
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Statecharts and OCL

Ákos Horváth and Dániel Varró
With Contributions from

István Majzik and Gergely Pintér
Model Driven Software Development

Lecture 4

Dynamic Modeling
Statecharts

Statecharts
 Describes the states and state transitions of the system, of a

subsystem, or of one specific object.
o hierarchical and concurrent systems

 States
o Concrete state:

• Combination of possible values of attributes
• Can be infinite

o Abstract states: (like in Statecharts)
• Predicates over concrete states
• One abstract state  many concrete states
• Hierarchical states:

– Frequent in embedded apps (e.g. control of car brake)

 Transitions
o Triggering Event
o Guard
o Action

Statechart - introduction

 For defining reactive behavior of objects

o Responds to events:
state transitions and actions

o Traditional approach: state machine

 Statechart: extension to state machine

o State hierarchy: refinement of states

o Concurent behavior: parallel threads

o Memory: last active state configuration

States I.

 Attributes:

o entry action

o exit action

o static reaction

 State refinement

o Simple state

o OR refinement: auxillary state machine,
only one active state

o AND refinement: concurrent regions (state machines),
all regions are active in parallel

print_job

entry/init()
job/print()
exit/reset()

Example for state refinement: TV

On Off

Standby

Disconnected

Sound Image

Show

Videotext

SoundOn

SoundOff

txt txt snd mute out in

off

out

on

State II.

 History state

o Stores the last active state configuration

o Input transition: it sets the object to the saved state
configuration objektum

o Output transition: defines the default state, if there
were no active state since

 Inital state: becomes active when entered to the
region

• One in each OR refinement

• One in each AND region

 Végállapot jelzés: állapotgép terminálás

Statechart elements

 State

 (Transition)

 History state

 Initial State

 Final State

State name

H H*

s1 s2

Transition I.

 Defining state changes

 Syntax:

 trigger [guard] / action

o trigger: event, triggered operation or time-out

o guard: transition condition

• Logic formula over the attributes of the objects and events

• referring to a state: IS_IN(state) macro

• Without trigger: if becomes true the transition is active

o action: operations  action semantics

Transition II.

 Time-out trigger:
o becomes active if the object stayes in he source state

for the predefined interval

 e.g., tm(50), based on system time

 Complex transitions
o Fork

o Join

o Condition

 Transitions between different hierarchy levels

Transition example

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
tm(50)

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

State name

Failure

Complex Example

 Traffic light for an intersection with a prioritized
road

o Off: (blinking yellow)

o On: green for the priority road

o Green, yellow, red etc. Different timerange (timer)

o 3 waiting vehicle on priority road: green light despite
the timer’s ticks

o Automatically take photos of vehicles crossing the
piority road on red light. Manual on/off for this
feature.

1. Basic state machines

Off

do/blink

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

reset

reset

reset

reset

tm(T4)

2. Hierarchy

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

3. Concurrent states

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

Camera Count

4. History States

Off

On

do/blink

!reset

Red

Yellow

Green

Red
Yellow

On

Off

Shoot

CarGo

M
an

u
alO

ff

M
an

u
alO

n

T1

T4

T2

T3

Camera Count
reset

H

Complete System

Off

On

do/blink

reset

!reset

Red

Count0

Count1

Count2

car

car

car

Yellow

Green

Red
Yellow

On

Off

Shoot

CarGo

M
an

u
alO

ff

M
an

u
alO

n

T1

T4

T2

T3

Camera Count
H

Semantics: How does it work?

 Basics:

o Hierarchical state machine (state chart)

o Event queue + scheduler

 Semantics defines:
Behavior in case an event occurs
 one step of the state chart

o (concurrent) transitions fire

o State configuration changes
in all region in the active state and also one substate in
the OR refinement (recursively)

Semantics of State Transitions

 Separately processed events:

o Scheduler only triggers the next event if the previous
one is completely processed
stable configuration: there is no state change without an event

 Complete processing of events:

o The largest set of possible fireable transitions
(all enabled transition fires, if they are not in conflict)

 How does it work?: Steps of the event processing

Steps of event processing I.

 Scheduler triggers an event for the statechart in a
stable state configuration

 Enabled transitions:
o Source state is active

o The event is their trigger

o Guards are evaluated to true

 Based on the number of fireable transitions
o Only one: fire!

o None: do nothing

o More than one: select transitions to fire?

Steps of event processing II.

 Selection of fireable transitions:

o Fireable = Enabled + Max, priority

o Conflict: Has the same source state

• Formally: the intersection of their left (exit) states is not
empty

Conflict resolution  priority:

• Defined between two transitions (t1 and t2)

• t1 > t2, if and only if the source state of t1 is a substate within
the state hierarchy of t2 („lower level”)

Steps of event processing III.

 Selection of transitions to fire:

o Set of transitions to fire: parallel execution of
concurrent transitions:

• Maximum number of fireable transitions
(= cannot be extended any further)

• There is no conflict between any two transitions

o Selection of this set:

• Random!

Steps of event processing IV.

 Selected transitions fire:
 in random order

 Firing one transition:

o Leaving the source states from the bottom to top and
execute all their exit operations

o Execute the action of the transition

o Entering the target states from top to bottom and
execute the entry actions  new state configuration

Steps of event processing V.

 Entering a new state configuration:

o Simple target state: part of the state configuration

o Non-concurrent superstate: direct target of one of its
substate or its initial state

o Concurrent target state: all of its regions have to have
an active state either as direct target state of with
initial state

o History state : the last active state configuration
if there is none: the target state of the history state

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1211 - exit action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S121 - exit action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

Transition action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S11 – entry action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S111 – entry action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1111 - entry action

Summary

 Effective technique to model certain dynamic
systems

 Hierarchic refinement allows iterative
development

 Already used in many application domain

o Avionics, automotive,

32

