep actors in a package within 
the subsystem they exclusively belong to

– Global actors: in top-most package

Best practices: 
Naming and arrangement

• Actors
– Name actors according to their roles and 

avoid using job titles
– Divide complex roles into multiple actors
– Start the diagram by placing the most important actor 

in the top left corner 
• Use Cases

– Use domain specific verbs for UCs
– Avoid technical descriptions –

UCs are frequently for non-technical reader
• Relationships

– Avoid crossing or curved lines when drawing relations
– Use <<extend>> and <<include>> relations „lightly”
– Place them into the appropriate functional block

Main guideline: 
UC diagrams

should be SIMPLE
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What UC diagrams to create?
• Actors’ inheritance tree: usually once
• System-level overview: once in a system
• List of UCs: once in a functional block 

(subsystem) with many UCs
• „Regular” UC diagrams: as many as 

necessary to have simple UC diagrams

Detailing Use Cases
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Parameters of Use Case

• Responsibility: 
(Contact name)

• Priority:
– Must, Should, Could

• Status:
– Proposed, Approved, 

Incorporated, Validated
• (Technical) Difficulty:

– Low, Medium, High

• Risk:
– Schedule: Low, 

Medium, High
– Technology: Low, 

Medium, High
• Iterations:

– Planned
– Actual

• Stability
– Low, Medium, High

Detailing UCs in your homework

• Attach a note to each UC 
containing at least
– Contact name
– Priority

• Scenarios (Next lecture)
– Workflow model
– Textual description
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Organization of Requirements
in Rational RequisitePro

RequisitePro

• An integrated tool of IBM Rational
for managing
– High-level requirements
– Use cases

• Goals:
– Facilitates communication and team work
– Decreases project risks

• Tools:
– Word documents
– Requirements Database
– Integrated into IDEs
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Next Lecture: Detailing Use Cases

• How to textually capture scenarios?

• How to capture scenarios using
UML Activity diagrams?
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Milestone: UC Diagrams

Actors’ Inheritance Tree
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System-level overview

Collection of Use Cases (Incomplete!)
Game ManChamps Man

User Man
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Championship Management

Game Management
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User Management

Championship Management


