
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Behavioral Modeling Languages

Ákos Horváth and Dániel Varró
With Contributions from István Majzik,

Gergely Pintér, András Vörös,
Gábor Bergmann, Ábel Hegedüs

Model Driven Software Development
Lecture 5

An Overview of
Behavioral Modeling Languages

Dynamic Languages: An Overiew

• State-based reactive

• Dataflow-based

• Event & Rule-based

• Agent-based

• Block diagrams

• Other

System

• Requirements

• Scenarios

Property

• Simulation, Static analysis, Model
checking,

• Symbolic computation, ODE (Diff. Eq)

Analysis techniques:

 Engineering languages:
o Statecharts, Statemate,

Business Process Models,
Simulink Block Diagram,
Message Sequence Charts,
KAOS, Drools, CQL, Esterel,
AnyLogic, Modelica,
Ptolemy-II, …

 Formalisms:
o Petri nets, Finite automata,

Timed automata, Cellular
autom. Bond graph, Process
algebra, Queuing network,
Kahn process network

3

Characteristics of Dynamic Languages

 Specification
o Consistency

o Completeness

o Unambiguity

 Time
o Untimed

o Discrete

o Continuous

 Communication
o Synchronous

o Asynchronous

 Determinism
o Stochastic

o Deterministic

 Causality
o Causal

o Non-causal

 Analysis
o Exact vs. Approximative

o Complete vs. Incomplete

 Other concepts
o Conflict, priority

o Dependency,

4

Property Specification Languages

  Requirements

o Human readable

o Structured text
(DOORS, SysML)

o Requirements modeling
notations (i*, KAOS)

 Scenarios

o Specify permitted /
forbidden execution paths

o LTL, Temporal OCL

o UML Sequence Diagrams

o Message sequence charts

5

State-based languages

  Main concepts:

o State , Transition

o Event, Action

o State hierarchy, history

 Examples:

o Finite automata

o Timed automata

o Cellular automaton

o Statemate (Harel)

o UML Statecharts

o Matlab Simulink
Stateflow

6

Dataflow-based languages

 Main concepts:
o Process, activity

channel, queue,
token/message

 Examples:
o Activity Diagrams

o Business Process
Models
(also event-based)

o Petri nets

o Queuing networks

o Kahn process
networks

o Esterel

7

Event-based Rule languages

 Main concepts:

o Events (atomic, complex)

o Event queue/stream

o Timestamp, Time window

o Rule(Precondition,Action)

 Examples:

o Business rules (Drools)

o Graph transformation

o Stream processing (CQL)

o Complex event processing

8

Agent-based languages

 Concepts

o Agents + Connections

o Behavior
(create, destruct)

o Space, Mobility,

o Environment

 Characteristics

o Decentralized

o Individual-centric

 Examples:

o AnyLogic

o Social simulators

9

Continuous-time Languages

 Block diagrams (causal)
(Simulink, Ptolemy)

 Multi-Physics (non-causal)
(Modelica, Bond Graphs)

10

Other Dynamic Languages

 Population dynamics

o N(t+1) = N(t) + B - D + I + E
(birth, death, immigrants,
emmigrants)

o Calculation of rates

 Forrester System Dynamics

o Stocks, Flows

o Feedback, Time delays

11

Dynamic Metamodeling in DSLs

Dynamic Metamodeling in DSLs

 Complement Static Metamodel with

o Dynamic metamodel: currentState, configuration, etc.

o Execution trace metamodel: previous state, replay

13

MMstat

Static Metamodel

MMtrc

TraceMetamodel
MMdyn

Dynamic Metamodel

<<uses>>

<<uses>>

<<uses>>

Mstat

Static Model

Mtrc

Trace Model
Mdyn

Dynamic Model

<<uses>>

<<uses>>

<<uses>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Example 1: Business Processes
Static Dynamic

P: Process

login : Receive

main : Sequence

Sc : Scope

contains

contains contains

next

state = runs

operation = op1

variable = v1

state = executed

state = startable

next
…

Example 2: Petri Nets
Static Dynamic

N: Net

var : Place
intial : Place

t1 : Transition

trans
place

arc

final : Place

place

place

arc
arc

: Token

: Token

place

place

p2

p3 p4

p7

t1

t2

t6

p5 p6

t4

Metamodeling of Execution Traces

 Representation for

o Hierarchy of steps (simple, compound)

o Old value  New value

o Aim: Replayable

16

Statecharts for
Modeling Reactive Behavior

Statecharts

State-based behaviour modeling

 State partition (AKA state space)

o A set of distinguished system states

o Examples

• {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

• States of microwave oven: {full power, defrost, off}

o DEF: A state partition is a set, exactly one element of
which characterizes the system at any time.

 Current state

o E.g. today is Wed, the microwave is on defrost, etc.

o DEF: At any given moment, the current state is the
element of the partition which is currently valid.

Composite state modeling

 Modeling complex systems

o Asynchronous components

o Composite state space as product of state spaces

 Challenge: scalability

o Exponential explosion of state space

• 10 components of 6 local states each  610 states!

oMore concise notation required

 Solution: statechart languages

o Hierarchical refinement with history

o Concurrent regions

19

Statecharts = States + Transitions
 Describes the states and state transitions of the system, of a

subsystem, or of one specific object.
o hierarchical and concurrent systems

 States
o Concrete state:

• Combination of possible values of attributes
• Can have an infinite state space

o Abstract states: (like in Statecharts)
• Predicates over concrete states
• One abstract state  many concrete states
• Hierarchical states:

– Frequent in embedded apps (e.g. control of car brake)

 Transitions
o Triggering Event
o Guard
o Action

Statechart - introduction

 For defining reactive behavior of objects

o Responds to events:
state transitions and actions

o Traditional approach: state machine

 Statechart: extension to state machine

o State hierarchy: refinement of states

o Concurrent behavior: parallel threads

o Memory: last active state configuration

States I.

 Attributes:

o entry action

o exit action

o static reaction

 State refinement

o Simple state

o OR refinement: auxillary state machine,
only one active state

o AND refinement: concurrent regions (state machines),
all regions are active in parallel

print_job

entry/init()
job/print()
exit/reset()

Example for state refinement: TV

On Off

Standby

Disconnected

Sound Image

Show

Videotext

SoundOn

SoundOff

txt txt snd mute out in

off

out

on

State II.

 History state

o Stores the last active state configuration

o Input transition: it sets the object to the saved state
configuration

o Output transition: defines the default state, if there
were no active state since

 Inital state: becomes active when entered to the
region

• One in each OR refinement

• One in each AND region

 Final state: state machine terminates

Statechart elements

 State

 (Transition)

 History state

 Initial State

 Final State

State name

H H*

s1 s2

Transition I.

 Defining state changes

 Syntax:

 trigger [guard] / action

o trigger: event, triggered operation or time-out

o guard: transition condition

• Logic formula over the attributes of the objects and events

• referring to a state: IS_IN(state) macro

• Without trigger: if becomes true the transition is active

o action: operations  action semantics

Transition II.

 Time-out trigger:
o becomes active if the object stayes in he source state

for the predefined interval

 e.g., tm(50), based on system time

 Complex transitions
o Fork

o Join

o Condition

 Transitions between different hierarchy levels

Transition example

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
tm(50)

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

Failure

Complex Example

 Traffic light for an intersection with a prioritized
road

o Off: (blinking yellow)

o On: green for the priority road

o Green, yellow, red etc. Different timerange (timer)

o 3 waiting vehicle on priority road: green light despite
the timer’s ticks

o Automatically take photos of vehicles crossing the
piority road on red light. Manual on/off for this
feature.

1. Basic state machines

Off

do/blink

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

reset

reset

reset

reset

tm(T4)

2. Hierarchy

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

3. Concurrent states

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

Camera Count

4. History States

Off

On

do/blink

!reset

Red

Yellow

Green

Red
Yellow

Rec

Standby

CarPass
/ Shoot

M
an

u
alO

ff

M
an

u
alO

n

T1

T4

T2

T3

Camera Count
reset

H

Complete System

Off

On

do/blink

!reset

Red

Count0

Count1

Count2

enqueue

Yellow

Green

Red
Yellow

Rec

M
an

u
alO

ff

M
an

u
alO

n

T1

T4

T2

T3

Camera Count
H

enqueue

enqueue

reset

CarPass
/ Shoot

Standby

Example Concrete State

Off

On

do/blink

!reset

Red

Count0

Count1

Count2

enqueue

Yellow

Green

Red
Yellow

Rec

M
an

u
alO

ff

M
an

u
alO

n

T1

T4

T2

T3

Camera Count
H

enqueue

enqueue

reset

CarPass
/ Shoot

Active states:
{Standby, Count1, Red, On}

 Inactive states:
{Off, Yellow, Green, RedYellow, Rec, Count0, Coun2}

Standby

Semantics: How does it work?

 Basics:

o Hierarchical state machine (state chart)

o Event queue + scheduler

 Semantics defines:
Behavior in case an event occurs
 one step of the state chart

o (concurrent) transitions fire

o State configuration changes
in all region in the active state and also one substate in
the OR refinement (recursively)

Semantics of State Transitions

 Separately processed events:

o Scheduler only triggers the next event if the previous
one is completely processed
stable configuration: there is no state change without an event

 Complete processing of events:

o The largest set of possible fireable transitions
(all enabled transitions fire, if they are not in conflict)

o How does it work?:

• Steps of the event processing

Steps of event processing I.

 Scheduler triggers an event for the statechart in a
stable state configuration

 Enabled transitions:
o Source state is active

o The event is their trigger

o Guards are evaluated to true

 Based on the number of fireable transitions
o Only one: fire!

o None: do nothing

o More than one: select transitions to fire?

Steps of event processing II.

 Selection of fireable transitions:

o Fireable = Enabled + Max priority

o Conflict: Has the same source state

• Formally: the intersection of their left (exit) states is not
empty

Conflict resolution  priority:

• Defined between two transitions (t1 and t2)

• t1 > t2, if and only if the source state of t1 is a substate within
the state hierarchy of t2 („lower level”)

Priority insufficient to resolve conflict if

• Same source state (or parallel subregions)

Steps of event processing III.

 Selection of transitions to fire:

o Parallel execution of concurrent transitions

• Maximal set of fireable transitions
(= cannot be extended any further)

• There is no conflict between any two transitions

o Selection of this set:

• Nondeterministic!

Steps of event processing IV.

 Selected transitions fire:
 in nondeterministic order

 Firing one transition:

o Leaving the source states from the bottom to top and
execute all their exit operations

o Execute the action of the transition

o Entering the target states from top to bottom and
execute the entry actions  new state configuration

Steps of event processing V.

 Entering a new state configuration:

o Simple target state: part of the state configuration

o Non-concurrent superstate: direct target of one of its
substate or its initial state

o Concurrent target state: all of its regions have to have
an active state either as direct target state (maybe via
fork) or as initial state

o History state : the last active state configuration
if there is none: the target state of the history state

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1211 - exit action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S121 - exit action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S12 - exit action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

Transition action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S11 – entry action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S111 – entry action

State transition example

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1111 - entry action

Yakindu Statechart Tools

 Example tool support: Yakindu

o Hierarchical state chart language

Yakindu Statechart Tools

 Java/C++ code generation from statechart

oMagnetron switches to state On (simplified)

Summary

 Effective technique to model certain dynamic
systems

 Hierarchic refinement allows iterative
development

 Already used in many application domains

o Avionics, automotive, …

53

