EMF-INCQUERY

Incremental evaluation of model queries

Model Driven Systems Development
Lecture 04

IncQuery

Budapest University of Technology and Economics

Department of Measurement and Information Systems

MOTIVATION

Motivation: Early validation of design rules

SystemS|gnaIGroup de5|gn rule (from AUTOSAR)

Mapping ISlgnals to IPDUs

ones AUTOSAR:

!
3

=t [Sana e standardized SW architecture

B &_sigredalrosition A sigredalPosition . .
B 5_igspeedvalus smecsren of the automotive industry
Ed ch_sigEnqineTemperature Jl;—sigEngineTempera .
F3 b sitgton A sgtanton e now supported by modern modeling tools
B ch_sigrpm A sightpm - -
= B3 hstos s Design Rule/Well-formedness constraint:
ch_status_ccActive skatus_coAckive

1 e each valid car architecture needs to respect
Position of [Signals n the selected [FDU e designers are immediately notified if violated
E}%h_status_ccﬁpeedu %h_status_cc.ﬁ.ctive %h_status_ i Cha I Ienge :

” e >500 design rules in AUTOSAR tools

5 Mo |) system et demosstem X ¢ >]1 million elements in AUTOSAR models

® Elenent des'pton | - . models constantly evolve by designers

} etrars, 2 warnings, O others

Description =

= & Errors (4 ikems) / .
3 I5ignal of a grouped Svskem Signal should be mapped ta an IPdu along with the TZAMET0r Ehe System Signal Group demo_swe, arxml lalma frootP... AUTOSARP...
@ 1signal of a grouped System Signal should be mapped ko an IPdu along with the ISignal of the System Signal Group | demo_swi, arxml lalma frootP... AUTOSARP...
@ 15ignal of a grouped System Signal should be mapped ko an IPdu along with the ISignal of the System Signal Group | demo_swi, arxml lalma JrootP... AUTOSARP...
@3 Reference iPduTimingSpecification has invalid mulkiplicices! (Must be in: [1, 1] demao_swe. arxml lalma JrootP... AUTOSARP...

ol [[P S . T S |

Domain-Specific Modeling Languages

Signal L+ entry Route . Sensor
| [actualState : SignalStatekind L4 exit + 'wmn&ﬁmt;jz =
ﬁ\ L | + route + sensar | *
N «type»
\
SignalStateKind >y * | + switchPosition + trackElement | *
= STOP \\ SwitchPosition TrackElement |
= FAILLIRE N | [switchState : SwitchStateKind
= GO \ § 4 connectsTo
\\ * | 4 switchPosition . |
\\
SwitchStateKind \ _ '
=1 FAILLIRE \‘ L | + switch
=] LEFT "\ Switch Segment
=1 RIGHT Bgate : SwitchStateKind 5 length : Elnt
LEEED.IE te : Swatchhiatekl K 2ng =]
= STRAIGHT \
\

2 emm) E/

Validation of Well-formedness Constraints

Domain-specific

modeling languages * pattern switchWOSignal(sw) {
+ connec ted[| E SWItCh(SW)
Sisignal | 4 mountedTo Emckﬂer;;"t ‘ \ neg find switchHasSignal(sw);

pattern switchHasSignal(sw) {
- Switch(sw);

- Signal(sig);
Signal.mountedTo(sig, sw);

Model sizes in practice

= Models with 10M+ elements are common:
o Car industry
o Avionics
o Source code analysis

= Models evolve and change continuously

Application Mod Validation can take hours
System models 108

Sensor data 10°

Geospatial models 1012

Source: Markus Scheidgen, How Big are Models — An Estimation, 2012.

MODEL QUERIES
AND GRAPH PATTERN MATCHING

What is a model query?

= For a programmer:
o A piece of code that searches for parts of the model

= For the scientist:

o Query = set of constraints that have to be satisfied by
(parts of) the (graph) model

o Result = set of model element tuples that satisfy the
constraints of the query

o Match = bind constraint variables to model elements

" A query engine: Supportieita V) aRiCeysiGRE)
e all tuples of model elements g,6

o the definition&execution R ilae ki =X L= Aee 1 elilo)s
of model queries e along the match A=aand B=b6
' parameters A,B can be input/ output

o <G

L] EGYETEM 1782

Categorization of Query Languages

= Hard to write?

= Your options
o Java (or C/C++, C#, ...)
o Declarative languages (OCL, EMF Query 1-2, ...)

_ Imperative query languages Declarative query languages

Expressive power ® (you write lots of code) © (very concise)
Safety ©O (precise control over what ©®

happens at execution) (unintended side-effects)
Learning curve © (you already know it) ® (may be difficult to learn)
Reusability © (standard OO practices) A (???)
Performance ®© (considerable manual ©® (depends on various

optimization necessary) factors)

Graph Pattern Matching for Queries

switchPosition
L route: Route
8 routeDefinition

v sensor ::
sensor: Sensor € v

E E guunt® ';" g
E I—.ﬁ,—l ¢““‘ :.
;ﬁ | ﬁ AI : om:L=2> G
. straight| =|, , n .

— j : (graph morphism)

o CSP:
* Variables: Nodes of L

* Constraints: Edges of L

* Domain values: G

o Complexity: |G| Al

All sensors with a switch that belongs to a route must directly be linked to the same route.

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
w routeDefinition 0
Y sensor

sensor: Sensor [€ switch: Switch

=) = Search Plan:

;ﬁ i aM ém ;A. o Select the first node

to be matched

switch

o Define an ordering on
graph pattern edges

= Search is restarted from
scratch each time

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition

w routeDefinition switch
A 4 sensor]]
sensor: Sensor |€ e switch: Switch
-
s = Search Tree:

straight qu 6“ 4'&1

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
“ routeDefinition e
Y sensor

sensor: Sensor [€ switch: Switch

-
e = Alternate Search Tree:

uifzoglE YRGIE Y

switch

/ Local Search
based PM
e Runtime depends
on search plan
e Good search plan:
narrow at root
wide at leaves

INCREMENTALITY IN
QUERIES AND TRANSFORMATIONS

Performance of query evaluation

" Query performance = Execution time
as a function of
o Query complexity
o Model size
o Result set size

= Motivation for incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
qguery results are needed all the time.

o Incremental evaluation is an essential, but not a well
supported feature.

Incremental Graph Pattern Matching

8 routeDefinition

Y

sensor: Sensor

sensor

<€

switchPosition ; w

switch

%ﬂ straight 4&|

at

switch: Switch

route _|sp[switch | sensor
rl spl swl

= Main idea: More space to less time
o Cache matches of patterns
o Instantly retrieve match (if valid)
o Update caches upon model changes
o Notify about relevant changes

= Approaches:
o TREAT, LEAPS, RETE, ...

o Tools: VIATRA, GROOVE, MoTE, TCore

Batch vs. Live Query Scenarios

= Batch query
(pull / request-driven):

1.
2.

Designer selects a query

One/All matches are
calculated

Rule is applied on one/all
matches

All Steps 1-3 are redone if
model changes

= (Query results obtained
upon designer demand

= Live query

(push / event-driven):
Model is loaded
Rule system is loaded

N Sl

Calculate full match set

D

Model is changed (rules
fired or designer updates)

5. lterate Steps 3 and 4 until
rule system is stopped
= Query results are always
available for designer

EMF-IncQuery: An Open Source Eclipse Project

@

e Declarative graph query

language
* Transitive closure,
Negative cond., etc.

e Compositional, reusable

http://eclipse.org/incquery

&

p

¢ Incremental evaluation

~

e Cache result set

e Maintain incrementally
upon model change

Execution

e Derived features,
e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

INCREMENTAL MODEL QUERIES:

THE LANGUAGE

The IncQuery (1Q) Graph Query Language

switchPosition
route: Route
8 routeDefinition

Y

sensor

sensor: Sensor €

pattern routeSensor(sensor: Sensor) = {
TrackElement.sensor(switch,sensor);
Switch(switch);
SwitchPosition. switch(sp, switch);
SwitchPosition(sp);
Route.switchPosition(route, sp);
Route(route);
neg find head(route, sensor);

}

pattern head(R, Sen) = {
Route.routeDefinition(R, Sen);

sp: SwitchPosition

switch

Switch: Switch

= |Q: declarative query language

O

O O O O

Attribute constraints

Local + global queries
Compositionality+Reusabilility
Recursion, Negation,

Transitive Closure over
Regular Path Queries

Syntax: DATALOG style

Statecharts metamodel

= Other detailed examples

..{ H TratfichstL

[0.*] visualisations »
[1.1] tophodel [0.*] transitions

[0..%] _-’inte|'Iu|::tT|'a|'|:iti-:||'|s

[0.*] states
! 1 - .
E Visualisation E State]— | EE Transition
- [1..1] start

= red : EBoolean = false = name : EString 1

= green: EBoolean = false ¥ A [1..1] fromState [0..*] outTransition

= yellow : EBoolean = false [1..1] visualisation [::

= : EStri

¢ hame : EString | [1.1] toState -

[0..%] inTransition - _}

E TimedTransition]
= delay : Ent =0

[0.*] fAimedTransitions

E InterruptTransitio n|

:

—_—

= name : EString

[o] B Simple queries

// S is a state of a statemachine with name N

pattern state(S:State, N) {
State.name(S,N);

}

// 0ld VIATRA style

pattern state(S,N) {
State(S);
State.name(S,N);

}

// Smart type inference

pattern state(S,N) {
State.name(S,N);

}

// Checks if a state is red

pattern redState(S: State) {
State.visualisation.red(S, true);
State.visualisation.green(S, false);
State.visualisation.yellow(S, false);

pattern state(S:State,

State.name(S,N);

} [Query parameter

// 0ld VIATRA style
pattern state(S,N)
State(S); 'Type constraint
State.name(S,N); ° .

}

// Smart type inference

pattern state(S,N) {) -
State.name(S,N)e | Attribute navigation

}
// Checks if a state is red

pattern redState(S: State) {
State.visualisation.red(S, true);
State.visualisation.green(S, false);
State.visualisation.yellow(S, false);

"“IPath expression

L] EGYETEM 1782

[o] /NN Simple queries

// S is a state of a statemachine with name N Support for built-in
pattern state(S:State, N) { EMF datatypes:

State.name(S,N); Strings, integers, etc.
}

// 01d VIATRA style // T 1s a timed transition between a
pattern state(S,N) { // from state and a to state with delay D
State(S); pattern timedTransition(T,from,to,D) {

State.name(S,N); Transition.fromState(T,from);

} Transition.toState(T,to);

// Smart type inference TimedTransition(T);

pattern state(S,N) { TimedTransition.delay(T,D);
State.name(S,N); }

} // T is an interrupt transition between a

// Checks if a state is r // from state and a to state with delay D
pattern redState(S: State pattern interruptTransition(T,from,to,E) {

State.visualisation.r« Transition.fromState(T,from);
State.visualisation.gi Transition.toState(T,to);
State.visualisation.y InterruptTransition(T);

} InterruptTransition.name(T,E);

Pattern composition and NAC

'Pattern composition / call

ult of Event is non-deterministic in State
»’nondeterministicState(State, Event) {
find interruptTransition(,State,Tol,Event);
find interruptTransition(_,State,To2,Event);
Tol != To2;
}
// No timed transition going out of a State
pattern noTimedTransition(State) {
State(State);
neg find timedTransition(_,State,, ,);

Negative application Anonymous variables
condition (see Prolog)

[o] /N Transitive closure and disjunction

pattern transition(from,to) {
Transition.fromState(T,from);
Transition.toState(T,to0);

}
pattern reachable(from:State,to:State) {
== . [0
-0 _ Disjunction
}or ‘(on attern level)
find transition+(from,to); X P
} ,

(.
__Transitive closure

pattern unreachableState(S:State) { !___(Over 2 param patterns) |
TrafficDSL.states(dsl,S); '
TrafficDSL.start(dsl,Start);

neg find reachable(Start,S); 1l - i

 negative calls do not bind

variables of header parameters

e patterns should be connected by

edges (avoid Cartesian product)

T

MUEGYETEM 1762

Check expressmn & Match count

teachersWithMostCourses(S,T)

-
1 I
1 1
1 1
' i
H teachers courses #N | |
1| S:School > T:Teacher >| :Course :
i i
1 1
i NEG - courses | #M E
: Tonchors 21T2: Teacher :Course :
1 1
E check (M > N) i
1 1
1

pattern teachersWithMostCourses(

School : School, Teacher : Teacher) = {
School.teachers(School,Teacher);
Ve Neel8glilale}l neg find moreCourses(Teacher);}

tern_moreCourses(Teacher : Teacher) = {
count find coursesOfTeacher(Teacher, Course);
count find coursesOfTeacher(Teacher2, Course2);

N
M
Teacher(Teacher2);
Teacher != Teacher2; Check expression

check(N < M); ‘| for attribute values
- (pure!)

M I: ‘I’ETEHITB

Overview of IncQuery Pattern Language

= Features of the pattern language
o Works with any (pure) EMF based DSL and application
o Reusability by pattern composition
o Arbitrary recursion, negation
o Generic and parameterized model queries
o Bidirectional navigability of edges / references
o Immediate access to all instances of a type
o Complex change detection

= Benefits

o Fully declarative + Scalable performance

INCQUERY Development Tools

BUTE.school - Eclipse - fUsers

Java school.instancemodel/

— Works with most EMF-

& BUTE.schoal

S based editors out-of-

v | B G
=0

=

schoolqueries.eiq £3

Courses of a teacher. ource/fsc

¥ <= 5choal Hapest Ui
) P <= Yeal h _b h11
Teacher T teaches in Course C b 4 Yea t e OX 12

!
!

= pattern coursesOfTeacher(T:Teacher, C:Course) = {
Teacher.courses(T,C};

<= Teal
<= Teal
<= Teal

Andras

 Reveals matches as

Peter S:

P * Daniel *
g T selection ==
. \ ourse Fault-to

* Teacher T teaches a course which is being taught to School

*

<4 Course Prolog progra
4 Course Graph transformatio)

4 Course Pralog p
4 Course Graph tr

F

pattern classesOfTeacher(T:Teacher, SC:SchoolClass) = {
find coursesOfTeacher(T,C);
Course.schoolClass(C,5C);

n Editor N

Selection | Parent | List | Tree | Table | Tree with Col

{ Prgblems | ') SVN Repositories & console Ei':' Synchronize ﬁl’l

—

Patte

E Properties &2 = e] Error Log B — O

iQ Query Explorer &3

Property Value b 8 <chool WithWeightThi A h (Runt Details / Filters 4
school.courseWithWeightThirty - 1 matc untime)
Courses 4 Course Model-driven s... QO hoolinTheCircl Dng' d n:',rs tch (Runtime) Parameter \."al.u_e
Homersomed. . < Class D '@ school.inTheCircleOfFriends matches untime T Daniel Varro

8 school.classesOfTeacher - 4 matches (Runtime)
» 8 school.teachers - 4 matches (Runtime)
F B school.theOnesWithTheBiggestCircle - 3 matches (Runtime)

Qu e rl es are a p p | |e d & P 8 school.teachersOfSchaol - 4 matches (Runtime)

85 bpmnl.lonelyActivity - No matches (Runtime)

» 8g school.schools - 1 match (Runtime)
u p d ate S O n —t h e —fI y # 8 school.studentOfSchool - 5 matches (Runtime)
¥ ®g school.teachesTheMostCourses - 1 match (Runtime)
® T=Daniel Varro
» @ school.finalPattern - 2 matches (Runtime)
» 8 school teacherWithoutClass - 1 match (Runtime)

®g bpmnl.badLoopingActivity - No matches (Runtime) Qu e ry EXp I O re r

n® Selected Object: Teacher Daniel Varro

EGYETEM 1782

EMF-IncQuery: An Open Source Eclipse Project

@

e Declarative graph query

language
* Transitive closure,
Negative cond., etc.

e Compositional, reusable

http://eclipse.org/incquery

&

p

¢ Incremental evaluation

~

e Cache result set

e Maintain incrementally
upon model change

Execution

e Derived features,
e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

OVERVIEW OF
INCREMENTAL QUERY EVALUATION

Development workflow

Semi-automated for

typical scenarios,

some manual coding
Develop EMF ' Integrate into EMF

domain application

Automated

Develop and test Use/Generate
gueries - INCQUERY code

Supported by
Xtext 2

EMF-INCQUERY Architecture v0.8

Generated Ll | Pattern/Query
pattern matcher specification

Validation Reflective pattern

Engine matcher

> IncQuery BASE

EMF INC PM
Core

RETE Core

/

* The RETE algorithm makes all it work

et | * Well-known in rule-based systems

Incremental Query Evaluation by RETE

= AUTOSAR well-formedness validation rule
Communication
channel

Logical signal Mapping Physical signal

* |nstance model

" Invalid model fragment | " Valid model fragment |

Incremental Query Evaluation by RETE

worker nodes

inpuNnedes
Read the changes in the
result set (deltas)

@ 0O &

Construction of RETE network

/
/7 neg

- Single network for all
patterns

- Node sharing:
controlled by the developer

(pattern call graph)
rernnrernrnnnnrnrnnnnnnsoiornCallGraph . RETE visualization

RETE Network

« Advanced construction
algorithm
by dynamic programming:
G. Varro et. al (ICMT 2013)

Pattern,

Pattern, Pattern,

EMF-INCQUERY Architecture v0.8

Generated
pattern matcher

tooling

Validation Reflective pattern
Engine matcher

> IncQuery BASE

EMF INC PM
Core

RETE Core

Basic incremental

model access queries

g/

TR
L] EGYETEM 1TEEZ

Pattern/Query
specification

IncQuery Base

= Light-weight Java library for basic (yet very powerful) EMF model
access queries with incremental evaluation

= Supports
o Get all instance elements by type
o Reverse navigation along references
o Get model elements by attribute value/type

= Very easy to integrate into any EMF tool (pure Java) — standalone!
= Same high performance and scalability as IncQuery

" |ncremental transitive closure

o Computation of e.g. reachability regions, connected model partitions, ...

o Innovative new algorithm for general graphs

EMF-IncQuery: An Open Source Eclipse Project

- N
e Declarative graph query

language
* Transitive closure,
Negative cond., etc.

e Compositional, reusable

http://eclipse.org/incquery

Query

p
e Derived features,

e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

p
¢ Incremental evaluation

e Cache result set

e Maintain incrementally
upon model change

~

Execution

INCQUERY VALIDATION
FRAMEWORK

IncQuery Validation Framework

= Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses IncQuery graph patterns to specify constraints

= Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

* Execution model is different

Well-formedness rule specification by graph patterns

= \WWFRs: Invariants which must hold at all times

= Specification = set of elementary constraints +
context
o Elementary constraints: Query (pattern)

o Location/context: a model element on which the
problem marker will be placed

= Constraints by graph patterns Match:

o Define a pattern for the “bad case” A violation of
the invariant

 Either directly
* Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Statechart validation constraint

= “All interrupt names on transitions going out of a single state must
be distinct.”

= Capture the bad case as a query

o There are two outgoing interrupt transitions triggered by the same event

= Add a @constraint annotation to derive an error/warning message

// The result of Event is non-deterministic in State
@Constraint(location = A, message = "$A.name$ is a bad looping activity",
severity = "warning")
pattern nondeterministicState(A, Event) {

find interruptTransition(_,A,Tol,Event);

find interruptTransition(_,A,To2,Event);

Tol != To2;

}

// No timed transition going out of a State
@Constraint(location = State, message = "There should be at most one timed
transition going from a state", severity = "error"
pattern noTimedTransition(State) {
State(State);
neg find timedTransition(_,State, ,);

Validation lifecycle

= Constraint violations
o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present
= Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

Validation Ul integration

= A menu item (command) to start the validation
engine

" Generic (part of the IncQuery Validation
framework)

o GMF editor command
* Appears in all GMF-based editor’s context menu
o Sample Reflective Editor command

* Appears on the toolbar

= Generated

o EMF generated tree editor command

* Appears on the toolbar

CALCULATING DERIVED FEATURES

BY INCREMENTAL QUERIES

Metamodels with Derived Features

[/interruptTransitions(A,B): f Derived
B is an InterruptTransition Reference)
* B is a transition in A)

..{ H TratfichstL

0.*] visualisations) I -
0.7 [1..1]tnpr'.-1::del-‘ [0.*] transitions [0..*] finterfuptTransitions

[0.*] states

v) § .
E Visualisation E State]— t | Eﬁ Transition

- [1..1] start
= red : EBoolean = false = name : EString t

= green : EBoolean = false

|
[1..1] visualisation

[1..1] from5tate [0.*] outTransition
= yellow : EBoolean = false

& name : EString

[1..1] toState - [0..%] inTransition - _}

E TimedTransition] E InterruptTransitiun|

/DeriVEd Featu res. = delay : Eint =0 ‘ = name : EString ‘

:

e Values calculated from other elements

e Defined declaratively as model queries
(e.g. OCL, graph queries)

e Tooling: handle as regular EMF elements ,

—_—

Handling Derived Features as Queries

Derived

Reference

DF specification:

as a query

..{ H TratfichstL
alisations) I -
[1.1] tanndel_‘ [0.*] transitions [0..*] finterfuptTransitions
i ’

@QueryBasedFeature
pattern
interruptTransitions(DSL:TrafficDSL,T)

{

| EQ Transition |

: |
{ Auto-generated

start

TrafficDSL.transitions(DSL,T);
InterruptTransition(T);

DF handler (Java)

private IncqueryDerivedFeature interruptTransitionsHandler;
public EList<InterruptTransition> getInterruptTransitions() {
if (interruptTransitionsHandler == null) {
interruptTransitionsHandler = IncqueryFeatureHelper.getIncqueryDerivedFeature(
this, SystemPackageImpl.Literals.DATA READING_ TASK,
"system.queries.InterruptTransitions”, "TrafficDSL", "InterruptTransition",
FeatureKind.MANY_ REFERENCE, true, false);}
return interruptTransitionsHandler.getManyReferenceValueAsEList(this);}

INCQUERY VIEWERS

Live abstractions

Complex model Computed overlay
aka. “View”

1 Defined by a query
ltems = SELECT ...

Id Label Prop0 Propl

0 N1 a B

1 N2 o D

Live abstractions

Ul update

Complex model Computed overlay
aka. “View”
Change notification

1 Defined by a query
ltems = SELECT ...

Id Label Prop0 Propl

0 N1 a B

IncQuery

| 1 N2 c D

Query result update 2 = e F

INCQUERY Viewers

On-the-fly

abstractions over

1. Model
Modification

the model

-

2. Change Y

Live
Queries

Notifications

3. Continuous,

efficient

Labeled, hierarchic

property graph

Derived ‘
Model

4. Ul updates

synchronization

= Visualize things that are not (directly) present in your model

" Provides an easy-to-use API for integration into your presentation layer

o Eclipse Data Binding

o Simple callbacks

m Query based view annotations

4 Unblink

T “¢ Blink

WX Light event

@Format(color = "#ff0000")
@Item(item = S, 1abe1 - "N")
pattern redState(S: State) { .. }

X Polics event

?Mmgxa

¥4 Polife event
4 Yellow

@Item(item = S, label = "N"))
pattern state(S,N) = { .. } 60 ms
@Format(lineColor = "#0000ff") wileaIEED,
@Edge(source = from, target = to, label = "D ms")
pattern timedTransition(T,from,to,D) = { .. }

@Format(lineColor = "#ff0000")
@Edge(source = from, target = to, label = "E event")
pattern interruptTransition(T,from,to,E) = { .. }

What can | do with all this? — query-based live abstractions

Eclipse
technology —

Trees, tables,
Properties EMF.Edit
(JFace viewers)

The real deal:
doesn’t hide abstract syntax

: GEF, GMF, Easy to read and write
Diagrams L.

Graphiti for non-programmers

Textual DSLs Ktext Easy to read and write

for programmers

Makes understanding and
working with complex models

JFace, Zest,

yFiles INCQUERY

Viewers

Your tool! a lot easier

