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Dynamic Languages: An Overiew

System

e State-based reactive
e Dataflow-based

e Event & Rule-based
e Agent-based

e Block diagrams

e Other

Property

e Requirements
e Scenarios

Analysis techniques:

e Simulation, Static analysis, Model
checking,

e Symbolic computation, ODE (Diff. Eq)

= Engineering languages:

o Statecharts, Statemate,
Business Process Models,
Simulink Block Diagram,
Message Sequence Charts,
KAQOS, Drools, CQL, Esterel,
AnylLogic, Modelica,
Ptolemy-ll, ...

= Formalisms:

o Petri nets, Finite automata,
Timed automata, Cellular
autom. Bond graph, Process
algebra, Queuing network,
Kahn process network




Characteristics of Dynamic Languages

= Specification = Determinism
o Consistency o Stochastic
o Completeness o Deterministic
o Unambiguity = Causality
" Time o Causal
o Untimed o Non-causal
o Discrete = Analysis
o Continuous o Exact vs. Approximative
= Communication o Complete vs. Incomplete
o Synchronous = Other concepts
o Asynchronous o Conflict, priority

o Dependency,




Proert Specification Languages
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= Requirements
o Human readable

o Structured text
(DOORS, SysML)

o Requirements modeling
notations (i*, KAQOS)

= Scenarios

o Specify permitted /
forbidden execution paths

o LTL, Temporal OCL
o UML Sequence Diagrams

o Message sequence charts




State-based languages
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= Main concepts:
o State, Transition
o Event, Action
o State hierarchy, history

= Examples:
o Finite automata
o Timed automata
o Cellular automaton
o Statemate (Harel)
o UML Statecharts

o Matlab Simulink
Stateflow




Dataflow-based languages
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Event-based Rule languages

File Edit Source Status: [Draft] .
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= Examples:

<processory
<name>stockProcessor</name>

<rules>
<guery id="hellovorldRulse">
<! [CDATA[

2elect T.5tockName a= shortName, T.LastPrice a= price
from stockInputChannel

{
PARTITION BY shortHame

MEASTRES A.shortHName as StocklName, A.price as LastPrice

PATTEEN ( L B BE B & )
DEFINE
4 as A.price > previiA.price),

Definition C QL

B as B.price < prev(B.price)
} as T

Data manipulation CCLL<|:

Relation cperation

o Business rules (Drools)
o Graph transformation
o Stream processing (CQL)

o Complex event processing

FESISTER STREEM str (id INT,wal INT)
BECISTER QUERY gl
ISTREEH (w
SELECT id, S5UM{wval) 25 =
FROM str [BCHS 3]»
GEROUP BY id)

Stream operation

Windowoperation




Agent-based languages

— = Concepts

o Agents + Connections
o Behavior
(create, destruct)
| )\ J o Space, Mobility,
~ | o Environment

GIS environmental data

GIS social data . .
Terpartar | e ator = Characteristics
Preciptation Y, i '
W : D t | i d
(| o Decentralize
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Cellular automaton ! ! Agents O Ind|V|dua|'Ce ntFIC
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Pest dispersal (density) : : ) itifaergtation state
Pest fecundity (T) + [ ] .
LT ¥ TR Examples:
= Agent-Based Model

o Anylogic

o Social simulators




Continuous-time Languages

= Block diagrams (causal) = Multi-Physics (non-causal)
(Simulink, Ptolemy) (Modelica, Bond Graphs)
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Other Dynamic Languages

= Population dynamics " Forrester System Dynamics
o N(t+1)=N(t)+B-D+1+E o Stocks, Flows

emmigrants)

o Calculation of rates

T

create




Dynamic Metamodeling in DSLs




Dynamic Metamodeling in DSLs
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= Complement Static Metamodel with
o Dynamic metamodel: currentState, configuration, etc.

o Execution trace metamodel: previous state, replay




Example 1: Business Processes

= main
=

(WK

Login
=

& | login
& getCustomerData

=

[o] main |f

& logout

| reply
=

operation = opl

variable = vl

state = executed

H ExtensibleElements Static I Dynamic
H Process contain H Activity 1 ! H Dynamic Activity
1 activity |l [ = state : State
) /]’3 |
contains 1 I | <gnumeration> =
H Receive I £ State
H Scope H Sequence = operation = startable
= variable I — runs
I - executed
contains .
P: Process > main : Sequence
state = runs
contwns
. ] next next
login : Receive ——> Sc:Scope —> ..

state = startable




Example 2: Petri Nets

Static I Dynamic
H Place place ! H Token
place - -
- Subnet
= Outarcy  Inarct :
Transition
) £ Inhibitorarg
trans LI
|
N: Net
place
V lace T
trans l,pla e
var : Place .
intial : Place
Ii)lace\'krC /
arc A arc v

: Token

tl: Transition —> final : Place




Metamodeling of Execution Traces

Trace Execution trace " executeSAL:Trace w last
' metamodel
Iast\‘ « |steps ﬁrsl atepsl%p. start_fired:CStep gnext
] Step { — selA_fired:CStep
next| /M4 Substep L .
suhﬁtepg thread_work:SStep

S|mpIeStap {SStep} Compoundstep (CStep) | / Idl/ \
SCOope O
. t
scc'y °¢ o 1
1 1

"u" lue
value . value - %}‘ ‘ ' TVS: Wariable || process: || work:

State Value Value
Element || Value Value Attribute | Element ' H '

= Representation for
o Hierarchy of steps (simple, compound)
o Old value =» New value

o Aim: Replayable




Statecharts for

Modeling Reactive Behavior

Statecharts




State-based behaviour modeling

= State partition (AKA state space)
o A set of distinguished system states

o Examples
 {Mon, Tue, Wed, Thu, Fri, Sat, Sun}
 States of microwave oven: {full power, defrost, off}

o DEF: A state partition is a set, exactly one element of
which characterizes the system at any time.

= Current state
o E.g. today is Wed, the microwave is on defrost, etc.

o DEF: At any given moment, the current state is the
element of the partition which is currently valid.




Composite state modeling

= Modeling complex systems

o Asynchronous components

o Composite state space as product of state spaces
= Challenge: scalability

o Exponential explosion of state space

* 10 components of 6 local states each = 60 states!

o More concise notation required

= Solution: statechart languages
o Hierarchical refinement with history

o Concurrent regions




Statecharts = States + Transitions

= Describes the states and state transitions of the system, of a
subsystem, or of one specific object.

o hierarchical and concurrent systems

= States

o Concrete state:
* Combination of possible values of attributes
e Can have an infinite state space
o Abstract states: (like in Statecharts)
* Predicates over concrete states
* One abstract state € many concrete states

* Hierarchical states:
— Frequent in embedded apps (e.g. control of car brake)

= Transitions
o Triggering Event
o Guard
o Action




Statechart - introduction

" For defining reactive behavior of objects

o Responds to events:
state transitions and actions

o Traditional approach: state machine

= Statechart: extension to state machine
o State hierarchy: refinement of states

o Concurrent behavior: parallel threads

o Memory: last active state configuration




States |.

= Attributes:
o entry action
O exit action
o static reaction

= State refinement
o Simple state

o OR refinement: auxillary state machine,
only one active state

o AND refinement: concurrent regions (state machines),
all regions are active in parallel




Example for state refinement: TV

On |
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State |I.

= History state
o Stores the last active state configuration

o Input transition: it sets the object to the saved state
configuration

o Output transition: defines the default state, if there
were no active state since

= |nital state: becomes active when entered to the

region
* One in each OR refinement
* One in each AND region

= Final state: state machine terminates




Statechart elements

= State
= (Transition)
= History state

= |nitial State

(=)
@@@Il

= Final State




Transition I.

= Defining state changes

= Syntax:
trigger [guard] / action
o trigger: event, triggered operation or time-out

o guard: transition condition
* Logic formula over the attributes of the objects and events
* referring to a state: IS_IN(state) macro
* Without trigger: if becomes true the transition is active

O action: operations = action semantics




Transition Il.

= Time-out trigger:

o becomes active if the object stayes in he source state
for the predefined interval

e.g., tm(50), based on system time
= Complex transitions

—

o Join —

o Condition ‘| -

" Transitions between different hierarchy levels




Transition example

ﬁVork

~

Groupl

|
7

tm(50)

error

[not_fatal] / recovery()

illegal_activity [fatal] / report_status()

»

“ [fatal] / report_status()

»

L




Complex Example

= Traffic light for an intersection with a prioritized
road
o Off: (blinking yellow)
o On: green for the priority road
o Green, yellow, red etc. Different timerange (timer)

o 3 waiting vehicle on priority road: green light despite
the timer’s ticks

o Automatically take photos of vehicles crossing the
piority road on red light. Manual on/off for this
feature.




1. Basic state machines

Red \

tm(T4)




Ireset




3. Concurrent states
On
reset REd |

it Camera Count
T1

T4

.8 y




4. History States

reset
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Complete System
////?Sn \\\\\\
reset T2 Red

Camera Count

CarPass enqueue

/ Shoot

4
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Ireset




Example Concrete State
On
reset / ﬂEd \\\

enqueue

Camera Count

CarPass
/ Shoot

»

uQ|enuep
Joljenueln

enqueue

A 4

Standby enqueue
Ireset K /
Active states: Inactive states:

{Standby, Countl1, Red, On} {Off, Yellow, Green, RedYellow, Rec, CountO, Coun2}




Semantics: How does it work?

= Basics:
o Hierarchical state machine (state chart)
o Event queue + scheduler

= Semantics defines:

Behavior in case an event occurs
— one step of the state chart

o (concurrent) transitions fire

o State configuration changes
in all region in the active state and also one substate in

the OR refinement (recursively)




Semantics of State Transitions

= Separately processed events:

o Scheduler only triggers the next event if the previous

one is completely processed
stable configuration: there is no state change without an event

= Complete processing of events:

o The largest set of possible fireable transitions
(all enabled transitions fire, if they are not in conflict)

o How does it work?:

» - Steps of the event processing




Steps of event processing |.

= Scheduler triggers an event for the statechart in a
stable state configuration

= Enabled transitions:

o Source state is active
o The event is their trigger
o Guards are evaluated to true

Based on the number of fireable transitions

o Only one: fire!
o None: do nothing
o More than one: select transitions to fire?




Steps of event processing Il.

= Selection of fireable transitions:
o Fireable = Enabled + Max priority

o Conflict: Has the same source state

* Formally: the intersection of their left (exit) states is not
empty

—Conflict resolution = priority:

* Defined between two transitions (t, and t,)

* t,>1t,, ifand only if the source state of t, is a substate within
the state hierarchy of t, (,,lower level”)

—Priority insufficient to resolve conflict if

e Same source state (or parallel subregions)




Steps of event processing lll.

= Selection of transitions to fire:

o Parallel execution of concurrent transitions

* Maximal set of fireable transitions
(= cannot be extended any further)

* There is no conflict between any two transitions

o Selection of this set:

* Nondeterministic!




Steps of event processing IV.

= Selected transitions fire:
in nondeterministic order

= Firing one transition:

o Leaving the source states from the bottom to top and
execute all their exit operations

o Execute the action of the transition

o Entering the target states from top to bottom and
execute the entry actions — new state configuration




Steps of event processing V.

" Entering a new state configuration:
o Simple target state: part of the state configuration

o Non-concurrent superstate: direct target of one of its
substate or its initial state

o Concurrent target state: all of its regions have to have
an active state either as direct target state (maybe via
fork) or as initial state

o History state : the last active state configuration
if there is none: the target state of the history state




State transition example

$1231| | S1232




State transition example

S1211 - exit action

ﬁ W .




State transition example

S121 - exit action

$1231| | S1232




State transition example

“ “ o

S12 - exit action

$1231| | S1232




State transition example

B Transition action
;

$1231| | S1232




State transition example

“ “ o

S11 —entry action

$1231| | S1232




State transition example

“ “ o

l S111 —entry action

$1231| | S1232




State transition example

“ “ o

l S1111 - entry action

$1231| | S1232




Yakindu Statechart Tools

= Example tool support: Yakindu

o Hierarchical state chart language O
Micro Magnetron Door
interface User: ®
in event open
in event close
in event start l I
[User.start && :
interface Timer: lactive(Door.Open)] | Off | User.open  Closed
In event timeout - -

interface Beeper:

operation beep() ‘

Timer.timeout /
Beeper.beep()

On Open |

—_—

[
-

Lser.open

User.close




Yakindu Statechart Tools

= Java/C++ code generation from statechart
o Magnetron switches to state On (simplified)

/* The reactions of state On. */
private void reactMagnetron On() {
if (sCITimer.timeout) {
sCIBeeper.operationCallback.beep();
stateVector[©] = State.magnetron Off;
} else {
if (sCIUser.open) {
stateVector[@] = State.magnetron Off;




= Effective technique to model certain dynamic
systems

= Hierarchic refinement allows iterative
development

= Already used in many application domains

o Avionics, automotive, ...




