
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Object Relational Mapping
Java Persistence Layer

Ákos Horváth
István Ráth

Dániel Varró
Model Driven Software Development

Lecture 6

Introduction: Obj2Rel mapping
 Goal:

o Persisted objects over RDBMS
o Transparent handling of RDBMS from an OO programming

language

 Input:
o Class diagram

 Output:
o Database schema
o Query and manipulation operations are embedded into class

methods

 Automated SQL code generation

Object Relational Mapping

Performance Optimization Tools

 Object caching

o Decrease the number of direct RDBMS calls

 Connection pooling

o Manage RDBMS connections for later usage

 Transaction handling

o Definition of business level transactions

o Hiding RDBMS level transaction (from programmers)

Metamodel

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

organizer

organized

1

*

participants

champs

*

*

Mapping Classes

 General guidelines

o class table (relation)

o attribute column (attribute)

o (unique identifier) primary key

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

Championship

id name minP maxP

hu1 NB1 6 18

de1 BL 10 22

Object (instance)
row

Attributes of generalization

 Completeness
o Is there a person who is not a player or an organizer?

o Partial vs. complete coverage

 Disjunction
o Can a person be a player and an organizer at the same

time? (multiple inheritance)

o disjoint vs. overlapping classes

 Multiple mappings

Generalization I.

 Vertical mapping

+ No restrictions

 Steps of the Mapping

o 1 class 1 table

o New column: supertype ID, which is a foreign key from
the Supertype’s ID

Generalization I. (cont.)

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

Person

id name passwd

Player

per_id class

Organizer

per_id phone address

01 Kiss abcde

02 Nagy edcba

03 Szabó abdce

04 Takács adbce

03 M

04 GM

02 1223 Ó u. 22.

04 3549 Új u. 3.

• Add/remove

– Foreign key constraints

• Query

– JOIN

Generalization II.

 Horizontal mapping

− Only for disjoint subclasses

− Only for complete coverage

 Steps of the Mapping

o 1 subclass 1 table

o All attributes from the superclass and the subclass
within the table

Generalization II. (cont.)

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

Player

id name passwd class

Organizer

id name passwd phone addr

03 Szabó abdce M

02 Nagy edcba 1223 Ó u. 22.

• Simple add/remove
operation

• Simple Querying using a
Select

Generalization III/a.

 Filtered Mapping

− Only for disjoint subclasses

− suboptimal storage usage, in case of large number of
attributes

 Steps of the Mapping

o Common table: 1-1 column for the attributes of the
super- and the subclasses

o One additional for column for the type information

Generalization III/a. (cont.)

id type name passwd class phone addr

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

01 Person Kiss abcde NULL NULL NULL

02 Player Nagy edcba NULL 1223 Ó u. 22.

03 Organ. Szabó abdce M NULL NULL

• Simple add/remove
operation

• Simple Querying using a
Select with type based
filtering

Generalization III/b.

• Filtered Mapping

+ For overlapping classes
− suboptimal storage usage, in case of large number
of attributes

• Steps of the Mapping

– Common table: 1-1 column for the attributes of
the super- and the subclasses

– Boolean type columns for indicating instance of
relation

Generalization III/b. (cont.)

id Player Organ name passwd class phone addr

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

01 False False Kiss abcde NULL NULL NULL

02 False True Nagy edcba NULL 1223 Ó u. 22.

03 True False Szabó abdce M NULL NULL

04 True True Takács adbce GM 3549 Új u. 3.

• Simple add/remove
operation

• Simple Querying using a
Select with type based
filtering

Association 1..n (1..1)

04 hu1 NB1 6 18

02 de1 BL 10 22

Organizer

phone:String
address:String

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

organizer

organized

1

*

Organizer

per_id phone address

02 1223 Ó u. 22.

04 3549 Új u. 3.

Championship

org_id id name minP maxP

Additional
Column and
constraints

Association m..n

Player

class:String

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

participants

champs
*

*

Player_champ

ch_id play_id

Player

per_id class

03 M

04 GM

hu1 03

hu1 04

de1 04

Championship

id name minP maxP

hu1 NB1 6 18

de1 BL 10 22

New table
and

constraints

Java Persistence API

ORM frameworks

 Many players

o ActiveObjects

• Inheritance and annotations

o Torque

• Codegeneration from XML configurations

o JPA

• Annotations and/or XML

1

9

Java Persistence API

 Part of EJB 3 specification

 Hides RDBMS specific parts

 Provides a transparent runtime API for managing Objects
that are persisted in an RDBMS

2

0

JPA providers

 JPA is only an API specification

 Various implementations

o Hibernate

o OpenJPA

o Toplink

o EclipseLink (official specification implementation)

2

1

Usage of JPA

 Java classes (POJO) with annotations

o Alternate: directly from XML
• Overwrites annotations

• Only for Experts (do not use)

 Basic building block: Entity = persisted class

 All jar that contains a persistence.xml in its META-
INF folder is a persisted module

 javax.persistence package

2

2

Defining an Entity

 Java class with @Entity

(javax.persistence.Entity) annotated with default
constructor

 Usually serializable (implements Serializable)

 Mandatory primary key attribute: @Id

o Different ID generalization strategy can be defined in the
strategy parameter

2

3

Attributes of an Entity

 The persisted attributes can only be managed using getters/setters
(JavaBean convention)

 Non persisted (transient) attributes: @Transient

 Types of attributes

o Primitive types:
String, BigInteger, BigDecimal,

java.util.Date, java.util.Calendar,

java.sql.Date, java.sql.Time,

java.sql.Timestamp, byte[], Byte[], char[],

Character[]

o Enum

o Other entity, collection of other entities

o Inner class

2

4

Parameters of the Mapping

 Default
o the name of the columns and tables are identical of the name of the

attributes’ and classes’ names, respectivly.

 @Table(name=”MyTable”)

o @SecondaryTable(s) : can be separated into multiple
tables

 @Column(name=”MyColumn”)

 Other parameters for columns

o nullable

o unique

o length

2

5

Generalization

 Supported from EJB3.0

 Supported modes:

o One table for one classhierarchy
filtered mapping

o Separate tables for subclasses with references
vertical mapping

o One table for one concrete entity
horizontal mapping

2

6

JPA - Generalization

 Filtered mapping

o Discriminator column defines the type

o Requires nullable columns for subclass attributes
o On the top of the hierarchy:

• @Inheritance(strategy=InheritanceType.SINGLE_TABLE)

• @DiscriminatorColumn(name=<columnname>)

o On all other classes:

• @DiscriminatorValue(<value representing the type>)

 Vertical mapping
o @Inheritance(strategy=InheritanceType.JOINED)

 Horizontal mapping
o Not part of the EJB3.0 specification

 2

7

Other Generalization Modes

 Supertype as a non-entity

o @MappedSuperClass:-attributes from the
annotated class can be used in the subtypes. Will not
have a dedicated table in the RDBMS, however, its
attributes will be persisted.

o Non marked will not be persisted

 Abstract Entity

o Cannot be instantiated, but can be mapped to a table

o Can be queried

2

8

Relations

 Based on multiplicity four different:
o @OneToOne

o @OneToMany

o @ManyToOne

o @ManyToMany

 Based on direction:

o unidirectional

o bidirectional (both entities will have getter/setter methods
to manipulate the relation): mappedBy parameter

 Bidirectional OneToMany = Bidirectional ManyToOne

 A relation always has only one container entity

2

9

Example relation
 Employee:

@ManyToOne

@JoinColumn(name=”company_id”)

private Company company;

 Company:
@OneToMany(mappedBy=”company_id”)

private Collection<Employee> employees;

 + getters, setters

 Instead of the @JoinColumn the @JoinTable is used when a separate
table is responsible for the relation (e.g., ManyToMany)

 The @ManyToOne relation is required to be defined on the container side!
(does not have a mappedBy parameter)

3

0

Cascade type of Relations

 What to do with related entities?
 If you insert, update or delete an object, related
 objects are inserted?, updated? or deleted?

 Can be defined for any relations
@OneToMany(cascade={

 CascadeType.PERSIST, CascadeType.MERGE})

 Possible values:
o PERSIST

o MERGE

o REMOVE

o REFRESH

o ALL

 Default: no cascade, everything have to be persisted
by hand

3

1

Fetch

 What to do with relating entities when we load an entity?
 Load all entities on its relations?

 Can be defined for all four relations
e.g.,@OneToMany(fetch=FetchType.LAZY)

 LAZY : will not be loaded only if they are explicitly referred
o Does not consume memory but requires +1 select

 EAGER (default): load all entities on its relations
o Faster but requires more memory

 Fine tuning options:
o Set LAZY in general and only use EAGER when we know that we

will use the entities from that particular relation.
Use fetch join in the EJB-QL query, e.g.,

 SELECT c from Customer c LEFT JOIN FETCH c.orders

3

2

Problems with Lazy fetch

 In case of detached state only those objects will be present
that were used before.

 If we merge an entity back after a detached state then all
relations (their target objects) that were not fetched will be
deleted from the RDBMS.

 The Lazy is just an advice. The persistence provider may
switch to Eager.

3

3

Persistence context

 The set of entities handled by the persistence

provider

 Identification with the name of the persistence

unit

 Getting the Entity manager e.g.:
EntityManagerFactory factory =

Persistence.createEntityManagerFactory(

 PERSISTENCE_UNIT_NAME); //parameter in the

persistence.xml

EntityManager entityManager =

factory.createEntityManager();

3

4

Entity Manager

 Responsible for handling the entities

 Responsible :

o Life-cycle of the entities

o Synchronization with the RDBMS

o Querying the entities

3

5

Transaction handling

 Properties:

oAtomic

oConsistent

o Isolated

oDurable

 API call:
o entityManager.getTransaction().

• begin()

• commit()

• rollback()

3

6

Entity Life-cycle

 new: will be in this state when created using the new
command, exists only in the memory. Will not be
synchronized to the RDBMS.

 managed: the entity is present in the database and is
part of a persistence context . Manipulations will be
executed on the database side either at the end of
the transaction or at an explicit flush() call.

 detached: the entity is present in the database but is
NOT part of a persistence context.
Similar like a DTO (Data Transfer Object)

 removed: part of the persistence context, however it
is marked for deletion from the database

3

7

Entity Life-cycle

3

8

Entity life-cycle callbacks

 Annotations for callback methods

o @PrePersist

o @PostPersist

o @PreRemove

o @PostRemove

o @PreUpdate

o @PostUpdate

o @PostLoad

 Persistence provider will execute the callbacks

 Can be defined in separate class
o Binding using the @EntityListener

o Its methods receive the entity as their input parameter

3

9

Database synchronization

 In general executed in all commit calls

 Can be explicitly executed using the Entity Manager:

o flush(entity):
writes the manipulations to the RDBMS

o refresh(entity):
Reads the changes from the RDBMS

4

0

Queries

 Simple query based on the primary key:
<T> T find(Class<T> entityClass, Object primaryKey)

 Complex queries:

o Java Persistence Query Language (JPQL, a.k.a. EJB-QL):
public Query createQuery(String ejbqlString)

• Example query:
SELECT DISTINCT OBJECT(p) FROM Player p WHERE

p.position = ?1 AND p.name = ?2

o SQL: public Query createNativeQuery(String sqlString)

4

1

Queries

 Safe parameter handling:

o Based on name or index
• setParameter(String, Object)

• setParameter(int, Object)

 Getting the result:
o getSingleResult()

o getResultList()

 Manipulation

o executeUpdate()

o Can be executed in batch mode

4

2

Concurrency

 Two opportunities

o Optimistic
• Annotate an int or TimeStamp attribute with the @Version tag

• Persistence provider increments this value at all commits on the entity

• Throws OptimisticLockException if the value is higher in the RDBMS then
the one in the memory.

o Explicit locks
• entityManager.lock(Object entity, LockMode)

• LockMode: READ or WRITE

• Can only be called within a transaction!

4

3

JPA 2.0

44

JPA 2.0 Features

• Richer mappings

• Richer JPQL

• Pessimistic Locking

• Criteria API

• Cache API

• Many more

JPA 2.0: Richer Mapping

• Supports collection of basic types and
embeddables

> In JPA 1.0, only collections of entities were supported

• Supports multiple levels of embeddables

• Embeddables containing collection of
embeddables and basic types

• PrimaryKey can be derived entities

• More support for Maps...

JPA 2.0: Collection of Basic Types

@Entity
Public class Item {

 @ElementCollection
 private Set<String> tags;
}

@Entity
Public class Item {

 @ElementCollection
 @CollectionTable(name="TAGS")
 private Set<String> tags;
}

Mapped by default in
ITEM_TAGS

Mapped in TAGS

JPA 2.0: Richer JPQL

• Added entity type to support non-polymorphic
queries

• Allow joins in subquery FROM clause

• Added new operators
> INDEX (for ordered lists)

> CASE (for case expressions)

> more

• Added new reserved words
> ABS, BOTH, CONCAT, ELSE, END, ESCAPE, LEADING,

LENGTH, LOCATE, SET, SIZE, SQRT, SUBSTRING,
TRAILING

Example: JPQL CASE Expression
@Entity public class Employee {

 @Id Integer empId;

 String name;

 Float salary;

 Integer rating;

 // ...

}

UPDATE Employee e

SET e.salary =

 CASE WHEN e.rating = 1 THEN e.salary * 1.05

 WHEN e.rating = 2 THEN e.salary * 1.02

 ELSE e.salary * 0.95

 END

JPA 2.0: Locking Enhancements

• JPA 1.0 supports only optimist locking

• JPA 2.0 adds pessimistic locking

• Multiple places to specify lock
> read and lock

> read then lock

> read then lock and refresh
 public enum LockModeType {
 OPTIMISTIC,
 OPTIMISTIC_FORCE_INCREMENT,
 PESSIMISTIC,
 PESSIMISTIC_FORCE_INCREMENT,
 NONE
}

JPA 2.0: Criteria API

• Strongly typed criteria API

• Object-based query definition objects

> rather than string-based

• Like JPQL

• Uses a metamodel – Compile time type checking
using Generics

> Each entity X has a metamodel class X_

> Criteria API operates on the metamodel

JPA 2.0: Caching

• Supports the use of a second-level cache

• Cache API

> contain(Class, PK)

> evict(Class, PK), evict(Class)

> evictAll()

• @Cacheable annotation on entities

References

 Mike Calvo: JPA and Hibernate

o http://www.slideshare.net/adorepump/jpa-and-
hibernate-presentation

 Gordon Yorke: EclipseLink JPA

o http://www.slideshare.net/pelegri/eclipselink-jpa-
presentation

 Markus Eisele: New features of JSR-317

o http://www.slideshare.net/myfear/new-features-of-
jsr-317-jpa-20

http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20

