
Budapest University of Technology and Economics
Department of Measurement and Information Systems

EMF-INCQUERY
Incremental evaluation of model queries

Model Driven Systems Development
Lecture 04

MOTIVATION

Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal and its group must be in the same IPdu

o Challenge: find violations quickly in large models

o New difficulties

• reverse
navigation

• complex
manual
solution

AUTOSAR:
• standardized SW architecture
 of the automotive industry
• now supported by modern modeling tools
Design Rule/Well-formedness constraint:
• each valid car architecture needs to respect
• designers are immediately notified if violated
Challenge:
• >500 design rules in AUTOSAR tools
• >1 million elements in AUTOSAR models
• models constantly evolve by designers

Domain-Specific Modeling Languages

Abstract

Meta-
model

Model

«type»

Validation of Well-formedness Constraints

Meta-
model

Model

pattern switchWOSignal(sw) {

 Switch(sw);

 neg find switchHasSignal(sw);

}

pattern switchHasSignal(sw) {

 Switch(sw);

 Signal(sig);

 Signal.mountedTo(sig, sw);

}

Query

Modify

User

Result

Model sizes in practice

 Models with 10M+ elements are common:

o Car industry

o Avionics

o Source code analysis

 Models evolve and change continuously

Source: Markus Scheidgen, How Big are Models – An Estimation, 2012.

Application Model size

System models 108

Sensor data 109

Geospatial models 1012

Validation can take hours

MODEL QUERIES
AND GRAPH PATTERN MATCHING

What is a model query?

 For a programmer:

o A piece of code that searches for parts of the model

 For the scientist:

o Query = set of constraints that have to be satisfied by
(parts of) the (graph) model

o Result = set of model element tuples that satisfy the
constraints of the query

o Match = bind constraint variables to model elements

 A query engine: Supports

o the definition&execution
of model queries

Query(A,B) ∧condi(Ai,Bi)
• all tuples of model elements a,b
• satisfying the query condition
• along the match A=a and B=b
• parameters A,B can be input/ output

Categorization of Query Languages

 Hard to write?

 Your options

o Java (or C/C++, C#, …)

o Declarative languages (OCL, EMF Query 1-2, …)

 Imperative query languages Declarative query languages

Expressive power (you write lots of code) (very concise)

Safety (precise control over what
happens at execution)

(unintended side-effects)

Learning curve (you already know it) (may be difficult to learn)

Reusability (standard OO practices) (???)

Performance (considerable manual
optimization necessary)

 (depends on various
factors)

Graph Pattern Matching for Queries

 Match:

o m: L G
(graph morphism)

o CSP:

• Variables: Nodes of L

• Constraints: Edges of L

• Domain values: G

o Complexity: |G|^|L|

L

G
straight

left

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

All sensors with a switch that belongs to a route must directly be linked to the same route.

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Search Plan:

o Select the first node
to be matched

o Define an ordering on
graph pattern edges

 Search is restarted from
scratch each time

1
2

0

3

4

straight

left

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Search Tree:

1
2

0

3

4

straight

left
X

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Alternate Search Tree:

4
3

0

2

1

straight

left
X

X

Local Search
based PM
• Runtime depends
 on search plan
• Good search plan:
 narrow at root
 wide at leaves

INCREMENTALITY IN
QUERIES AND TRANSFORMATIONS

Performance of query evaluation

 Query performance = Execution time
as a function of

o Query complexity

o Model size

o Result set size

 Motivation for incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
query results are needed all the time.

o Incremental evaluation is an essential, but not a well
supported feature.

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Incremental Graph Pattern Matching

 Main idea: More space to less time
o Cache matches of patterns

o Instantly retrieve match (if valid)

o Update caches upon model changes

o Notify about relevant changes

 Approaches:
o TREAT, LEAPS, RETE, …

o Tools: VIATRA, GROOVE, MoTE, TCore

straight

left

route sp switch sensor

r1 sp1 sw1

Batch vs. Live Query Scenarios

 Batch query
(pull / request-driven):

1. Designer selects a query

2. One/All matches are
calculated

3. Rule is applied on one/all
matches

4. All Steps 1-3 are redone if
model changes

 Query results obtained
upon designer demand

 Live query
(push / event-driven):

1. Model is loaded

2. Rule system is loaded

3. Calculate full match set

4. Model is changed (rules
fired or designer updates)

5. Iterate Steps 3 and 4 until
rule system is stopped

 Query results are always
available for designer

• Declarative graph query
language

• Transitive closure,
Negative cond., etc.

• Compositional, reusable

Definition

• Incremental evaluation

• Cache result set

• Maintain incrementally
upon model change

Execution

• Derived features,

• On-the-fly validation

• View generation,

• Works out-of-the-box
with EMF applications

Features

EMF-IncQuery: An Open Source Eclipse Project

http://eclipse.org/incquery

INCREMENTAL MODEL QUERIES:
THE LANGUAGE

The IncQuery (IQ) Graph Query Language

 IQ: declarative query language
o Attribute constraints

o Local + global queries

o Compositionality+Reusabilility

o Recursion, Negation,

o Transitive Closure over
Regular Path Queries

o Syntax: DATALOG style

pattern routeSensor(sensor: Sensor) = {
 TrackElement.sensor(switch,sensor);
 Switch(switch);
 SwitchPosition. switch(sp, switch);
 SwitchPosition(sp);
 Route.switchPosition(route, sp);
 Route(route);
 neg find head(route, sensor);
}
pattern head(R, Sen) = {
 Route.routeDefinition(R, Sen);
}

route: Route sp: SwitchPosition

Switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Example

 Other detailed examples
incquery.net/incquery/new/examples/

Statecharts metamodel

IQPL Simple queries
// S is a state of a statemachine with name N
pattern state(S:State, N) {
 State.name(S,N);
}
// Old VIATRA style
pattern state(S,N) {
 State(S);
 State.name(S,N);
}
// Smart type inference
pattern state(S,N) {
 State.name(S,N);
}
// Checks if a state is red
pattern redState(S: State) {
 State.visualisation.red(S, true);
 State.visualisation.green(S, false);
 State.visualisation.yellow(S, false);
}

// S is a state of a statemachine with name N
pattern state(S:State, N) {
 State.name(S,N);
}
// Old VIATRA style
pattern state(S,N) {
 State(S);
 State.name(S,N);
}
// Smart type inference
pattern state(S,N) {
 State.name(S,N);
}
// Checks if a state is red
pattern redState(S: State) {
 State.visualisation.red(S, true);
 State.visualisation.green(S, false);
 State.visualisation.yellow(S, false);
}

IQPL Simple queries Query definition

Query parameter

Type constraint

Attribute navigation

Syntactic sugar

Path expression

// S is a state of a statemachine with name N
pattern state(S:State, N) {
 State.name(S,N);
}
// Old VIATRA style
pattern state(S,N) {
 State(S);
 State.name(S,N);
}
// Smart type inference
pattern state(S,N) {
 State.name(S,N);
}
// Checks if a state is red
pattern redState(S: State) {
 State.visualisation.red(S, true);
 State.visualisation.green(S, false);
 State.visualisation.yellow(S, false);
}

IQPL Simple queries

// T is a timed transition between a
// from state and a to state with delay D
pattern timedTransition(T,from,to,D) {
 Transition.fromState(T,from);
 Transition.toState(T,to);
 TimedTransition(T);
 TimedTransition.delay(T,D);
}
// T is an interrupt transition between a
// from state and a to state with delay D
pattern interruptTransition(T,from,to,E) {
 Transition.fromState(T,from);
 Transition.toState(T,to);
 InterruptTransition(T);
 InterruptTransition.name(T,E);
}

Support for built-in
EMF datatypes:
Strings, integers, etc.

IQPL Pattern composition and NAC

// The result of Event is non-deterministic in State
pattern nondeterministicState(State, Event) {
 find interruptTransition(_,State,To1,Event);
 find interruptTransition(_,State,To2,Event);
 To1 != To2;
}
// No timed transition going out of a State
pattern noTimedTransition(State) {
 State(State);
 neg find timedTransition(_,State,_,_);
}

Pattern composition / call

Negative application
condition

Anonymous variables
(see Prolog)

IQPL Transitive closure and disjunction

pattern transition(from,to) {
 Transition.fromState(T,from);
 Transition.toState(T,to);
}

pattern reachable(from:State,to:State) {
 from == to;
} or {
 find transition+(from,to);
}

pattern unreachableState(S:State) {
 TrafficDSL.states(dsl,S);
 TrafficDSL.start(dsl,Start);
 neg find reachable(Start,S);
}

Disjunction
(on pattern level)

Transitive closure
(over 2 param patterns)

Note that:
• negative calls do not bind
variables of header parameters
• patterns should be connected by
edges (avoid Cartesian product)

IQPL Check expression & Match count

pattern teachersWithMostCourses(
 School : School, Teacher : Teacher) = {
 School.teachers(School,Teacher);
 neg find moreCourses(Teacher);}

pattern moreCourses(Teacher : Teacher) = {
 N == count find coursesOfTeacher(Teacher,_Course);
 M == count find coursesOfTeacher(Teacher2,_Course2);
 Teacher(Teacher2);
 Teacher != Teacher2;
 check(N < M);}

Check expression
for attribute values
(pure!)

Match counting

Overview of IncQuery Pattern Language
 Features of the pattern language

o Works with any (pure) EMF based DSL and application

o Reusability by pattern composition

o Arbitrary recursion, negation

o Generic and parameterized model queries

o Bidirectional navigability of edges / references

o Immediate access to all instances of a type

o Complex change detection

 Benefits

o Fully declarative + Scalable performance

INCQUERY Development Tools

Query Explorer

Pattern Editor

Queries are applied &
updates on-the-fly

• Works with most EMF-
based editors out-of-
the-box

• Reveals matches as
selection

• Declarative graph query
language

• Transitive closure,
Negative cond., etc.

• Compositional, reusable

Definition

• Incremental evaluation

• Cache result set

• Maintain incrementally
upon model change

Execution

• Derived features,

• On-the-fly validation

• View generation,

• Works out-of-the-box
with EMF applications

Tooling

EMF-IncQuery: An Open Source Eclipse Project

http://eclipse.org/incquery

OVERVIEW OF
INCREMENTAL QUERY EVALUATION

Development workflow

Develop EMF
domain

Develop and test
queries

Use/Generate
INCQUERY code

Integrate into EMF
application

Automated Automated

Supported by
Xtext 2

Semi-automated for
typical scenarios,

 some manual coding

Application

Framework

API

EMF-INCQUERY Architecture v0.8

RETE Core
EMF INC PM

Core

Your code

Pattern/Query
specification

Generated
pattern matcher

IncQuery BASE

tooling

Reflective pattern
matcher

Validation
Engine

• The RETE algorithm makes all it work
• Well-known in rule-based systems

Incremental Query Evaluation by RETE

 AUTOSAR well-formedness validation rule

Communication
channel

Logical signal Mapping Physical signal

Invalid model fragment

 Instance model

Valid model fragment

Fill the input nodes Fill the worker nodes Read the result set Modify the model Propagate the changes
Read the changes in the

result set (deltas)

Incremental Query Evaluation by RETE

join

join

antijoin

Result set

Communication
channel

Logical signal Mapping Physical signal

Construction of RETE network

• Single network for all
patterns

• Node sharing:
controlled by the developer
(pattern call graph)

• RETE visualization

• Advanced construction
algorithm
by dynamic programming:
G. Varró et. al (ICMT 2013)

RETE Network

Pattern3

Pattern2

Pattern4

Pattern1

neg

Pattern Call Graph

R1 R2 R3 R4 R5

P1 P2

I5

P3

P4

Application

Framework

API

EMF-INCQUERY Architecture v0.8

RETE Core
EMF INC PM

Core

Your code

Pattern/Query
specification

Generated
pattern matcher

IncQuery BASE

tooling

Reflective pattern
matcher

Validation
Engine

• Basic incremental
model access queries

IncQuery Base
 Light-weight Java library for basic (yet very powerful) EMF model

access queries with incremental evaluation

 Supports
o Get all instance elements by type

o Reverse navigation along references

o Get model elements by attribute value/type

 Very easy to integrate into any EMF tool (pure Java) – standalone!

 Same high performance and scalability as IncQuery

 Incremental transitive closure
o Computation of e.g. reachability regions, connected model partitions, …

o Innovative new algorithm for general graphs

• Declarative graph query
language

• Transitive closure,
Negative cond., etc.

• Compositional, reusable

Definition

• Incremental evaluation

• Cache result set

• Maintain incrementally
upon model change

Execution

• Derived features,

• On-the-fly validation

• View generation,

• Works out-of-the-box
with EMF applications

Tooling

EMF-IncQuery: An Open Source Eclipse Project

http://eclipse.org/incquery

INCQUERY VALIDATION
FRAMEWORK

IncQuery Validation Framework

 Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses IncQuery graph patterns to specify constraints

 Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

• Execution model is different

Well-formedness rule specification by graph patterns

 WFRs: Invariants which must hold at all times

 Specification = set of elementary constraints +
context

o Elementary constraints: Query (pattern)

o Location/context: a model element on which the
problem marker will be placed

 Constraints by graph patterns

o Define a pattern for the “bad case”

• Either directly

• Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Match:
A violation of
the invariant

// The result of Event is non-deterministic in State
@Constraint(location = A, message = "$A.name$ is a bad looping activity",
severity = "warning")
pattern nondeterministicState(A, Event) {
 find interruptTransition(_,A,To1,Event);
 find interruptTransition(_,A,To2,Event);
 To1 != To2;
}
// No timed transition going out of a State
@Constraint(location = State, message = "There should be at most one timed
transition going from a state", severity = "error")
pattern noTimedTransition(State) {
 State(State);
 neg find timedTransition(_,State,_,_);
}

EXAMPLE

 “All interrupt names on transitions going out of a single state must
be distinct.”

 Capture the bad case as a query
o There are two outgoing interrupt transitions triggered by the same event

 Add a @constraint annotation to derive an error/warning message

Statechart validation constraint

Validation lifecycle

 Constraint violations

o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present

 Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

Validation UI integration

 A menu item (command) to start the validation
engine

 Generic (part of the IncQuery Validation
framework)

o GMF editor command

• Appears in all GMF-based editor’s context menu

o Sample Reflective Editor command

• Appears on the toolbar

 Generated

o EMF generated tree editor command

• Appears on the toolbar

CALCULATING DERIVED FEATURES
BY INCREMENTAL QUERIES

Metamodels with Derived Features
Derived

Reference

/interruptTransitions(A,B):
• B is an InterruptTransition
• B is a transition in A

Derived Features:
• Values calculated from other elements
• Defined declaratively as model queries
 (e.g. OCL, graph queries)
• Tooling: handle as regular EMF elements

Example

Handling Derived Features as Queries

@QueryBasedFeature
pattern
interruptTransitions(DSL:TrafficDSL,T)
{
 TrafficDSL.transitions(DSL,T);
 InterruptTransition(T);
}

private IncqueryDerivedFeature interruptTransitionsHandler;
public EList<InterruptTransition> getInterruptTransitions() {
 if (interruptTransitionsHandler == null) {
 interruptTransitionsHandler = IncqueryFeatureHelper.getIncqueryDerivedFeature(
 this, SystemPackageImpl.Literals.DATA__READING_TASK,
 "system.queries.InterruptTransitions", "TrafficDSL", "InterruptTransition",
 FeatureKind.MANY_REFERENCE, true, false);}
 return interruptTransitionsHandler.getManyReferenceValueAsEList(this);}

Derived
Reference

DF specification:
as a query

Auto-generated
DF handler (Java)

INCQUERY VIEWERS

Live abstractions

Complex model

abstract

Computed overlay
aka. “View”

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

Items = SELECT …

Defined by a query

Live abstractions

Complex model

abstract

Computed overlay
aka. “View”

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

2 N3 e F

Items = SELECT …

Defined by a query

Model
Modification

Change notification

Query result update

UI update

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

INCQUERY Viewers

EMF Model
Live

Queries

2. Change
Notifications

1. Model
Modification

Live
Queries

Derived
Model

UI

3. Continuous,
efficient
synchronization

4. UI updates

Labeled, hierarchic
property graph

On-the-fly
abstractions over

the model

 Visualize things that are not (directly) present in your model

 Provides an easy-to-use API for integration into your presentation layer

o Eclipse Data Binding

o Simple callbacks

Example Query based view annotations

@Format(color = "#ff0000")
@Item(item = S, label = "N")
pattern redState(S: State) { … }

@Item(item = S, label = "N")
pattern state(S,N) = { … }

@Format(lineColor = "#0000ff")
@Edge(source = from, target = to, label = "D ms")
pattern timedTransition(T,from,to,D) = { … }

@Format(lineColor = "#ff0000")
@Edge(source = from, target = to, label = "E event")
pattern interruptTransition(T,from,to,E) = { … }
}

What can I do with all this? – query-based live abstractions

Syntax
Eclipse

technology
Pros

Trees, tables,
Properties

(JFace viewers)
EMF.Edit

The real deal:
doesn’t hide abstract syntax

Diagrams
GEF, GMF,
Graphiti

Easy to read and write
for non-programmers

Textual DSLs Xtext
Easy to read and write

for programmers

JFace, Zest,
yFiles

Your tool!

INCQUERY
Viewers

Makes understanding and
working with complex models

a lot easier

