
Budapest University of Technology and Economics
Department of Measurement and Information Systems

EMF-INCQUERY
Incremental evaluation of model queries over EMF models

Gábor Bergmann, Ákos Horváth,
Ábel Hegedüs, Zoltán Ujhelyi, Balázs Polgár,

István Ráth, Dániel Varró

Model Driven Software Development
Lecture 11

MOTIVATION

First of all…

 What is a model query?

o A piece of code that looks for certain parts of the
model.

 “Mathematically”

o Query = set of constraints that have to be satisfied by
(parts of) the model.

o Result = set of model elements (element
configurations) that satisfy the constraints of the
query.

 A query engine?

o Supports the definition/execution of model queries.

Hi Jane, what do you do at work?

Jane

Boss

Detect

Report
View

Constraint

Gen

Model queries

 Queries are at the heart of MDD.

o Views

o Reports

o Generators

o Validators

o…

 Development issues

o Complex queries are hard to write

Issues with query development

 Hard to write?

 Your options

o Java (or C/C++, C#, …)

o Declarative languages (OCL, EMF Query 1-2, …)

 Imperative query languages Declarative query languages

Expressive power  (you write lots of code)  (very concise)

Safety  (precise control over what
happens at execution)


(unintended side-effects)

Learning curve  (you already know it)  (may be difficult to learn)

Reusability  (standard OO practices)  (???)

Performance  (considerable manual
optimization necessary)

 (depends on various
factors)

Issues with query execution

 Query performance

o = Execution time, as a function of

• Query complexity

• Model size / contents

• Result set size

 Incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
query results are needed all the time.

o Incremental evaluation is an essential, but not a very
well supported feature.

Model query engine wish list

 Declarative query language

o Easy to learn

o Good bindings to the imperative world (Java)

o Safe yet powerful

o Reusable

 High performance

o Fast execution for complex queries over large models

o First-class support for incremental execution

 Technology

o Works with EMF out-of-the-box

STATE OF THE ART

Problem 1: Expressiveness
 EMF Query (declarative)

o Low expressiveness

o Limited navigability

• no „cycles”

 OCL (declarative)

o Verbose

o Lack of reusability support

o Local constraints of
a model element

o Poor handling of recursion

Challenging to use

Problem 2: Incrementality

 Goal: Incremental evaluation of model queries

o Incremental maintenance of result set

o Avoid unnecessary re-computation

 Related work:

o Constraint evaluation (by A. Egyed)
• Arbitrary constraint description

– Can be a bottleneck for complex constraints

– Always local to a model element

• Listen to model notifications

• Calculate which constraints need to be reevaluated

o No other related technology directly over EMF

o Research MT tools: with varying degrees of support

Problem 3: Performance

 Native EMF queries (Java program code):
Lack of

o Reverse navigation along references

o Enumeration of all instances by type

o Smart Caching

 Scalability of (academic) MT tools

o Queries over >300K model elements (several proofs):
FUJABA, VIATRA2 (Java), GrGEN, VMTS (.NET), Egyed’s
tools

EMF-IncQuery

 Expressive declarative query language by graph patterns

 Incremental cache of matches (materialized view)

 High performance for large models

INCQUERY TECHNOLOGY
OVERVIEW

Technology Overview
 What is EMF-INCQuery?

o Query language + incremental pattern matcher +
development tools for EMF models

• Works with any (pure) EMF application

• Reusability by pattern composition

• Arbitrary recursion, negation

• Generic and parameterized model queries

• Bidirectional navigability

• Immediate access to all instances of a type

• Complex change detection

 Benefits

o Fully declarative + Scalable performance

Contributions

 Expressive declarative query language by graph patterns

o Capture local + global queries

o Compositionality + Reusabilility

o Transitive closure, Negation

 Incremental cache of matches (materialized view)

 High performance for large models

Example: School metamodel

 Detailed introduction of the example
incquery.net/incquery/new/examples/school

IQPL - Simple queries

pattern schools(Sch) = {
School(Sch);
}

pattern teachers(T) = {
Teacher(T);
}

pattern teachersOfSchool(T:Teacher,Sch:School) = {
School.teachers(Sch,T);
}
pattern studentOfSchool(S:Student,Sch:School) = {
Student.schoolClass.courses.school(S,Sch);
}

IQPL - Simple queries

pattern schools(Sch) = {
School(Sch);
}

pattern teachers(T) = {
Teacher(T);
}

pattern teachersOfSchool(T:Teacher,Sch:School) = {
School.teachers(Sch,T);
}
pattern studentOfSchool(S:Student,Sch:School) = {
Student.schoolClass.courses.school(S,Sch);
}

Query
parameters

Type
constraints

Navigation – no
restcitions on the

navigation!

Query
definition

Syntactic
Sugar

Path expression

IQPL – pattern composition and NAC

pattern coursesOfTeacher(T:Teacher, C:Course) = {
Teacher.courses(T,C);
}

pattern classesOfTeacher(T, SC) = {
find coursesOfTeacher(T,C);
Course.schoolClass(C,SC);
}
pattern teacherWithoutClass(T:Teacher) = {
neg find classesOfTeacher(T,SC);
}

IQPL – pattern composition and NAC

pattern coursesOfTeacher(T:Teacher, C:Course) = {
Teacher.courses(T,C);
}

pattern classesOfTeacher(T, SC) = {
find coursesOfTeacher(T,C);
Course.schoolClass(C,SC);
}
pattern teacherWithoutClass(T:Teacher) = {
neg find classesOfTeacher(T,SC);
}

Automatic type
inference – type

constraints can be
omitted

Pattern call

Negative
application call

IQPL – transitive closure and disjunction

pattern friendlyTo(S1:Student, S2:Student) = {
Student.friendsWith(S1,S2);
} or {
Student.friendsWith(S2,S1);
}

pattern inTheCircleOfFriends(S1:Student,Someone:Student) = {
find friendlyTo+(S1,Someone);
S1!=Someone; // we do not allow self loops
}
pattern moreFriendsThan(S1 : Student, S2 : Student) {
N == count find inTheCircleOfFriends(S1, _Sx1);
M == count find inTheCircleOfFriends(S2, _Sx2);
check(N > M);
}
pattern theOnesWithTheBiggestCircle(S:Student) = {
neg find moreFriendsThan(Sx,S);
}

IQPL – transitive closure and disjunction

pattern friendlyTo(S1:Student, S2:Student) = {
Student.friendsWith(S1,S2);
} or {
Student.friendsWith(S2,S1);
}

pattern inTheCircleOfFriends(S1:Student,Someone:Student) = {
find friendlyTo+(S1,Someone);
S1!=Someone; // we do not allow self loops
}
pattern moreFriendsThan(S1 : Student, S2 : Student) {
N == count find inTheCircleOfFriends(S1, _Sx1);
M == count find inTheCircleOfFriends(S2, _Sx2);
check(N > M);
}
pattern theOnesWithTheBiggestCircle(S:Student) = {
neg find moreFriendsThan(Sx,S);
}

Disjunction

Transitive
closure

Check
expression

Example application of
effective NAC

application

IQPL - Advanced model query

24

pattern teachersWithMostCourses(
 School : School, Teacher : Teacher) = {
 School.teachers(School,Teacher);
 neg find moreCourses(Teacher);}

pattern moreCourses(Teacher : Teacher) = {
 N == count find coursesOfTeacher(Teacher,_Course);
 M == count find coursesOfTeacher(Teacher2,_Course2);
 Teacher(Teacher2);
 Teacher != Teacher2;
 check(N < M);}

Match
counting

INCQUERY Development Tools

Query Explorer

Pattern Editor

Queries are applied
& updates on-the-
fly

• Works with most EMF-
based editors out-of-
the-box

• Reveals matches as
selection

Contributions

 Expressive declarative query language by graph patterns

o Capture local + global queries

o Compositionality + Reusabilility

o Transitive closure, Negation

 Incremental cache of matches (materialized view)

o Cheap maintenance of cache (only memory overhead)

o Notify about relevant changes (new match – lost match)

o Enable reactions to complex structural events

 High performance for large models

 RETE network
o node: (partial) matches

of a (sub)pattern

o edge: update
propagation

 Demonstration
o input: UML model

o pattern: UnusedData

o change: delete/retarget type reference

RETE nets

INPUT

 T : type

D : Data

TE: TypedElement

INPUT

TE: TypedElement

INPUT

D : Data

JOIN

D : Data

TE: TypedElement

 T : type

ANTI-JOIN

NEG

 T : type

D: Data

TE: TypedElement

UnusedData(D)

a b c

x z w

p s

 Data objects

TypedElement objects

TypedElement.type edges

x z w a b c

p s

p x s z

c

p

p

p x

a

Input nodes

Intermediate
nodes

In-memory model(EMF
ResourceSet)

Production
node

PATTERN
UnusedData(D)

D: Data

TE: TypedElement

NEG

T:
 t

yp
e

Notification

Transparent: user modification,
model imports, results of a
transformation, external
modification, …
 RETE is always updated!

UnusedData(D)
A data entity to which no type reference
points
•Parameter
•Variable

Experimental results:
good, if…
o There is enough

memory

o Transactional model
manipulation

Application

Framework

API

EMF-INCQUERY Architecture v0.7

RETE Core
EMF INC PM

Core

Your code

Pattern/Query
specification

Generated
pattern matcher

IncQuery BASE

tooling

Reflective pattern
matcher

Validation
Engine

• The RETE algorithm
makes all the magic work

• Well-known in rule-
based systems

IncQuery BASE

 Light-weight Java library for simple (yet very powerful) EMF model
queries, with incremental evaluation

 Supports
o Get all instance elements by type

o Reverse navigation along references

o Get model elements by attribute value/type

 Very easy to integrate into any EMF tool (pure Java) – standalone!

 Same high performance and scalability as IncQuery

 Incremental transitive closure
o Computation of e.g. reachability regions, connected model partitions, …

o Innovative new algorithm for general graphs

Development workflow

Develop EMF
domain

Develop and test
queries

Use/Generate
INCQUERY code

Integrate into EMF
application

Automated Automated

Supported by
Xtext 2

Semi-automated for
typical scenarios,

 some manual coding

Generated pattern matchers

 INCQuery runtime

o Eclipse plugin

• Depends only on EMF and the INCQuery core

• No VIATRA2 dependency!

o Private code: pattern builders

• Parameterize the RETE core and the generic EMF PM library

o Public API: Pattern matcher access layer

• Query interfaces

• Data Transfer Objects (DTOs)

• Used to integrate to EMF applications

Generated Sample UI

 Command contributions

o Project explorer, Navigation, Package Explorer

o Perform model loading and query execution

o Display the results on the UI

• List (default)
– Pretty prints a list of matches

• Counter
– Prints the number of matches

IncQuery Runtime

Generic Query API

Generated Change
API

Generated Query
API

Generic Change API

Generated Query API

 Basic queries

o Uses tuples (object arrays) corresponding to pattern parameters

o Object[] getOneMatch()

o Collection<Object[]> getAllMatches()

 Parameterized queries
o getOneMatch(Object X, Object Y, …)

o getAllMatches(Object X, Object Y, …)

o Null input values = unbound input variables

Based on pattern
signature

Query Signatures

 Data Transfer Objects generated for
pattern signatures

 Signature query methods
o classesOfTeacherSignature getOneMatch()

o classesOfTeacherSignature

getOneMatchAsSignature(Object T,

Object SC)

o Collection< classesOfTeacherSignature>

getAllMatchesAsSignature()

o Collection< classesOfTeacherSignature>

getAllMatchesAsSignature(Object T,

Object SC)

 T, SC: EObjects or
datatype instances
(String, Boolean, …)

public class

classesOfTeacherSignature

{

 Object T;

 Object SC;

}

pattern classesOfTeacher(T, SC) =
{
find coursesOfTeacher(T,C);
Course.schoolClass(C,SC);
}

Query Signatures

 Data Transfer Objects generated for
pattern signatures

 Signature query methods
o classesOfTeacherSignature getOneMatch()

o classesOfTeacherSignature

getOneMatchAsSignature(Teacher T,

SchoolClass SC)

o Collection< classesOfTeacherSignature>

getAllMatchesAsSignature()

o Collection< classesOfTeacherSignature>

getAllMatchesAsSignature(Teacher T,

SchoolClass SC)

 T, SC: EObjects or
datatype instances
(String, Boolean, …)

public class

classesOfTeacherSignature

{

 Teacher T;

 SchoolClass SC;

}

pattern classesOfTeacher(T, SC) =
{
find coursesOfTeacher(T,C);
Course.schoolClass(C,SC);
}

Integrating into EMF applications

 Pattern matchers may be initialized for

o Any EMF Notifier

• e.g. Resources, ResourceSets

o (TransactionalEditingDomains)

 Initialization

o Possible at any time

o Involves a single exhaustive model traversal
(independent of the number of patterns, pattern
contents etc.)

Typical programming patterns

1. Initialize EMF model

o Usually already done by your app 

2. Initialize incremental PM whenever necessary

o Typically: at loading time

3. Use the incremental PM for queries

o Model updates will be processed transparently, with minimal
performance overhead

o Delta monitors can be used to track complex changes

4. Dispose the PM when not needed anymore

o + Frees memory

o - Re-traversal will be necessary

BPMN well-formedness rules

 Traditionally specified by OCL constraints

o OCL constraints can be attached to any EMF instance
model via EMF Validation

 Rules specified by

o Tool developers

o (End users)

Well-formedness checking from a tool developer’s perspective

 Well-formedness rules

o Express constraints not (easily) possible by metamodeling
techniques

o Ensure “sane” modeling conventions & best practices

o Aid code generation by design-time validation

 Example:

Soliciting X Instructing

Deciding

X

P
o

o
l A

Contracting X

X

Persist
Contract

X

Start
Proceed?

End

Proceed?

Proceed?

Join

Join Cancel

Inconsistency:
Conditional edge

preceded by gateway
Inconsistency : End

event is source of edge

Inconsistency :
Message betwen

elements in same pool

x
x x

IncQuery Validation Engine

 Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses IncQuery graph patterns to specify constraints

 Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

• Execution model is different

How it works – IncQuery Change API

 Track changes in the match set of patterns (new/lost)

 Delta monitors

o May be initialized at any time

o DeltaMonitor.matchFoundEvents /

DeltaMonitor.matchLostEvents

• Queues of matches (tuples/Signatures) that have appeared/disappeared
since initialization

 Typical usage

o Listen to model manipulation (transactions)

o After transaction commits:
• Evaluate delta monitor contents and process changes

• Remove processed tuples/Signatures from .matchFound/LostEvents

Well-formedness rule specification by graph patterns

 WFRs: Invariants which must hold at all times

 Specification = set of elementary constraints +
context

o Elementary constraints: Query (pattern)

o Location/context: a model element on which the
problem marker will be placed

 Constraints by graph patterns

o Define a pattern for the “bad case”

• Either directly

• Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Match:
A violation of
the invariant

pattern loopingActivity(A : Activity)= {
Activity.looping(A, true);
}

@Constraint(location = "A", message = "$A.name$ is a bad looping
activity", severity = "warning")
pattern badLoopingActivity(A : Activity)= {
find loopingActivity(A);
Activity.name(A, Name);
check(!(Name as String).startsWith("Loop"));
}

EXAMPLE

 “All Behaviors must have an
Operation as their specification.”
o Otherwise they do not have any

“interface” through which they could be
accessed  “dead code”

 Bad case:

A simple BPMN validation constraint

pattern loopingActivity(A : Activity)= {
Activity.looping(A, true);
}

@Constraint(location = "A", message = "$A.name$ is a bad looping
activity", severity = "warning")
pattern badLoopingActivity(A : Activity)= {
find loopingActivity(A);
Activity.name(A, Name);
check(!(Name as String).startsWith("Loop"));
}

EXAMPLE

 “All Behaviors must have an
Operation as their specification.”
o Otherwise they do not have any

“interface” through which they could be
accessed  “dead code”

 Bad case:

A simple BPMN validation constraint

Identify pattern
variable “Activity” as

the location

Path expression

Generated Sample Validation project

 Java classes: Constraint descendants

 Plugin.xml
• Constraint registration

• UI integration
– Editor ID from genmodel

Validation lifecycle

 Constraint violations

o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present

 Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

Validation UI integration

 A menu item (command) to start the validation
engine

 Generic (part of the IncQuery Validation
framework)

o GMF editor command

• Appears in all GMF-based editor’s context menu

o Sample Reflective Editor command

• Appears on the toolbar

 Generated

o EMF generated tree editor command

• Appears on the toolbar

EXAMPLE GUI - INCQUERY Model Validation

Markers in the Problems View

Standard Eclipse BPMN Editor

• Works with most EMF-
based tools out-of-the-
box

• Manages error-warning
markers on-the-fly as the
user is editing the model
= Instantaneous feedback

PERFORMANCE BENCHMARKING

Challenges

 Performance evaluations are hard

o Fair?

o Reliable?

o Reproducible?

o Can the results be generalized?

 Benchmark example:
on-the-fly constraint validation over AUTOSAR models

o Conference presentation at MODELS 2010

o Motivation: the Embedded Architect Tool of OptXware Ltd.

o AUTOSAR models can be very large (>>1m elements)

What is measured?

 Sample models were generated
o matches are scarce relative to overall model size

 On-the-fly validation is modeled as follows:
1. Compute initial validation results

2. Apply randomly distributed, small changes

3. Re-compute validation results

 Measured: execution times of
o Initialization (model load + RETE construction)

o Model manipulation operations (negligible)

o Validation result (re)computation

 Compared technologies
o MDT-OCL

o Plain Java code that an average developer would write

IncQuery Results

 Hardware: normal desktop PC (Core2, 4GB RAM)

 Model sizes up to 1.5m elements

 Initialization times (resource loading + first validation)
o <1 sec for model sizes below 50000 elements

o Up to 40 seconds for the largest model (grows linearly with the model size)

 Recomputation times
o Within error of measurement (=0), independent of model size

o Retrieval of matches AND complex changes is instantaneous

 Memory overhead
o <50 MB for model sizes below 50000 elements

o Up to 1GB for the largest model (grows linearly with model size)

 How does it compare to native code / OCL?

Initialization time

• Includes time for
first validation
• Linear function of
model size, orders
of magnitude faster

Recomputation time

Recomputation
time is uniformly

near zero
(independent of

model size)

Performance overview

Assessment of the benchmark

 High performance complex queries are hard to
write manually in Java.

 IncQuery can do the trick nicely as long as you
have enough RAM.

 Metamodel structure has huge impact on
performance when using “conventional” query
technologies such as OCL, due to

o Lack of reverse navigation

o Lack of type enumeration (.allInstances())

Contributions

 Expressive declarative query language by graph patterns

o Capture local + global queries

o Compositionality + Reusabilility

o Transitive closure, Negation

 Incremental cache of matches (materialized view)

o Cheap maintenance of cache (only memory overhead)

o Notify about relevant changes

o Enable reactions to complex structural events

 High performance for large models

o Linear overhead for loading

o Instant response for queries

o > 1 million model elements (on a desktop PC)

CONCLUSION

Closing thoughts

 On-the-fly validation is only one scenario
o Early model-based analysis

o Language engineering in graphical DSMLs

o Soft-inter connections

o Model execution/analysis (stochastic GT)

o Tool integration

o Model optimization / constraint solving

o Design Space Exploration

o …

 The tutorial examples
o Do not make use of advanced features such as parameterized queries or

complex structural constraints (recursion)

o Are meant only as a starting point

o The project website has many more examples!

Model transformations based on IncQuery

 High performance model transformations

o Hybrid query approach
• Use IncQuery for

– Complex queries

– Frequently used queries

– Parameterized queries

• Plain Java for simple queries (saves RAM)

o Java for control structure & model manipulation

 High-level transformation languages (VIATRA2, ATL,
Epsilon, …) could be “compiled” to run on this
infrastructure

 Ongoing research: automatic mapping of SPARQL, OCL &
others to the IncQuery language

Wish list IncQuery features 

 Declarative query language

o Easy to learn

o Good bindings to the imperative world (Java)

o Safe yet powerful

o Reusable

 High performance

o Fast execution for complex queries over large models

o First-class support for incremental execution

 Technology

o Works with EMF out-of-the-box

Pointers

 Pointers

o Eclipse webpage:

• http://www.eclipse.org/incquery/

o „Official webpage”

• https://incquery.net/
– Documentation, language reference

– Tutorials

– Examples

– Source code

– …

