Behavioral Modeling Languages

Akos Horvath and Daniel Varré

With Contributions from Istvan Majzik,
Gergely Pinter, Andras Voros,
Gabor Bergmann, Abel Hegedus

Model Driven Software Development
Lecture 5

Budapest University of Technology and Economics

Department of Measurement and Information Systems

An Overview of

Behavioral Modeling Languages

Dynamic Languages: An Overiew

System

e State-based reactive
e Dataflow-based

e Event & Rule-based
e Agent-based

e Block diagrams

e Other

Property

e Requirements
e Scenarios

Analysis techniques:

e Simulation, Static analysis, Model
checking,

e Symbolic computation, ODE (Diff. Eq)

= Engineering languages:

o Statecharts, Statemate,
Business Process Models,
Simulink Block Diagram,
Message Sequence Charts,
KAQOS, Drools, CQL, Esterel,
AnylLogic, Modelica,
Ptolemy-ll, ...

= Formalisms:

o Petri nets, Finite automata,
Timed automata, Cellular
autom. Bond graph, Process
algebra, Queuing network,
Kahn process network

Characteristics of Dynamic Languages

= Specification = Determinism
o Consistency o Stochastic
o Completeness o Deterministic
o Unambiguity = Causality
" Time o Causal
o Untimed o Non-causal
o Discrete = Analysis
o Continuous o Exact vs. Approximative
= Communication o Complete vs. Incomplete
o Synchronous = Other concepts
o Asynchronous o Conflict, priority

o Dependency,

Proert Specification Languages

end
/' Oorg: .‘t\} Meeting
. Meeting
/ \
L .
7 \
D eeti . Ex lutsmn
Schedul \ e
Meetin Effort
Initiato .
i Quick
e~ | Preferred
! = Dates
' Schedule Avail '
. Meeting !
\ Proposed
. Obtain ! Dt
\ Find Agreement v
. Agreeable /
\‘ St Merge /
S, AvailDates 7 oty
\‘ ’o
\~ ’o
\~ I.

~
-
N.--

.
-
——

msc Successful_Setup

CallingUsar

OriginatingM ehuok

CalledUsz er

G allf e quest

{SETUP_Arg)

SETUF

CAlLl_FROCEELING

ALERTING

IncomingC all

CallAlerting

T-SETUR

CONMNECTED

|

Callanzwer

Callk eqesthck

= Requirements
o Human readable

o Structured text
(DOORS, SysML)

o Requirements modeling
notations (i*, KAQOS)

= Scenarios

o Specify permitted /
forbidden execution paths

o LTL, Temporal OCL
o UML Sequence Diagrams

o Message sequence charts

State-based languages

(NotShooting A
(Idle | EvConfig Configuring
.% l EvConfig
e
o vy
EvShutterReleased EvShutterHalf
If Shooting \1
oul
,"’selecuon_szme L
5‘ duning: [down_th,up_th] = caic_th(gear throttie) U [E]
: [speed < down_th] _ [steady_stat f
&5 N —®
o> P —o

pe(TWAIT 1)
pead >= ug £{300%

Simulink Fen
[down_th.up_th] = calc_th(gear throttie)

= Main concepts:
o State, Transition
o Event, Action
o State hierarchy, history

= Examples:
o Finite automata
o Timed automata
o Cellular automaton
o Statemate (Harel)
o UML Statecharts

o Matlab Simulink
Stateflow

Dataflow-based languages

[otherwise] Enralling in the : o

'[¢, T s v s @ M@In concepts:

Fill Qut Enrollment neored] - (Rl avalebel Obtain Help to Fill AD # 007

protlarme]] o Process, activity

[carract]

= (e channel, queue

Enrall in University Oy ey ! ! q !
Presentation toke n/message

—_— _}@

: Matke Initial Tuition] E m I .
Enrall In Seminar(s Xa p eS .

Web servers _ o Activity Diagrams
Middleware
[T .
Storage o Business Process

Network EI:I:l
) TOO—HO— DO Models

(T
[TT - (also event-based)

BF'MNﬁu‘t{:matedF'rDcessE!amp|92/ O PEtri nEtS
o Queuing networks

o Kahn process
networks

o Esterel

Order Accourting Dept

Event-based Rule languages

File Edit Source Status: [Draft] .
[= Main concepts:
Load Template Data (] .
w——______ 4 o Events (atomic, complex)
ere is an Applicant with:
W i $00 o Event queue/stream
creditRating equal to ~| S E= z
, There s a LoanAppiicaton (sa] S o o Timestamp, Time window
THEN & . .
1. Modify value of LoanApplication [$a] approved falsej g 5']’4}{? O RUIE(Precondltlon,ACt|On)
(show =
options...)

= Examples:

<processory
<name>stockProcessor</name>

<rules>
<guery id="hellovorldRulse">
<! [CDATA[

2elect T.5tockName a= shortName, T.LastPrice a= price
from stockInputChannel

{
PARTITION BY shortHame

MEASTRES A.shortHName as StocklName, A.price as LastPrice

PATTEEN (L B BE B &)
DEFINE
4 as A.price > previiA.price),

Definition C QL

B as B.price < prev(B.price)
} as T

Data manipulation CCLL<|:

Relation cperation

o Business rules (Drools)
o Graph transformation
o Stream processing (CQL)

o Complex event processing

FESISTER STREEM str (id INT,wal INT)
BECISTER QUERY gl
ISTREEH (w
SELECT id, S5UM{wval) 25 =
FROM str [BCHS 3]»
GEROUP BY id)

Stream operation

Windowoperation

Agent-based languages

— = Concepts

o Agents + Connections
o Behavior
(create, destruct)
|)\ J o Space, Mobility,
~ | o Environment

GIS environmental data

GIS social data . .
Terpartar | e ator = Characteristics
Preciptation Y, i '
W : D t | i d
(| o Decentralize
p ! I « . .
Cellular automaton ! ! Agents O Ind|V|dua|'Ce ntFIC
Pest survival (T ; P ; crops) I | . Farmers - pest control knowledge
Pest dispersal (density) : :) itifaergtation state
Pest fecundity (T) + [] .
LT ¥ TR Examples:
= Agent-Based Model

o Anylogic

o Social simulators

Continuous-time Languages

= Block diagrams (causal) = Multi-Physics (non-causal)
(Simulink, Ptolemy) (Modelica, Bond Graphs)

CT Director This relation has been modified so that the tank % gl sensor?
units population coming from growth.population hurner

gets converted to joules which matches the units m_floesy T_forward
on HeatProduction.work.

TimedPlotter
Convert Population to Joule

o
HeatProduction
L AddSubtract Integrator
wol heat [= —=
E}D b+ ' J pump zensar] heater
—bt —

The Heatproduction.heat port has units
calories, but the HealExchanger.output T]amb hancle
has units calories/second. The

AddSubtract actor requires that the units an
the plus, and minus ports be the same.
Therefore, the units constraints in this Growth SEME0rS

part of the model are inconsistent. Fo ati T_return
el N E o el Al -
HeatExchange ¥ T
T T E}D oubput

Demonstration of statically checked unit system.
The flow actor has been V=V +
- - 1 . S e . 1= %2 3
replaced with the flow This is @ model of the growth process in a fermenter. There are three)
rate actor which has submodels: "
units gallonUS/hour. I”
3
[
=i +1
' = E
-+ e 2 u 1 ¥ SeE E £
I _ _— - -] -] — =]
Step = L4244 7 !
Sum B ain Pl Contraller Flant Scope
,
1), ok M,
A X3 Ty
SeFr 1 - . 1
- % - 0 T >

Other Dynamic Languages

= Population dynamics " Forrester System Dynamics
o N(t+1)=N(t)+B-D+1+E o Stocks, Flows

emmigrants)

o Calculation of rates

T

create

Dynamic Metamodeling in DSLs

Dynamic Metamodeling in DSLs

<<uses>>_ 7 MM tqr _<<uses>>
it Static Metamodel ~3

-~ A =~

z : =~ ~.
MMtrc L <_<UEES_>>_ in”iaEleZB MMdyn
TraceMetamodel ! Dynamic Metamodel
1
: <<instanceOf>> : <<instanceOf>> |
1 1
: 7 Mstat < :
I _- Static Model ~ < 1
1 ~ 1
~
I << >> I
|~ “<<uses>> uses ~ !
<uses>>
Mtrc ____________ > Mdyn
Trace Model Dynamic Model

= Complement Static Metamodel with
o Dynamic metamodel: currentState, configuration, etc.

o Execution trace metamodel: previous state, replay

Example 1: Business Processes

= main
=

(WK

Login
=

& | login
& getCustomerData

=

[o] main |f

& logout

| reply
=

operation = opl

variable = vl

state = executed

H ExtensibleElements Static I Dynamic
H Process contain H Activity 1 ! H Dynamic Activity
1 activity |l [= state : State
) /]’3 |
contains 1 I | <gnumeration> =
H Receive I £ State
H Scope H Sequence = operation = startable
= variable I — runs
I - executed
contains .
P: Process > main : Sequence
state = runs
contwns
.] next next
login : Receive ——> Sc:Scope —> ..

state = startable

Example 2: Petri Nets

Static I Dynamic
H Place place ! H Token
place - -
- Subnet
= Outarcy Inarct :
Transition
) £ Inhibitorarg
trans LI
|
N: Net
place
V lace T
trans l,pla e
var : Place .
intial : Place
Ii)lace\'krC /
arc A arc v

: Token

tl: Transition —> final : Place

Metamodeling of Execution Traces

Trace Execution trace " executeSAL:Trace w last
' metamodel
Iast\‘ « |steps ﬁrsl atepsl%p. start_fired:CStep gnext
] Step { — selA_fired:CStep
next| /M4 Substep L .
suhﬁtepg thread_work:SStep

S|mpIeStap {SStep} Compoundstep (CStep) | / Idl/ \
SCOope O
. t
scc'y °¢ o 1
1 1

"u" lue
value . value - %}‘ ‘ ' TVS: Wariable || process: || work:

State Value Value
Element || Value Value Attribute | Element ' H '

= Representation for
o Hierarchy of steps (simple, compound)
o Old value =» New value

o Aim: Replayable

Statecharts for

Modeling Reactive Behavior

Statecharts

State-based behaviour modeling

= State partition (AKA state space)
o A set of distinguished system states

o Examples
 {Mon, Tue, Wed, Thu, Fri, Sat, Sun}
 States of microwave oven: {full power, defrost, off}

o DEF: A state partition is a set, exactly one element of
which characterizes the system at any time.

= Current state
o E.g. today is Wed, the microwave is on defrost, etc.

o DEF: At any given moment, the current state is the
element of the partition which is currently valid.

Composite state modeling

= Modeling complex systems

o Asynchronous components

o Composite state space as product of state spaces
= Challenge: scalability

o Exponential explosion of state space

* 10 components of 6 local states each = 60 states!

o More concise notation required

= Solution: statechart languages
o Hierarchical refinement with history

o Concurrent regions

Statecharts = States + Transitions

= Describes the states and state transitions of the system, of a
subsystem, or of one specific object.

o hierarchical and concurrent systems

= States

o Concrete state:
* Combination of possible values of attributes
e Can have an infinite state space
o Abstract states: (like in Statecharts)
* Predicates over concrete states
* One abstract state € many concrete states

* Hierarchical states:
— Frequent in embedded apps (e.g. control of car brake)

= Transitions
o Triggering Event
o Guard
o Action

Statechart - introduction

" For defining reactive behavior of objects

o Responds to events:
state transitions and actions

o Traditional approach: state machine

= Statechart: extension to state machine
o State hierarchy: refinement of states

o Concurrent behavior: parallel threads

o Memory: last active state configuration

States |.

= Attributes:
o entry action
O exit action
o static reaction

= State refinement
o Simple state

o OR refinement: auxillary state machine,
only one active state

o AND refinement: concurrent regions (state machines),
all regions are active in parallel

Example for state refinement: TV

On |
Image - Sound
- - :

~on

txt txt snd mute out in

out

State |I.

= History state
o Stores the last active state configuration

o Input transition: it sets the object to the saved state
configuration

o Output transition: defines the default state, if there
were no active state since

= |nital state: becomes active when entered to the

region
* One in each OR refinement
* One in each AND region

= Final state: state machine terminates

Statechart elements

= State
= (Transition)
= History state

= |nitial State

(=)
@@@Il

= Final State

Transition I.

= Defining state changes

= Syntax:
trigger [guard] / action
o trigger: event, triggered operation or time-out

o guard: transition condition
* Logic formula over the attributes of the objects and events
* referring to a state: IS_IN(state) macro
* Without trigger: if becomes true the transition is active

O action: operations = action semantics

Transition Il.

= Time-out trigger:

o becomes active if the object stayes in he source state
for the predefined interval

e.g., tm(50), based on system time
= Complex transitions

—

o Join —

o Condition ‘| -

" Transitions between different hierarchy levels

Transition example

ﬁVork

~

Groupl

|
7

tm(50)

error

[not_fatal] / recovery()

illegal_activity [fatal] / report_status()

»

“ [fatal] / report_status()

»

L

Complex Example

= Traffic light for an intersection with a prioritized
road
o Off: (blinking yellow)
o On: green for the priority road
o Green, yellow, red etc. Different timerange (timer)

o 3 waiting vehicle on priority road: green light despite
the timer’s ticks

o Automatically take photos of vehicles crossing the
piority road on red light. Manual on/off for this
feature.

1. Basic state machines

Red \

tm(T4)

Ireset

3. Concurrent states
On
reset REd |

it Camera Count
T1

T4

.8 y

4. History States

reset

Ireset

Red

4

uQ|enuep
Joljenueln

<
Bl

Camera

CarPass
/ Shoot

Count

Complete System
////?Sn \\\\\\
reset T2 Red

Camera Count

CarPass enqueue

/ Shoot

4

uQ|enuep
Jolenue

enqueue

eanfééjf//

<
l

Ireset

Example Concrete State
On
reset / ﬂEd \\\

enqueue

Camera Count

CarPass
/ Shoot

»

uQ|enuep
Joljenueln

enqueue

A 4

Standby enqueue
Ireset K /
Active states: Inactive states:

{Standby, Countl1, Red, On} {Off, Yellow, Green, RedYellow, Rec, CountO, Coun2}

Semantics: How does it work?

= Basics:
o Hierarchical state machine (state chart)
o Event queue + scheduler

= Semantics defines:

Behavior in case an event occurs
— one step of the state chart

o (concurrent) transitions fire

o State configuration changes
in all region in the active state and also one substate in

the OR refinement (recursively)

Semantics of State Transitions

= Separately processed events:

o Scheduler only triggers the next event if the previous

one is completely processed
stable configuration: there is no state change without an event

= Complete processing of events:

o The largest set of possible fireable transitions
(all enabled transitions fire, if they are not in conflict)

o How does it work?:

» - Steps of the event processing

Steps of event processing |.

= Scheduler triggers an event for the statechart in a
stable state configuration

= Enabled transitions:

o Source state is active
o The event is their trigger
o Guards are evaluated to true

Based on the number of fireable transitions

o Only one: fire!
o None: do nothing
o More than one: select transitions to fire?

Steps of event processing Il.

= Selection of fireable transitions:
o Fireable = Enabled + Max priority

o Conflict: Has the same source state

* Formally: the intersection of their left (exit) states is not
empty

—Conflict resolution = priority:

* Defined between two transitions (t, and t,)

* t,>1t,, ifand only if the source state of t, is a substate within
the state hierarchy of t, (,,lower level”)

—Priority insufficient to resolve conflict if

e Same source state (or parallel subregions)

Steps of event processing lll.

= Selection of transitions to fire:

o Parallel execution of concurrent transitions

* Maximal set of fireable transitions
(= cannot be extended any further)

* There is no conflict between any two transitions

o Selection of this set:

* Nondeterministic!

Steps of event processing IV.

= Selected transitions fire:
in nondeterministic order

= Firing one transition:

o Leaving the source states from the bottom to top and
execute all their exit operations

o Execute the action of the transition

o Entering the target states from top to bottom and
execute the entry actions — new state configuration

Steps of event processing V.

" Entering a new state configuration:
o Simple target state: part of the state configuration

o Non-concurrent superstate: direct target of one of its
substate or its initial state

o Concurrent target state: all of its regions have to have
an active state either as direct target state (maybe via
fork) or as initial state

o History state : the last active state configuration
if there is none: the target state of the history state

State transition example

$1231| | S1232

State transition example

S1211 - exit action

ﬁ W .

State transition example

S121 - exit action

$1231| | S1232

State transition example

“ “ o

S12 - exit action

$1231| | S1232

State transition example

B Transition action
;

$1231| | S1232

State transition example

“ “ o

S11 —entry action

$1231| | S1232

State transition example

“ “ o

l S111 —entry action

$1231| | S1232

State transition example

“ “ o

l S1111 - entry action

$1231| | S1232

Yakindu Statechart Tools

= Example tool support: Yakindu

o Hierarchical state chart language O
Micro Magnetron Door
interface User: ®
in event open
in event close
in event start l I
[User.start && :
interface Timer: lactive(Door.Open)] | Off | User.open Closed
In event timeout - -

interface Beeper:

operation beep() ‘

Timer.timeout /
Beeper.beep()

On Open |

—_—

[
-

Lser.open

User.close

Yakindu Statechart Tools

= Java/C++ code generation from statechart
o Magnetron switches to state On (simplified)

/* The reactions of state On. */
private void reactMagnetron On() {
if (sCITimer.timeout) {
sCIBeeper.operationCallback.beep();
stateVector[©] = State.magnetron Off;
} else {
if (sCIUser.open) {
stateVector[@] = State.magnetron Off;

= Effective technique to model certain dynamic
systems

= Hierarchic refinement allows iterative
development

= Already used in many application domains

o Avionics, automotive, ...

