
1

Requirements Engineering by
Use Case Analysis

UML based modeling and analysis
Dániel Varró

Requirements Analysis

2

Requirements analysis
• Requirements engineering (RE) is the process

of identifying, organizing, and documenting the
continuously changing requirements of a project

• Requirement: a condition or capability to which
the system must conform

• An early identification of requirements is critical
for the quality of the system under design
– consistent?, complete? unambiguous?

• Gathering of requirements is a very complex
engineering task
– „Requirements do not come from the air”
– an iterative refinement process with regular control

Problems of Requirements Analysis
(Surveys)

• Failure of SW projects:
– 1/3 never completed
– an additional 1/2 completed with

only partial success
• Causes of failure:

– Problems with requirements specification >50%
• 13%: lack of interaction with users
• 12%: incomplete requirements
• 11%: changing requirements
• 11%: irreal or unclear requirements

3

Definition of requirements analysis
Identification of
• Goals: the objectives of the system

– Why do we need the SW?
• Services („operationalization”)

– What functionality do we need to design?
• Constraints

– Restrictions of the design process
(e.g. cost, deadlines)

• Responsibilities to each requirement
(SW vs. human)

Categorization of RE

• High-level (System-level) requirements
– Feature (FEAT): high-level product requirement from

the customer’s point of view
– Stakeholder needs (NEED):
– The agreement between the customer and the

system analyst documented in the vision document
• Low-level (Software-level) requirements

– Software requirements
– Actor: someone or something outside the system that

interacts with the system
– Use case (UC): a functional requirement
– Supplementary requirement (SUPL):

a non-functional requirement

4

Main documents of RE

• Use Case model
– Actors, Use Cases, Subsystems
– Scenarios as workflow

• Architectural description:
Detailed textual description of
– Use cases
– Scenarios

• Glossary (Szójegyzék)
– Precise definition of common terms

• GUI prototype
– Communication with end users

Requirements of a Table Game
Championship Manager System

5

Verbal Requirements
• Design a system for organizing championships of

table games (chess, go, backgammon, etc.)
• Requirements:

– A player should register and log in to the system before
using it.

– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present,

the championship can be started by the organizer.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.
Passive sentences should be avoided!

Verbal Requirements
• Design a system for organizing championships of

table games (chess, go, backgammon, etc.)
• Requirements:

– A player should register and log in to the system before
using it.

– Each registered player may announce a championship.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present,

the organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.

6

Verbal Requirements (cont.)
• Requirements (cont.):

– If the championship is not started yet (e.g. the number
of participants does not reach a minimum level), the
organizer may cancel the championship

– The actual game is played between existing clients,
which is outside the scope of the modelled system.

– Both players should report the result and the moves
after each game using a web form. A win scores 1
point, a draw ½, and a loss 0.

– If players report contradicting results, the organizer
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty.

– When all games are finished, the organizer should
close the championship by announcing the winner.
Then he or she may start organizing a new
championship.

Missing Requirements

• A game should be finished within a given
deadline (time limit).

• If none of the two players have reported the
result within this deadline, then both players are
considered to be losers.

• If only one player has reported the result, then
his (or her) version is considered to be the
official result.

• NOTE: New requirements will emerge during
UC analysis (especially when detailing UCs).
An iterative requirements engineering process is
highly recommended.

7

Best Practice: Requirements

• A requirement should contain
– a short description
– a stand-alone sentence / paragraph

• English:
– Avoid passive sentences
– Use the following auxiliaries:

• Positive: shall/must, should, may,
• Negative: must not, may not

• Detail them with parameters:
– Priority, Status, Difficulty, Responsibility, Risk

Elements of Use Case Diagrams
by Example

8

Definition of Use Cases

• Use cases (használati eset) capture the
functional requirements of a system

• UCs describe
– the typical interactions
– between the users of a system and
– the system itself,
– by providing a narrative of how a system is used

• A set of scenarios tied together by a common
user goal

• Verb + Noun (Unique)!

M. Fowler: UML Distilled.
3rd Edition. Addison-Wesley

From Verbal Requirements
to Use Cases

• Requirements:
– Each registered player may announce a championship.
– A player should register and log in to the system before

using it.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present,

the organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.

9

Verbal Requirements (cont.)
• Requirements (cont.):

– If the championship is not started yet (e.g. the number
of participants does not reach a minimum level), the
organizer may cancel the championship

– The actual game is played between existing clients,
which is outside the scope of the system system.

– Both players should report the result and the moves
after each game using a web form. A win scores 1
point, a draw ½, and a loss 0.

– If players report contradicting results, the organizer
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty.

– When all games are finished, the organizer should
close the championship by announcing the winner.
Then he or she may start organizing a new
championship.

(Initial) Collection of Use Cases

10

Definition of Actors

• Actor (aktor) is a role that a user plays with
respect to the system.
– Primary actor: calls the system to deliver a service
– Secondary actor: the system communicates with them

while carrying out the service
• Relationship of UCs and Actors

– A single actor may perform many use cases;
– A use case may have several actors performing it.

• One person may act as more than one actor,
– Example: A person may organize a championship

and may participate in another
• An actor is outside the boundary of the system

From Verbal Requirements
to Use Cases

• Requirements:
– Each registered player may announce a championship.
– A player should register and log in to the system before

using it.
– Each player is allowed to organize a single championship

at a time.
– Players may join (enter) a championship on a web page
– When the sufficient number of participants are present,

the organizer starts the championship.
– After starting a championship, the system must

automatically create the pairings in a round-robin system.

11

Verbal Requirements (cont.)
• Requirements (cont.):

– If the championship is not started yet (e.g. the number
of participants does not reach a minimum level), the
organizer may cancel the championship

– The actual game is played between existing clients,
which is outside the scope of the system system.

– Both players should report the result and the moves
after each game using a web form. A win scores 1
point, a draw ½, and a loss 0.

– If players report contradicting results, the organizer
should judge who is the winner. The organizers
penalizes the cheating player by a 1 point penalty.

– When all games are finished, the organizer should
close the championship by announcing the winner.
Then he or she may start organizing a new
championship.

(Initial) Collection of Actors

12

Relations between UCs and Actors

System-level overview

System
boundary

Association:
actor initiates
or participates
in interaction

Contextual
Use Case

(outside the
system)

Actor

13

Anti-pattern: UC diagrams

A generalization
of actors is

missing

Overview of Actors

Actor
Generalization
(Inheritance)

14

User Management

What happens if
• the user’s password is incorrect?
• a user is not registered, but attempts to login?

Extend relationship

The extension UC extends
core functionality by
handling unusual
(exceptional) situation

Base UC

Extension
UC

Too General
Description

15

Refinement of Use Cases

Use Case
Generalization
(Inheritance)

How to handle
complex functionality?

Judge result =
• Check if the organizer is

the judge
• Analyze the game
• Decide on result
• Report the result

16

Include relationship

The included UC
breaks down the complex
core functionality into
more elementary steps

Base UC

Included
UC

Summary: UC Relations
• Association (Asszociáció)

– actor – use case
– the actor initiates (or participates) the use of

the system

• Extend (BĘvítés)
– use case – use case
– a UC may be extended by another UC

(typically solutions for exceptional situations)

17

Summary: UC Relations

• Generalization (Általánosítás)
– actor - actor
– use case – use case
– a UC or actor is more general / specific than

another UC or actor
• Include (Beszúrás)

– use case – use case
– a complex step is divided into elementary steps
– a functionality is used in multiple UCs

Best practices of UC analysis

18

Best practices: Grouping
• Grouping UCs

– Identify functional building blocks
– Group them into packages
– NOTE: related by functionality,

NOT by role
• Grouping actors:

– Keep actors in a package within
the subsystem they exclusively belong to

– Global actors: in top-most package

Best practices:
Naming and arrangement

• Actors
– Name actors according to their roles and

avoid using job titles
– Divide complex roles into multiple actors
– Start the diagram by placing the most important actor

in the top left corner
• Use Cases

– Use domain specific verbs for UCs
– Avoid technical descriptions –

UCs are frequently for non-technical reader
• Relationships

– Avoid crossing or curved lines when drawing relations
– Use <<extend>> and <<include>> relations „lightly”
– Place them into the appropriate functional block

Main guideline:
UC diagrams

should be SIMPLE

19

What UC diagrams to create?
• Actors’ inheritance tree: usually once
• System-level overview: once in a system
• List of UCs: once in a functional block

(subsystem) with many UCs
• „Regular” UC diagrams: as many as

necessary to have simple UC diagrams

Detailing Use Cases

20

Parameters of Use Case

• Responsibility:
(Contact name)

• Priority:
– Must, Should, Could

• Status:
– Proposed, Approved,

Incorporated, Validated
• (Technical) Difficulty:

– Low, Medium, High

• Risk:
– Schedule: Low,

Medium, High
– Technology: Low,

Medium, High
• Iterations:

– Planned
– Actual

• Stability
– Low, Medium, High

Detailing UCs in your homework

• Attach a note to each UC
containing at least
– Contact name
– Priority

• Scenarios (Next lecture)
– Workflow model
– Textual description

21

Organization of Requirements
in Rational RequisitePro

RequisitePro

• An integrated tool of IBM Rational
for managing
– High-level requirements
– Use cases

• Goals:
– Facilitates communication and team work
– Decreases project risks

• Tools:
– Word documents
– Requirements Database
– Integrated into IDEs

22

23

Next Lecture: Detailing Use Cases

• How to textually capture scenarios?

• How to capture scenarios using
UML Activity diagrams?

24

Milestone: UC Diagrams

Actors’ Inheritance Tree

25

System-level overview

Collection of Use Cases (Incomplete!)
Game ManChamps Man

User Man

26

Championship Management

Game Management

27

User Management

Championship Management

