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MOTIVATION 



First of all… 

 What is a model query? 

o A piece of code that looks for certain parts of the 
model. 

 “Mathematically” 

o Query = set of constraints that have to be satisfied by 
(parts of) the model. 

o Result = set of model elements (element 
configurations) that satisfy the constraints of the 
query. 

 A query engine? 

o Supports the definition/execution of model queries. 

 



Hi Jane, what do you do at work? 

Jane 

Boss 

Detect 

Report 
View 

Constraint 

Gen 



Model queries 

 Queries are at the heart of MDD. 

o Views 

o Reports 

o Generators 

o Validators 

o… 

 Development issues 

o Complex queries are hard to write 



Issues with query development 

 Hard to write? 

 Your options 

o Java (or C/C++, C#, …) 

o Declarative languages (OCL, EMF Query 1-2, …) 

 Imperative query languages Declarative query languages 

Expressive power  (you write lots of code)  (very concise) 

Safety  (precise control over what 
happens at execution) 

 
(unintended side-effects) 

Learning curve  (you already know it)  (may be difficult to learn) 

Reusability  (standard OO practices)  (???) 

Performance  (considerable manual 
optimization necessary) 

 (depends on various 
factors) 



Issues with query execution 

 Query performance 

o = Execution time, as a function of 

• Query complexity 

• Model size / contents 

• Result set size 

 Incrementality 

o Don’t forget previously computed results! 

o Models changes are usually small, yet up-to-date 
query results are needed all the time. 

o Incremental evaluation is an essential, but not a very 
well supported feature. 

 



Model query engine wish list 

 Declarative query language 

o Easy to learn 

o Good bindings to the imperative world (Java) 

o Safe yet powerful 

o Reusable 

 High performance 

o Fast execution for complex queries over large models 

o First-class support for incremental execution 

 Technology 

o Works with EMF out-of-the-box 



STATE OF THE ART 



Problem 1: Expressiveness 
 EMF Query (declarative) 

o Low expressiveness 

o Limited navigability 

• no „cycles” 

 OCL (declarative) 

o Verbose  

o Lack of reusability support 

o Local constraints of  
a model element 

o Poor handling of recursion 

Challenging to use 



Problem 2: Incrementality 

 Goal: Incremental evaluation of model queries 

o Incremental maintenance of result set 

o Avoid unnecessary re-computation 

 Related work:  

o Constraint evaluation (by A. Egyed) 
• Arbitrary constraint description 

– Can be a bottleneck for complex constraints 

– Always local to a model element 

• Listen to model notifications  

• Calculate which constraints need to be reevaluated 

o No other related technology directly over EMF 

o Research MT tools: with varying degrees of support 



Problem 3: Performance 

 Native EMF queries (Java program code):  
Lack of  

o Reverse navigation along references 

o Enumeration of all instances by type 

o Smart Caching 

 

 Scalability of (academic) MT tools 

o Queries over >300K model elements (several proofs):  
FUJABA, VIATRA2 (Java), GrGEN, VMTS (.NET), Egyed’s 
tools 

 



EMF-IncQuery 

 Expressive declarative query language by graph patterns 

 

 

 

 Incremental cache of matches (materialized view) 

 

 

 

 High performance for large models 



INCQUERY TECHNOLOGY 
OVERVIEW 



Technology Overview 
 What is EMF-INCQuery? 

o Query language + incremental pattern matcher + 
development tools for EMF models 

• Works with any (pure) EMF application 

• Reusability by pattern composition 

• Arbitrary recursion, negation 

• Generic and parameterized model queries 

• Bidirectional navigability 

• Immediate access to all instances of a type 

• Complex change detection 

 Benefits 

o Fully declarative + Scalable performance 



Contributions 

 Expressive declarative query language by graph patterns 

o Capture local + global queries 

o Compositionality + Reusabilility  

o Transitive closure, Negation 

 Incremental cache of matches (materialized view) 

 

 

 High performance for large models 



Example: School metamodel 

 Detailed introduction of the example 
incquery.net/incquery/new/examples/school 



IQPL - Simple queries 

pattern schools(Sch) = { 
School(Sch); 
} 
 
pattern teachers(T) = { 
Teacher(T); 
} 
 
pattern teachersOfSchool(T:Teacher,Sch:School) = { 
School.teachers(Sch,T); 
} 
pattern studentOfSchool(S:Student,Sch:School) = { 
Student.schoolClass.courses.school(S,Sch); 
} 
 
 



IQPL - Simple queries 

pattern schools(Sch) = { 
School(Sch); 
} 
 
pattern teachers(T) = { 
Teacher(T); 
} 
 
pattern teachersOfSchool(T:Teacher,Sch:School) = { 
School.teachers(Sch,T); 
} 
pattern studentOfSchool(S:Student,Sch:School) = { 
Student.schoolClass.courses.school(S,Sch); 
} 
 
 

Query 
parameters 

Type 
constraints 

Navigation – no 
restcitions on the 

navigation! 

Query 
definition 

Syntactic 
Sugar 

Path expression 



IQPL – pattern composition and NAC 

pattern coursesOfTeacher(T:Teacher, C:Course) = { 
Teacher.courses(T,C); 
} 
 
pattern classesOfTeacher(T, SC) = { 
find coursesOfTeacher(T,C); 
Course.schoolClass(C,SC); 
} 
pattern teacherWithoutClass(T:Teacher) = { 
neg find classesOfTeacher(T,SC); 
} 



IQPL – pattern composition and NAC 

pattern coursesOfTeacher(T:Teacher, C:Course) = { 
Teacher.courses(T,C); 
} 
 
pattern classesOfTeacher(T, SC) = { 
find coursesOfTeacher(T,C); 
Course.schoolClass(C,SC); 
} 
pattern teacherWithoutClass(T:Teacher) = { 
neg find classesOfTeacher(T,SC); 
} 

Automatic type 
inference – type 

constraints can be 
omitted 

Pattern call 

Negative 
application call 



IQPL – transitive closure and disjunction 

pattern friendlyTo(S1:Student, S2:Student) = { 
Student.friendsWith(S1,S2); 
} or { 
Student.friendsWith(S2,S1); 
} 
 
pattern inTheCircleOfFriends(S1:Student,Someone:Student) = { 
find friendlyTo+(S1,Someone); 
S1!=Someone; // we do not allow self loops 
} 
pattern moreFriendsThan(S1 : Student, S2 : Student) { 
N == count find inTheCircleOfFriends(S1, _Sx1); 
M == count find inTheCircleOfFriends(S2, _Sx2); 
check(N > M); 
} 
pattern theOnesWithTheBiggestCircle(S:Student) = { 
neg find moreFriendsThan(Sx,S); 
} 
 



IQPL – transitive closure and disjunction 

pattern friendlyTo(S1:Student, S2:Student) = { 
Student.friendsWith(S1,S2); 
} or { 
Student.friendsWith(S2,S1); 
} 
 
pattern inTheCircleOfFriends(S1:Student,Someone:Student) = { 
find friendlyTo+(S1,Someone); 
S1!=Someone; // we do not allow self loops 
} 
pattern moreFriendsThan(S1 : Student, S2 : Student) { 
N == count find inTheCircleOfFriends(S1, _Sx1); 
M == count find inTheCircleOfFriends(S2, _Sx2); 
check(N > M); 
} 
pattern theOnesWithTheBiggestCircle(S:Student) = { 
neg find moreFriendsThan(Sx,S); 
} 
 

Disjunction 

Transitive 
closure 

Check 
expression 

Example application of 
effective NAC 

application 



IQPL - Advanced model query 

 

24 

pattern teachersWithMostCourses( 
 School : School, Teacher : Teacher) = { 
   School.teachers(School,Teacher); 
   neg find moreCourses(Teacher);} 
 
pattern moreCourses(Teacher : Teacher) = { 
    N == count find coursesOfTeacher(Teacher,_Course); 
    M == count find coursesOfTeacher(Teacher2,_Course2); 
    Teacher(Teacher2); 
    Teacher != Teacher2; 
    check(N < M);} 

Match 
counting 



INCQUERY Development Tools 

Query Explorer 

Pattern Editor 

Queries are applied 
& updates on-the-
fly 

• Works with most EMF-
based editors out-of-
the-box 

• Reveals matches as 
selection 



Contributions 

 Expressive declarative query language by graph patterns 

o Capture local + global queries 

o Compositionality + Reusabilility  

o Transitive closure, Negation 

 Incremental cache of matches (materialized view) 

o Cheap maintenance of cache (only memory overhead) 

o Notify about relevant changes (new match – lost match) 

o Enable reactions to complex structural events 

 High performance for large models 

 



 RETE network 
o node: (partial) matches  

of a (sub)pattern 

o edge: update  
propagation 

 

 

 

 

 

 

 

 Demonstration 
o input: UML model 

o pattern: UnusedData 

o change: delete/retarget type reference 

RETE nets 

INPUT 

 T : type 

D : Data 

TE: TypedElement 

INPUT 

TE: TypedElement 

INPUT 

D : Data 

JOIN 

D : Data 

TE: TypedElement 

 T : type 

ANTI-JOIN 

NEG 

 T : type 

D: Data 

TE: TypedElement 

UnusedData(D) 

a b c 

x z w 

p s 

 Data objects 

TypedElement objects 
 

TypedElement.type edges 

x z w a b c 

p s 

p x s z 

c 

p 

p 

p x 

a 

Input nodes 

Intermediate 
nodes 

In-memory model(EMF 
ResourceSet) 

Production 
node 

PATTERN 
UnusedData(D) 

D: Data 

TE: TypedElement 

NEG 

T:
 t

yp
e

 

Notification 
 
Transparent: user modification, 
model imports, results of a 
transformation, external 
modification, …  
 RETE is always updated! 

UnusedData(D) 
A data entity  to which no type reference 
points 
•Parameter 
•Variable 

Experimental results: 
good, if… 
o There is enough 

memory 

o Transactional model 
manipulation 



Application 

Framework 

API 

EMF-INCQUERY Architecture v0.7 

RETE Core 
EMF INC PM 

Core 

Your code 

Pattern/Query 
specification 

Generated 
pattern matcher 

IncQuery BASE 

tooling 

Reflective pattern 
matcher 

Validation 
Engine 

• The RETE algorithm 
makes all the magic work 

• Well-known in rule-
based systems 



IncQuery BASE  

 Light-weight Java library for simple (yet very powerful) EMF model 
queries, with incremental evaluation 

 Supports 
o Get all instance elements by type 

o Reverse navigation along references 

o Get model elements by attribute value/type 

 Very easy to integrate into any EMF tool (pure Java) – standalone! 

 Same high performance and scalability as IncQuery 

 Incremental transitive closure 
o Computation of e.g. reachability regions, connected model partitions, … 

o Innovative new algorithm for general graphs 



Development workflow 

Develop EMF 
domain 

Develop and test 
queries 

Use/Generate 
INCQUERY code 

Integrate into EMF 
application 

Automated Automated 

Supported by 
Xtext 2 

Semi-automated for 
typical scenarios, 

 some manual coding 



Generated pattern matchers 

 INCQuery runtime 

o Eclipse plugin 

• Depends only on EMF and the INCQuery core 

• No VIATRA2 dependency!  

o Private code: pattern builders 

• Parameterize the RETE core and the generic EMF PM library 

o Public API: Pattern matcher access layer 

• Query interfaces 

• Data Transfer Objects (DTOs) 

• Used to integrate to EMF applications  



Generated Sample UI 

 Command contributions 

o Project explorer, Navigation, Package Explorer 

o Perform model loading and query execution 

o Display the results on the UI 

• List (default) 
– Pretty prints a list of matches 

• Counter 
– Prints the number of matches 

 



IncQuery Runtime 

Generic Query API 
 

Generated Change 
API 

Generated Query 
API 

Generic Change API 
 



Generated Query API 

 Basic queries 

o Uses tuples (object arrays) corresponding to pattern parameters 

o Object[] getOneMatch() 

o Collection<Object[]> getAllMatches() 

 Parameterized queries 
o getOneMatch(Object X, Object Y, …) 

o getAllMatches(Object X, Object Y, …) 

o Null input values = unbound input variables 

Based on pattern 
signature 



Query Signatures 

 Data Transfer Objects generated for  
pattern signatures 
 
 

 Signature query methods 
o classesOfTeacherSignature getOneMatch() 

o classesOfTeacherSignature 

getOneMatchAsSignature(Object T,  

Object SC) 

o Collection< classesOfTeacherSignature> 

getAllMatchesAsSignature() 

o Collection< classesOfTeacherSignature> 

getAllMatchesAsSignature(Object T, 

Object SC) 

 T, SC: EObjects or  
datatype instances  
(String, Boolean, …) 

 

public class  

classesOfTeacherSignature 

{ 

 Object T; 

 Object SC; 

} 

pattern classesOfTeacher(T, SC) = 
{ 
find coursesOfTeacher(T,C); 
Course.schoolClass(C,SC); 
} 



Query Signatures 

 Data Transfer Objects generated for  
pattern signatures 
 
 

 Signature query methods 
o classesOfTeacherSignature getOneMatch() 

o classesOfTeacherSignature 

getOneMatchAsSignature(Teacher T, 

SchoolClass SC) 

o Collection< classesOfTeacherSignature> 

getAllMatchesAsSignature() 

o Collection< classesOfTeacherSignature> 

getAllMatchesAsSignature(Teacher T, 

SchoolClass SC) 

 T, SC: EObjects or  
datatype instances  
(String, Boolean, …) 

 

public class  

classesOfTeacherSignature 

{ 

 Teacher T; 

 SchoolClass SC; 

} 

pattern classesOfTeacher(T, SC) = 
{ 
find coursesOfTeacher(T,C); 
Course.schoolClass(C,SC); 
} 



Integrating into EMF applications 

 Pattern matchers may be initialized for 

o Any EMF Notifier 

• e.g. Resources, ResourceSets 

o (TransactionalEditingDomains) 

 Initialization 

o Possible at any time 

o Involves a single exhaustive model traversal 
(independent of the number of patterns, pattern 
contents etc.) 



Typical programming patterns 

1. Initialize EMF model 

o Usually already done by your app  

2. Initialize incremental PM whenever necessary 

o Typically: at loading time 

3. Use the incremental PM for queries 

o Model updates will be processed transparently, with minimal 
performance overhead 

o Delta monitors can be used to track complex changes 

4. Dispose the PM when not needed anymore 

o + Frees memory 

o - Re-traversal will be necessary 

 



BPMN well-formedness rules 

 Traditionally specified by OCL constraints 

o OCL constraints can be attached to any EMF instance 
model via EMF Validation 

 Rules specified by 

o Tool developers 

o (End users) 



Well-formedness checking from a tool developer’s perspective 

 Well-formedness rules 

o Express constraints not (easily) possible by metamodeling 
techniques 

o Ensure “sane” modeling conventions & best practices 

o Aid code generation by design-time validation 

 Example: 

Soliciting X Instructing 

Deciding 

X 

P
o

o
l A

 

Contracting X 

X 

Persist 
Contract 

X 

Start 
Proceed? 

End 

Proceed? 

Proceed? 

Join 

Join Cancel 

Inconsistency: 
Conditional edge 

preceded by gateway 
Inconsistency : End 

event is source of edge 

Inconsistency : 
Message betwen 

elements in same pool 

x 
x x 



IncQuery Validation Engine 

 Simple validation engine 

o Supports on-the-fly validation through incremental 
pattern matching and problem marker management 

o Uses IncQuery graph patterns to specify constraints 

 Simulates EMF Validation markers 

o To ensure compatibility and easy integration with 
existing editors 

o Doesn’t use EMF Validation directly 

• Execution model is different 

 



How it works – IncQuery Change API 

 Track changes in the match set of patterns (new/lost) 

 Delta monitors 

o May be initialized at any time 

o DeltaMonitor.matchFoundEvents / 

DeltaMonitor.matchLostEvents 

• Queues of matches (tuples/Signatures) that have appeared/disappeared 
since initialization 

 Typical usage 

o Listen to model manipulation (transactions) 

o After transaction commits: 
• Evaluate delta monitor contents and process changes 

• Remove processed  tuples/Signatures from .matchFound/LostEvents 



Well-formedness rule specification by graph patterns 

 WFRs: Invariants which must hold at all times 

 Specification = set of elementary constraints + 
context 

o Elementary constraints: Query (pattern) 

o Location/context: a model element on which the 
problem marker will be placed 

 Constraints by graph patterns 

o Define a pattern for the “bad case” 

• Either directly 

• Or by negating the definition of the “good case” 

o Assign one of the variables as the location/context 

Match:  
A violation of 
the invariant 



pattern loopingActivity(A : Activity)= { 
Activity.looping(A, true); 
} 
  
@Constraint(location = "A", message = "$A.name$ is a bad looping 
activity", severity = "warning" ) 
pattern badLoopingActivity(A : Activity)= { 
find loopingActivity(A); 
Activity.name(A, Name); 
check(!(Name as String).startsWith("Loop")); 
} 

EXAMPLE 

 “All Behaviors must have an 
Operation as their specification.” 
o Otherwise they do not have any 

“interface” through which they could be 
accessed  “dead code”  

 Bad case: 

A simple BPMN validation constraint 



pattern loopingActivity(A : Activity)= { 
Activity.looping(A, true); 
} 
  
@Constraint(location = "A", message = "$A.name$ is a bad looping 
activity", severity = "warning" ) 
pattern badLoopingActivity(A : Activity)= { 
find loopingActivity(A); 
Activity.name(A, Name); 
check(!(Name as String).startsWith("Loop")); 
} 

EXAMPLE 

 “All Behaviors must have an 
Operation as their specification.” 
o Otherwise they do not have any 

“interface” through which they could be 
accessed  “dead code”  

 Bad case: 

A simple BPMN validation constraint 

Identify pattern 
variable “Activity” as 

the location 

Path expression 



Generated Sample Validation project 

 Java classes: Constraint descendants 

 Plugin.xml 
• Constraint registration 

• UI integration 
– Editor ID from genmodel 

 



Validation lifecycle 

 Constraint violations 

o Represented by Problem Markers (Problems view) 

o Marker text is updated if affected elements are 
changed in the model 

o Marker removed if violation is no longer present 

 Lifecycle 

o Editor bound validation (markers removed when 
editor is closed) 

o Incremental maintenance not practical outside of a 
running editor 

 



Validation UI integration 

 A menu item (command) to start the validation 
engine 

 Generic (part of the IncQuery Validation 
framework) 

o GMF editor command 

• Appears in all GMF-based editor’s context menu 

o Sample Reflective Editor command 

• Appears on the toolbar 

 Generated 

o EMF generated tree editor command 

• Appears on the toolbar 



EXAMPLE GUI - INCQUERY Model Validation 

Markers in the Problems View 

Standard Eclipse BPMN Editor 

• Works with most EMF-
based tools out-of-the-
box 

• Manages error-warning 
markers on-the-fly as the 
user is editing the model 
= Instantaneous feedback 



PERFORMANCE BENCHMARKING 



Challenges 

 Performance evaluations are hard 

o Fair? 

o Reliable? 

o Reproducible? 

o Can the results be generalized? 

 Benchmark example:  
on-the-fly constraint validation over AUTOSAR models 

o Conference presentation at MODELS 2010 

o Motivation: the Embedded Architect Tool of OptXware Ltd. 

o AUTOSAR models can be very large (>>1m elements) 



What is measured? 

 Sample models were generated 
o matches are scarce relative to overall model size 

 On-the-fly validation is modeled as follows: 
1. Compute initial validation results 

2. Apply randomly distributed, small changes 

3. Re-compute validation results 

 Measured: execution times of 
o Initialization (model load + RETE construction) 

o Model manipulation operations (negligible) 

o Validation result (re)computation 

 Compared technologies 
o MDT-OCL 

o Plain Java code that an average developer would write 

 

 



IncQuery Results 

 Hardware: normal desktop PC (Core2, 4GB RAM) 

 Model sizes up to 1.5m elements 

 Initialization times (resource loading + first validation) 
o <1 sec for model sizes below 50000 elements 

o Up to 40 seconds for the largest model (grows linearly with the model size) 

 Recomputation times 
o Within error of measurement (=0), independent of model size 

o Retrieval of matches AND complex changes is instantaneous 

 Memory overhead 
o <50 MB for model sizes below 50000 elements 

o Up to 1GB for the largest model (grows linearly with model size) 

 How does it compare to native code / OCL? 



Initialization time 

• Includes time for 
first validation 
• Linear function of 
model size, orders 
of magnitude faster 



Recomputation time 

Recomputation 
time is uniformly 

near zero 
(independent of 

model size) 



Performance overview 



Assessment of the benchmark 

 High performance complex queries are hard to 
write manually in Java. 

 IncQuery can do the trick nicely as long as you 
have enough RAM. 

 Metamodel structure has huge impact on 
performance when using “conventional” query 
technologies such as OCL, due to 

o Lack of reverse navigation 

o Lack of type enumeration (.allInstances()) 



Contributions 

 Expressive declarative query language by graph patterns 

o Capture local + global queries 

o Compositionality + Reusabilility  

o Transitive closure, Negation 

 Incremental cache of matches (materialized view) 

o Cheap maintenance of cache (only memory overhead) 

o Notify about relevant changes 

o Enable reactions to complex structural events 

 High performance for large models 

o Linear overhead for loading  

o Instant response for queries 

o > 1 million model elements (on a desktop PC) 



CONCLUSION 



Closing thoughts 

 On-the-fly validation is only one scenario 
o Early model-based analysis  

o Language engineering in graphical DSMLs 

o Soft-inter connections 

o Model execution/analysis (stochastic GT) 

o Tool integration  

o Model optimization / constraint solving 

o Design Space Exploration 

o … 

 The tutorial examples 
o Do not make use of advanced features such as parameterized queries or 

complex structural constraints (recursion) 

o Are meant only as a starting point 

o The project website has many more examples! 



Model transformations based on IncQuery 

 High performance model transformations 

o Hybrid query approach 
• Use IncQuery for  

– Complex queries 

– Frequently used queries 

– Parameterized queries 

• Plain Java for simple queries (saves RAM) 

o Java for control structure & model manipulation 

 High-level transformation languages (VIATRA2, ATL, 
Epsilon, …) could be “compiled” to run on this 
infrastructure 

 Ongoing research: automatic mapping of SPARQL, OCL & 
others to the IncQuery language 



Wish list IncQuery features  

 Declarative query language 

o Easy to learn 

o Good bindings to the imperative world (Java) 

o Safe yet powerful 

o Reusable 

 High performance 

o Fast execution for complex queries over large models 

o First-class support for incremental execution 

 Technology 

o Works with EMF out-of-the-box 



Pointers 

 Pointers 

o Eclipse webpage: 

• http://www.eclipse.org/incquery/ 

o „Official webpage” 

• https://incquery.net/ 
– Documentation, language reference 

– Tutorials 

– Examples 

– Source code 

– … 


