EMF-INCQUERY

Incremental evaluation of model queries over EMF models

Gabor Bergmann, Akos Horvath,
Abel Hegediis, Zoltan Ujhelyi, Balazs Polgar,

Istvan Rath, Daniel Varro

Model Driven Software Development
Lecture 11

TET

r r

Budapest University of Technology and Economics

Department of Measurement and Information Systems



MOTIVATION




First of all...

= What is a model query?

o A piece of code that looks for certain parts of the
model.

= “Mathematically”

o Query = set of constraints that have to be satisfied by
(parts of) the model.

o Result = set of model elements (element
configurations) that satisfy the constraints of the

qguery.
= A guery engine?

o Supports the definition/execution of model queries.




! The Shapes P;c;j-ect.urgo - shapes - ArgoUML .-

D@8 X2k

Fle Edt View Create Armange Genération Critigue Tools Help

BERERRBE

“ Q-

R v¥F‘x 41 BE--114% 85 S8 B O~
Ordet By Type, Name -
-~ Ghape
U:eCa:eDw)um! nowOp e stion(} - vabd
== (8non Associstion)
= B3 oneOmensional O Dt e o
8 gettenth
= Bront Alongti() : dauble
B Pont
E Y Ll
' EM’“‘ ). oy it
& & shape

*Vetices +

UNIFIED
MODELING
“ JLANGUAGE

5 E, 0 siorl credtes Polgond) - veid
) Ths is s ncte £
ontile ~
E =
- 4
By Pricetty V¥ w 120e 4 ToDoRem
[ Add nstance Vark & L‘.« Polygon has multiple base cla , but Java does not support
) Add nat Virk « multiple inheritance. ou mna e interfaces instead.
stance > 1tiple inh ¥ t d
3 “Ritur, . [ Add nstance Vars T
Prog 0 [-6 This change is required befor can generate Java code,
e Gen | - :
sets ot voig [ Add Operations to 2
Coneqy, 2 e0, "“’14; p l_‘)mCmmmtou-., To fix this. use the “Next>* n.or sanuslliv (1) remave of
Ne: ~ Ne:
Pan. < i > (e

View

Report

Poygon

coreMies Polygond) vwaid

Detect

GraphicCompaonent

% int
¥ oink

paint()
repaint]}

Bution

Imaga

caplion : String

piciure : Fila

press()

paint()

Constraint

ImageButton

elick g}

@ 0O &



Model queries

= Queries are at the heart of MDD.
o Views
o Reports
o Generators
o Validators

O ...

= Development issues

o Complex queries are hard to write




Issues with query development

= Hard to write?

= Your options
o Java (or C/C++, C#, ...)
o Declarative languages (OCL, EMF Query 1-2, ...)

_ Imperative query languages Declarative query languages

Expressive power  ® (you write lots of code) © (very concise)
Safety ©O (precise control over what ©®

happens at execution) (unintended side-effects)
Learning curve © (you already know it) @ (may be difficult to learn)
Reusability © (standard OO practices) A (???)
Performance ®Q© (considerable manual ©® (depends on various

optimization necessary) factors)




Issues with query execution

= Query performance

o = Execution time, as a function of
* Query complexity
* Model size / contents
* Result set size

" |ncrementality
o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
qguery results are needed all the time.

o Incremental evaluation is an essential, but not a very
well supported feature.




Model query engine wish list

= Declarative query language
o Easy to learn
o Good bindings to the imperative world (Java)
o Safe yet powerful
o Reusable

"= High performance
o Fast execution for complex queries over large models
o First-class support for incremental execution

= Technology
o Works with EMF out-of-the-box




STATE OF THE ART




Problem 1: Expressiveness

= EMF Query (declarative)
o Low expressiveness
o Limited navigability
* no ,cycles”
= OCL (declarative)
o Verbose
o Lack of reusability support

o Local constraints of
a model element

o Poor handling of recursion

—Challenging to use




Problem 2: Incrementality

" Goal: Incremental evaluation of model queries
o Incremental maintenance of result set
o Avoid unnecessary re-computation

= Related work:
o Constraint evaluation (by A. Egyed)

e Arbitrary constraint description
— Can be a bottleneck for complex constraints
— Always local to a model element

* Listen to model notifications
e Calculate which constraints need to be reevaluated

o No other related technology directly over EMF

o Research MT tools: with varying degrees of support




Problem 3: Performance

= Native EMF queries (Java program code):
Lack of

o Reverse navigation along references
o Enumeration of all instances by type
o Smart Caching

= Scalability of (academic) MT tools

o Queries over >300K model elements (several proofs):
FUJABA, VIATRA2 (Java), GrGEN, VMTS (.NET), Egyed’s
tools




EMF-IncQuery

= Expressive declarative query language by graph patterns

* Incremental cache of matches (materialized view)

= High performance for large models




INCQUERY TECHNOLOGY
OVERVIEW




Technology Overview

= What is EMF-INCQuery?

o Query language + incremental pattern matcher +
development tools for EMF models

* Works with any (pure) EMF application

Reusability by pattern composition

Arbitrary recursion, negation

Generic and parameterized model queries

Bidirectional navigability

Immediate access to all instances of a type
* Complex change detection

= Benefits
o Fully declarative + Scalable performance




Contributions

= Expressive declarative query language by graph patterns

o Capture local + global queries
o Compositionality + Reusabilility
o Transitive closure, Negation

= Incremental cache of matches (materialized view)

= High performance for large models




Example: School metamodel

0..1 school years g
Year
School
B ‘ 0.1 0..* | = startingDate : Eint 0..1
= name : EString [
5 school year
= address : EString
school. 0..1 5.6 eachers
- homeroomTeacher
& Teacher -
= name : EString -
teacher]
0..1
courses
0.7 27| courses o0..1| homeroomedClass
Course 0.*
- : B SchoolClass
= subject : EString | courses
> schoolClass = code : EChar 0.*
= weight : Eint
0..1
schoolClasses
& SpecialisationCourse schoolClass 0..1
3 specialisation : EString
students
= Detailed introduction of the example oo

incquery.net/incquery/new/examples/school = name : EString

friendsWith |0..7




IQPL - Simple queries

pattern schools(Sch) = {
School(Sch);

}

pattern teachers(T) = {
Teacher(T);

}

pattern teachersOfSchool(T:Teacher,Sch:School) = {
School.teachers(Sch,T);

}
pattern studentOfSchool(S:Student,Sch:School) = {

Student.schoolClass.courses.school(S,Sch);

}




Query
definition

IQPL - Simple aueries
Query
parameters

Navigation — no
restcitions on the
navigation!

- pattern schoolsffzﬁ) = {

J

School(Sch);

}

pattern teachers(T) = Type Syntactic
Teacher(T); constraints Sugar
}

pattern teachersOfSchool(T:Teacher,Sch:School) = {
ool.teachers(Sch,T);

}
pattern studentOfSchool(S:Student,Sch:School) = {

Student.schoolClass.courses.school(S,Sch);

} \
Path expression }

L




IQPL — pattern composition and NAC

pattern coursesOfTeacher(T:Teacher, C:Course) = {
Teacher.courses(T,C);

}

pattern classesOfTeacher(T, SC) = {
find coursesOfTeacher(T,C);
Course.schoolClass(C,SC);

}
pattern teacherWithoutClass(T:Teacher) = {
neg find classesOfTeacher(T,SC);

}




IQPL — pattern composition and NAC

Pattern call}

pattern coursesOfTeacher(T:Teacher, C:Course) = {
Teacher.courses(T,C);

} Automatic type

pattern classesOfTeacher(T, = Hﬁerehce-—type

find coursesOfTeacher(T,C); constraints can be
Course.schoolClass(C,SC); omitted

}

pattern teacherWithoutClass(T:Teacher) = {
neg find classesOfTeacher(T,SC);

}
|

Negative
application call




IQPL — transitive closure and disjunction

pattern friendlyTo(S1:Student, S2:Student) = {
Student.friendsWith(S1,S2);

} or {
Student.friendsWith(S2,S1);

}

pattern inTheCircleOfFriends(S1:Student,Someone:Student) = {
find friendlyTo+(S1,Someone);

S1!=Someone; // we do not allow self Loops

}
pattern moreFriendsThan(S1 : Student, S2 : Student) {
N == count find inTheCircleOfFriends(S1, _Sx1);

M == count find inTheCircleOfFriends(S2, Sx2);
check(N > M);

}
pattern theOnesWithTheBiggestCircle(S:Student) = {
neg find moreFriendsThan(Sx,S);




IQPL — transitive closure and disjunction

pattern friendlyTo(S1:Student, S2:Student) = {
Student W
} or ¢ . : Disjunction
Student.fr1endsN1th(SZ,Sl);L

}

pattern inTheCircleOfFriends(S1:Student,Someone:Student) = {
find friendlyTo+(S1,Someone): — Transitive

S1!=Someone; // we do not allow self Loops J
}
pattern moreFriendsThan(S1 : Student, S2 : Student) {
N == count find inTheCircleOfFriends(S1, _Sx1);
M == count find inTheCircleOfFriends(S2, _Sx2);

check(N > M):_________————————————————‘—‘”—”[ Check }

closure

} L expression
pattern theOnesWithTheBiggestCircle(S:Student) = {
neg find moreFriendsThan(Sx,S); r

Example application of
} \‘ effective NAC
application

N




IQPL - Advanced model query

teachersWithMostCourses(S,T)

r 1
1 1
1 1
1 1
: |
H teachers courses #N | |
1| S:School > T:Teacher >| :Course :
i i
1 1
i NEG - courses | #M E
: Tonchors 21T2: Teacher :Course :
1 1
E check (M > N) i
1 1
1

pattern teachersWithMostCourses(

School : School, Teacher : Teacher) = {
School.teachers(School,Teacher);
neg find moreCourses(Teacher);}

pattern moreCourses(Teacher : Teacher) = {

N == count find coursesOfTeacher(Teacher, Course);
[ TWatsh j::>M == count find coursesOfTeacher(Teacher2, Course2);
counting Teacher(Teacher2);
Teacher != Teacher2;
check(N < M);}




INCQUERY Development Tools

Java - school.instancemodel /BUTE.schoo Eclipse - fUsers

1 5 v v

v | 8 G~ s o

S
(A= (S [ 4w

- * Works with most EMF-
S based editors out-of- M

¥ <= 5chool japest i

> 4 e the-box 1

12

=g

=

schoolqueries.eiq £3

= g
* Courses of a teacher.
*

* Teacher T teaches in Course C
>y

<= Teal Andras
= pattern coursesOfTeacher(T:Teacher, C:Course) = { I h
Teacher.courses(T,C}; i:: ¢ Revea S matc eS as ::::rn;
<= Teal . Daniel '
%%  selection
/% 4= Cour Fe Formal r

4 Course P
4 Course Pralog progral
< Course Graph transformartiol

ourse Fault-to
4 Course Pralog p
4 Course Graph tr

* Teacher T teaches a course which is being taught to School
y
= pattern classesOfTeacher(T:Teacher, SC:SchoolClass) = {
find coursesOfTeacher(T,C);
Course.schoolClass(C,5C);

Pattern Editor

Selection | Parent | List | Tree | Table | Tree with Col

E Properties &2 =& :.‘,——:‘-> Prgblems | \(] S¥N Repositories & console Ei':' Synchronize $ Pl iQl Query Explorer &3 ‘Cfl Error Log
Praperty Value - - T SRS pp N Details / Filters [
Courses + Course Madel—driven s... 'w school.courseWithWeightThirty - 1 match  (Runtime) Parameter value

@8 school.inTheCircleOfFriends - 8 matches {Runtime)
8 school.classesOfTeacher - 4 matches  (Runtime)
L] L]

Qu e rl e S a re a p p I I e d » 8 school.teachers - 4 matches (Runtime)

F B school.theOnesWithTheBiggestCircle - 3 matches (Runtime)
P 8 school.teachersOfSchool - 4 matches  {Runtime)
& u p d ates O n _t h e_ 85 bpmnl.lonelyActivity - No matches (Runtime)

» 8g school.schools - 1 match  (Runtime)
# 8 school.studentOfSchool - 5 matches  (Runtime)
fI ¥ ®g school.teachesTheMostCourses - 1 match  (Runtime)

® T=Daniel Varro

» @ school.finalPattern - 2 matches (Runtime)
» 8 school teacherWithoutClass - 1 match  (Runtime)

®g bpmnl.badLoopingActivity - No matches  (Runtime) Qu e ry EX p I O re r

T Daniel Varra

Homeroomed... < Class D

n® Selected Object: Teacher Daniel Varro




Contributions

= Expressive declarative query language by graph patterns
o Capture local + global queries
o Compositionality + Reusabilility
o Transitive closure, Negation

= Incremental cache of matches (materialized view)

o Cheap maintenance of cache (only memory overhead)
o Notify about relevant changes (new match — lost match)

o Enable reactions to complex structural events

"“High performance for large models




RETE nets

= RETE network
o node: (partial) matches

Notification

Transparent: user modification,
model imports, results of a
transformation, external
modification, ...

- RETE is always updated!

= m .l- Data objects
q

j- TypedElement.type edges
Z @ J— lypedElement objects

INPUT

TE: TypedElement |

Experimental results:
good, if...

o There is enough
memory

o Transactional model
manipulation

—_T 5 (!
UnusedData(D)

A data entity to which no type reference
ints

*Parameter

*Variable

- hode

UnusedData(D)

reference




EMF-INCQUERY Architecture v0.7

Application

Your code

Generated Pattern/Query
pattern matcher specification

Validation Reflective pattern
Engine matcher

IncQuery BASE e The RETE algorithm
makes all the magic work

RETE Core

 Well-known in rule-
based systems




IncQuery BASE

= Light-weight Java library for simple (yet very powerful) EMF model
gueries, with incremental evaluation

= Supports
o Get all instance elements by type
o Reverse navigation along references
o Get model elements by attribute value/type

= Very easy to integrate into any EMF tool (pure Java) — standalone!
= Same high performance and scalability as IncQuery

= |ncremental transitive closure
o Computation of e.g. reachability regions, connected model partitions, ...

o Innovative new algorithm for general graphs




Development workflow

Semi-automated for
typical scenarios,

some manual coding
Develop EMF " Integrate into EMF

domain application
Automated PP

Develop and test Use/Generate
gueries - INCQUERY code

Supported by
Xtext 2




Generated pattern matchers

= INCQuery runtime

o Eclipse plugin
* Depends only on EMF and the INCQuery core
* No VIATRA2 dependency!

o Private code: pattern builders
* Parameterize the RETE core and the generic EMF PM library

o Public API: Pattern matcher access layer

* Query interfaces
* Data Transfer Objects (DTOs)
* Used to integrate to EMF applications




Generated Sample Ul

= Command contributions
o Project explorer, Navigation, Package Explorer
o Perform model loading and query execution

o Display the results on the Ul
* List (default)

— Pretty prints a list of matches

* Counter

— Prints the number of matches




IncQuery Runtime

Generic Query APl | Generic Change API

Generated Query | Generated Change
AP] API




Generated Query API

= Basic queries
o Uses tuples (object arrays) corresponding to pattern parameters
o0 Object[] getOneMatch ()
o0 Collection<Object[]> getAllMatches ()

= Parameterized queries
O getOneMatch (Object X, Object Y, ..)
0 getAllMatches (Object X, Object Y, ..)

o Null input values = unbound input variables

Based on pattern

signature




Query Signatures

= Data Transfer Objects generated f f{’atte"" ARSI A A GRS
pattern signatures find coursesOfTeacher(T,C);
Course.schoolClass(C,SC);
}

= Signature query methods

0 classesOfTeacherSignature getOneMatch ()

o) classesOfTiachgrSignaturE. public class
get,oneMatC AsSignature (Object T, classesOfTeacherSignature
Object SC)

0 Collection< classesOfTeacherSignature> {
getAllMatchesAsSignature () Object T;

0 Collection< classesOfTeacherSignature> Object SC;
getAllMatchesAsSignature (Object T, )
Object SC)

= T, SC: EObjects or
datatype instances
(String, Boolean, ...)




Query Signatures

= Data Transfer Objects generated f f{’atte"" ARSI A A GRS
pattern signatures find coursesOfTeacher(T,C);
Course.schoolClass(C,SC);
}

= Signature query methods

0 classesOfTeacherSignature getOneMatch ()

O classesOfTeachgrSignature public class
getOneMatchAsSignature (Teacher T,
SchoolClass SC)

0 Collection< classesOfTeacherSignature>
getAllMatchesAsSignature () Teacher T;

o Collection< classesOfTeacherSignature> SchoolClass SC;
getAllMatchesAsSignature (Teacher T,
SchoolClass SC)

classesOfTeacherSignature

= T, SC: EObjects or
datatype instances
(String, Boolean, ...)




Integrating into EMF applications

= Pattern matchers may be initialized for

o Any EMF Notifier
* e.g. Resources, ResourceSets

o (TransactionalEditingDomains)
= |nitialization
o Possible at any time

o Involves a single exhaustive model traversal
(independent of the number of patterns, pattern
contents etc.)




Typical programming patterns

1. Initialize EMF model
o Usually already done by your app ©

2. Initialize incremental PM whenever necessary
o Typically: at loading time

3. Use the incremental PM for queries

o Model updates will be processed transparently, with minimal
performance overhead

o Delta monitors can be used to track complex changes

4. Dispose the PM when not needed anymore

O + Frees memory

o - Re-traversal will be necessary




BPMN well-formedness rules

" Traditionally specified by OCL constraints

o OCL constraints can be attached to any EMF instance
model via EMF Validation

= Rules specified by
o Tool developers

o (End users)




Well-formedness checking from a tool developer’s perspective

= Well-formedness rules

o Express constraints not (easily) possible by metamodeling
techniques

o Ensure “sane” modeling conventions & best practices
o Aid code generation by design-time validation

= Example:

Proceed?

Proceed? Deciding Contracting

Inconsistency:
Conditional edge
preceded by gateway

Instructing

Proceed? Inconsistency :
Message betwen

Inconsistency : End elements in same pool
event is source of edge

Cancel Join End

Pool A

Persist
Contract




IncQuery Validation Engine

= Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses IncQuery graph patterns to specify constraints

= Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

* Execution model is different




How it works — IncQuery Change API

= Track changes in the match set of patterns (new/lost)

= Delta monitors
o May be initialized at any time

o DeltaMonitor.matchFoundEvents /
DeltaMonitor.matchlLostEvents

* Queues of matches (tuples/Signatures) that have appeared/disappeared
since initialization

= Typical usage

o Listen to model manipulation (transactions)

o After transaction commits:
e Evaluate delta monitor contents and process changes

* Remove processed tuples/Signatures from .matchFound/LostEvents




Well-formedness rule specification by graph patterns

= \WWFRs: Invariants which must hold at all times

= Specification = set of elementary constraints +
context
o Elementary constraints: Query (pattern)

o Location/context: a model element on which the
problem marker will be placed

= Constraints by graph patterns Match:

o Define a pattern for the “bad case” A violation of
the invariant

 Either directly
* Or by negating the definition of the “good case”

o Assign one of the variables as the location/context




A simple BPMN validation constraint

= “All Behaviors must have an
Operation as their specification.”

o Otherwise they do not have any
“interface” through which they could be
accessed - “dead code”

= Bad case:

pattern loopingActivity(A : Activity)= {
Activity.looping(A, true);

}
@Constraint(location = "A", message = "$A.name$ is a bad looping
activity", severity = "warning" )

pattern badLoopingActivity(A : Activity)= {
find loopingActivity(A);

Activity.name(A, Name);

check(!(Name as String).startsWith("Loop"));




A simple BPMN validation constraint

= “All Behaviors must have an
Operation as their specification.”

o Otherwise they do not have any |dentify pattern
“interface” through which they could be variable “Activity” as
accessed = “dead code” the location

= Bad case:

pattern loopingActivity(A : Activity)s
Activity.looping(A, true);

}

@Constraint(location = "A"™, message = "$A.name$ is a bad looping
activity", severity = "warning" )

pattern badLoopingActivity(A : Activity)= {

find loopingActivity(A); Path expression

Activity.name(A, Name);
check(!(Name as String).startsWith("Loop"));




Generated Sample Validation project

= Java classes: Constraint descendants
= Plugin.xml

* Constraint registration

* Ul integration

— Editor ID from genmodel




Validation lifecycle

= Constraint violations
o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present
= Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor




Validation Ul integration

= A menu item (command) to start the validation
engine

" Generic (part of the IncQuery Validation
framework)

o GMF editor command
* Appears in all GMF-based editor’s context menu
o Sample Reflective Editor command

* Appears on the toolbar

= Generated

o EMF generated tree editor command

* Appears on the toolbar




EXAMPLE GUI - INCQUERY IVIodeI Validation

n Development - bpm

%0 [ #EG- | &y L8 voe i e

E :| B 1|A.@.._;._>.| |?g;j§.og.;;ou.§.|

= T N W Y T T

Works with most EMF-
based tools out-of-the-
0]0)

Manages error-warning
markers on-the-fly as the
user is editing the model
= Instantaneous feedback

onely a

& Simple is a bad looping activity
£y S5omeTask is a lonely activity
4 The gateway should have

lefault.bpmn_diagram - Ecl

a default gate to ensure

& | <k=Plug-in Dev.
» Wy Loy || 100%

that at least one gate will be valid at runtime. Contra

Markers in the Problems View




PERFORMANCE BENCHMARKING




Challenges

= Performance evaluations are hard
o Fair?
o Reliable?
o Reproducible?
o Can the results be generalized?

= Benchmark example:
on-the-fly constraint validation over AUTOSAR models
o Conference presentation at MODELS 2010
o Motivation: the Embedded Architect Tool of OptXware Ltd.
o AUTOSAR models can be very large (>>1m elements)




What is measured?

= Sample models were generated

o matches are scarce relative to overall model size

= On-the-fly validation is modeled as follows:
1. Compute initial validation results
2.  Apply randomly distributed, small changes
3. Re-compute validation results

= Measured: execution times of
o Initialization (model load + RETE construction)

o Model manipulation operations (negligible)
o Validation result (re)computation

= Compared technologies
o MDT-OCL

o Plain Java code that an average developer would write




IncQuery Results

Hardware: normal desktop PC (Core2, 4GB RAM)
Model sizes up to 1.5m elements
Initialization times (resource loading + first validation)

o <1 sec for model sizes below 50000 elements
o Up to 40 seconds for the largest model (grows linearly with the model size)

Recomputation times
o Within error of measurement (=0), independent of model size
o Retrieval of matches AND complex changes is instantaneous
Memory overhead

o <50 MB for model sizes below 50000 elements

o Up to 1GB for the largest model (grows linearly with model size)

How does it compare to native code / OCL?




Initialization time

Resource load + SSG validation time

100000 ,
Vv
10000 v
AV
.%. v B EMF/lava
E == MDT-OCL
V V- INCQuery
1000 - v
* Includes time for
, v first validation
e Linear function of
100 r [ r r 1 model size, orders

El 2373 4748 9449 18850 37721 .
ements of magnitude faster




Time [ms]

1000000

100000

10000

1000

100

10

1

SSG validation time

Recomputation time

A -

computation

/ ] : ) B EMF/Java

time is uniformly = MDT-OCL

V- INCQuery

near zero
(independent of
model size)
Vv
vV V
% Vv
v \Y %

Elements 2373 9449 18850 37721 75692 151359 302778 605402




SSG and iSignal validation pattern in model family A

EMF/Java MDT-OCL INCQuery |
Model Elements # | Model size [MB] | Res [s] iSignal [s] SSG [s] | Res [s] iSignal [s] SSG[s] | | Res[s] IiSignal [s] SSG[s] Mem OH [MB]
2373 30 0.06 0.00 0.25 0.13 0.16 3.58 017 0.00 0.00 3
4748 3 0.08 0.00 0.94 0.16 0.17 13.53 0.22 0.00 0.00 6
9 449 3z 0.13 0.01 3.67 0.20 0.19 52.48 0.30 0.00 0.00 12
18 850 33 0.22 0.01 1452 | 0.30 0.22 210.48 0.45 0.01 0.00 22
37 721 37 0.42 0.01 58.56 | 0.47 0.27 0.75 0.01 0.01 45
75692 43 0.78 0.02 23953 | 0.86 0.33 1.58 0.01 0.01 92
151 359 55 1.81 0.03 1.84 0.53 3.22 0.02 0.02 187
302778 81 3.63 0.06 3.64 0.88 6.19 0.02 0.02 373
605 402 135 7.14 0.09 7.48 1.63 12.00 0.02 0.03 746
Channel validation pattern in model family B
EMF/Java MDT-OCL INCQuery
Model Elements # | Model size [MB] | Res [s] Channel [s] Res [s] Channel [s] Res [s] Channel [s] Mem OH [MB]
2972 30 0.06 0.00 0.14 0.17 0.19 0.00 2
6 237 31 0.09 0.02 0.16 0.22 0.27 0.00 4
12 708 32 0.16 0.00 0.25 0.31 0.38 0.00 8
24 885 34 0.28 0.03 0.34 0.33 0.89 0.00 14
47 228 38 0.49 0.06 0.53 0.48 1.28 0.00 28
90 586 a4 1.13 0.09 1.20 0.80 2.41 0.00 55
180 389 58 1.94 0.19 2.05 1.41 4.56 0.00 111
370 660 91 4.06 0.39 4.08 2.50 9.00 0.00 225
752172 156 8.09 0.80 8.11 5.00 20.38 0.00 456
1558 100 295 17.28 1.59 17.39 10.13 40.22 0.00 943

Legend: Res —resource loading time
Mem OH — memory overhead




Assessment of the benchmark

" High performance complex queries are hard to
write manually in Java.

= |ncQuery can do the trick nicely as long as you
have enough RAM.

= Metamodel structure has huge impact on
performance when using “conventional” query
technologies such as OCL, due to

o Lack of reverse navigation

o Lack of type enumeration (.allinstances())




Contributions

= Expressive declarative query language by graph patterns
o Capture local + global queries
o Compositionality + Reusabilility
o Transitive closure, Negation

* Incremental cache of matches (materialized view)
o Cheap maintenance of cache (only memory overhead)

o Notify about relevant changes

o Enable reactions to complex structural events

= High performance for large models
o Linear overhead for loading
o Instant response for queries
o > 1 million model elements (on a desktop PC)




CONCLUSION




Closing thoughts

= On-the-fly validation is only one scenario
Early model-based analysis

Language engineering in graphical DSMLs
Soft-inter connections

Model execution/analysis (stochastic GT)
Tool integration

Model optimization / constraint solving

O O O O O O O

Design Space Exploration

o ..

= The tutorial examples

o Do not make use of advanced features such as parameterized queries or
complex structural constraints (recursion)

o Are meant only as a starting point

o The project website has many more examples!




Model transformations based on IncQuery

High performance model transformations
o Hybrid query approach

* Use IncQuery for
— Complex queries
— Frequently used queries
— Parameterized queries

* Plain Java for simple queries (saves RAM)

o Java for control structure & model manipulation
High-level transformation languages (VIATRA2, ATL,

Epsilon, ...) could be “compiled” to run on this
infrastructure

Ongoing research: automatic mapping of SPARQL, OCL &
others to the IncQuery language




Wish-list IncQuery features ©

= Declarative query language

o Easy to learn

o Good bindings to the imperative world (Java)
o Safe yet powerful

o Reusable

"= High performance
o Fast execution for complex queries over large models
o First-class support for incremental execution

= Technology
o Works with EMF out-of-the-box




= Pointers
o Eclipse webpage:
* http://www.eclipse.org/incquery/
o ,,Official webpage”

* https://incquery.net/
— Documentation, language reference
— Tutorials
— Examples
— Source code




