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Statecharts 
 Describes the states and state transitions of the system, of a 

subsystem, or of one specific object. 
o hierarchical and concurrent systems 

 States 
o Concrete state:  

• Combination of possible values of attributes 
• Can be infinite 

o Abstract states: (like in Statecharts) 
• Predicates over concrete states 
• One abstract state  many concrete states 
• Hierarchical states:  

– Frequent in embedded apps (e.g. control of car brake) 

 Transitions 
o Triggering Event 
o Guard 
o Action 

 



Statechart - introduction 

 For defining reactive behavior of objects 

o Responds to events: 
state transitions and actions 

o Traditional approach: state machine 

 Statechart: extension to state machine 

o State hierarchy: refinement of states 

o Concurent behavior: parallel threads 

o Memory: last active state configuration 



States I. 

 Attributes: 

o entry action 

o exit action 

o static reaction 

 State refinement 

o Simple state  

o OR refinement: auxillary state machine,  
only one active state 

o AND refinement: concurrent regions (state machines), 
all regions are active in parallel 

print_job 

entry/init() 
job/print() 
exit/reset() 



Example for state refinement: TV 
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State II. 

 History state 

o Stores the last active state configuration 

o Input transition: it sets the object to the saved state 
configuration objektum 

o Output transition: defines the default state, if there 
were no active state since 

 Inital state: becomes active when entered to the 
region 

• One in each OR refinement 

• One in each AND region 

 Végállapot jelzés: állapotgép terminálás 



Statechart elements 

 State 

 (Transition) 

 History state 

 Initial State 

 Final State 

State name 

H H* 

s1 s2 



Transition I. 

 Defining state changes 

 Syntax: 

 trigger [guard] / action 

o trigger: event, triggered operation or time-out 

o guard: transition condition 

• Logic formula over the attributes of the objects and events 

• referring to a state: IS_IN(state) macro 

• Without trigger: if becomes true the transition is active 

o action: operations  action semantics 



Transition II. 

 Time-out trigger: 
o becomes active if the object stayes in he source state 

for the predefined interval 

 e.g., tm(50), based on system time 

 Complex transitions 
o Fork 

 

o Join 
 

o Condition 

 Transitions between different hierarchy levels 



Transition example 

Prepare 

Phase1 

Act1 

Phase2 

Act2 Act3 

Passed 

Missed 
tm(50) 

error 

Work 

Group2 

Group1 

illegal_activity [fatal] / report_status() 

[fatal] / report_status() 

[not_fatal] / recovery() 

State name 

Failure 



Complex Example 

 Traffic light for an intersection with a prioritized 
road 

o Off: (blinking yellow) 

o On: green for the priority road 

o Green, yellow, red etc. Different timerange (timer) 

o 3 waiting vehicle on priority road: green light despite 
the timer’s ticks 

o Automatically take photos of vehicles crossing the 
piority road on red light. Manual on/off for this 
feature. 



1. Basic state machines 
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2. Hierarchy 

Off 

On 

do/blink 

reset 

!reset 

Red 

Yellow 

Green 

Red 
Yellow 

T1 

T4 

T2 

T3 



3. Concurrent states 
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4. History States 
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Complete System 
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Semantics: How does it work? 

 Basics: 

o Hierarchical state machine (state chart) 

o Event queue + scheduler 

 Semantics defines:  
Behavior in case an event occurs 
 one step of the state chart 

o (concurrent) transitions fire 

o State configuration changes 
in all region in the active state and also one substate in 
the OR refinement (recursively) 



Semantics of State Transitions 

 Separately processed events: 

o Scheduler only triggers the next event if the previous 
one is completely processed  
stable configuration: there is no state change without an event 

 Complete processing of events: 

o The largest set of possible fireable transitions  
(all enabled transition fires, if they are not in conflict) 

 How does it work?: Steps of the event processing 



Steps of event processing I. 

 Scheduler triggers an event for the statechart in a 
stable state configuration 

 Enabled transitions: 
o Source state is active 

o The event is their trigger 

o Guards are evaluated to true 

 Based on the number of fireable transitions 
o Only one: fire! 

o None:  do nothing 

o More than one:  select transitions to fire? 



Steps of event processing II. 

 Selection of fireable transitions: 

o Fireable = Enabled + Max, priority 

o Conflict: Has the same source state  

• Formally: the intersection of their left (exit) states is not 
empty 

Conflict resolution  priority:  

• Defined between two transitions (t1 and t2) 

• t1 > t2, if and only if  the source state of t1 is a substate within 
the state hierarchy of t2 („lower level”) 
 



Steps of event processing III. 

 Selection of  transitions to fire: 

o Set of transitions to fire: parallel execution of 
concurrent transitions: 

• Maximum number of fireable transitions  
(= cannot be extended any further)  

• There is no conflict between any two transitions 

o Selection of this set:  

• Random! 



Steps of event processing IV. 

 Selected transitions fire: 
 in random order 

 Firing one transition: 

o Leaving the source states from the bottom to top and 
execute all their exit operations 

o Execute the action of the transition 

o Entering the target states from top to bottom and 
execute the entry actions  new state configuration 



Steps of event processing V. 

 Entering a new state configuration: 

o Simple target state: part of the state configuration 

o Non-concurrent superstate:  direct target of one of its 
substate or its initial state 

o Concurrent target state:  all of its regions have to have 
an active state  either as direct target state of with 
initial state 

o History state : the last active  state configuration 
if there is none: the target state of the history state 

 



State transition example 

S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 



State transition example 
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State transition example 
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State transition example 
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State transition example 
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State transition example 
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Summary 

 Effective technique to model certain dynamic 
systems 

 Hierarchic refinement allows iterative 
development 

 Already used in many application domain 

o Avionics, automotive,  
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