
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Architecture Modeling
in

embedded systems

Ákos Horváth

András Sz. Nagy, Csaba Debreceni
Model Driven System Design

Lecture 12

Abstract

 ”The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software
components, the externally visible properties of
those components, and the relationships among
them.”

 Software Architecture in Practice,
Bass, Clements, and Kazman

2

General Concepts

Overview

 First and foremost: no universal agreement on
what ADLs should represent

 Typically formal representation of architecture

 Human and machine readable

 Describes the system at a higher level

 Enables analysis on consistency, completeness,
etc.

5

Design vs. Architecture
 Design

o Functional requirements are addressed
o Component, implementation level
o Design patterns

 Architecture

o Highest level of system description, the bigger picture
o Functional requirements are partitioned
o Non-functional requirements are addressed
o Typical Strategies

• Layering
• Diagnostics
• Performance control and monitoring
• COTS / reuse
• GUI driven, API driven, etc.
• Architectural patterns: MVC, 3-tier layer, etc.

6

Common Concept of Architecture (by Tw Cook)

 Object Connection Architecture

o Configuration consists of

• Interfaces: features that must be provided

• Connections: object  interface (+ call graph)

7

Common Concept of Architecture (by Tw Cook)

 Usually mature languages

o C++, Java, Ada

 Module must be „built” before architecture is
defined

 Conformance of a system to an architecture is low

 Architecture is sensitive to changes in the system

8

Common Concept of Architecture (by Tw Cook)

 Interface Connection Architecture

 Extends Interface and connection definition
o Interface: both required and provided features

o Connections: between required and provided interfaces

o Constraints :
• restricts behavior of connections and interfaces

• Architecture constraints  system requirements

9

Common Concept of Architecture (by Tw Cook)

 Better conformance of a system to an architecture

 Architecture can be built before modules are
„implemented”

 Most ADL approaches follows this concept

 Similar techniques widely used

o Design-by-contract

o Strong partitioning RTOS (Real-Time Operating System)

o Etc.

10

dir: DirServer

client2:
GameClient

client1:
GameClient

challenger

player

dirClient

player

ILookup

dirServer

dirClient

IGame

IChallenge
challengee

Example: Component Diagram in UML

dir: DirServer

client2:
GameClient

client1:
GameClient

challenger

player

dirClient

player

ILookup

dirServer

dirClient

IGame

IChallenge
challengee

Component /
Structured

Class

Port

Required
Interface

(Contract)

Provided
Interface

(Contract)

Connector

Example: Component Diagram in UML

Architecture Analysis and Design
Language (AADL)

AADL
 Architecture Analysis and Design Language (AADL) is a standard

architecture modeling language for embedded systems
o Avionics
o Aerospace
o Automotive
o Robotics

 Component based notation
o Task and communication architecture

 Designed for modeling and analysis in mind
 SAE standard (Society of Automotive Engineers)

o V1 2004 - AS 5506
o V2 2009 - AS 5506A
o V3 2012 - AS 5506B

 First was called Avionics Architecture Description Language
o Derived from MetaH created by Honeywell

14

AADL Key Elements

 Core AADL language standard (AS 5506B)
o Textual & graphical, precise semantics, extensile

o Based on the component-connector paradigm

 AADL Meta model & XMI/XML standard
o Model interchange & tool interoperability

 Annexes, standardized extensions
o Error Model Annex – addresses fault/reliability modeling,

hazard analysis

 UML 2.0 profile for AADL
o Transition path for UML practitioner community via MARTE

 EMF representation also available (without EFeatureMap!)

15

AADL semantics
 Precise execution semantics for software components

o thread, threadgroup, process, data, subprogram, system

 Execution platform semantics for hardware components
o processor, memory, bus, device, virtual processor, virtual bus

 Runtime semantics for control and data excahnge
o Data and event flow, synchronous call/return, shared access
o Thread scheduling protocols, timing requirements
o Remote procedure calls

 Operational modes & fault tolerant configurations
o Modes & mode transition

 Modeling of large-scale systems
o Component variants, layered system modeling, packaging, abstract,

prototype, parameterized templates, arrays of components and
connection patterns

 Accommodation of diverse analysis needs
o Extension mechanism, standardized extensions

16

AADL Representation Forms

17

thread speed_processing

features

 raw_speed_in: in

data port;

 speed_out: out data

port;

properties

 Period => 50 ms;

end speed_processing;

<ownedThreadType name=„speed_processing">

<ownedDataPort name="raw_speed_in"/>

<ownedDataPort name="speed_out" direction="out"/>

<ownedPropertyAssociation property="Period"

<ownedValue xsi:type="aadl2:IntegerLiteral"

value=“50" unit="ms"

</ownedValue>

</ownedPropertyAssociation>

</ownedThreadType>

speed-
processing

50

AADL Components

 Top element system

Example:
package F22Package

 public

system F22System

end F22System;

system WeaponSystem

end WeaponSystem;

system implementation F22System.impl

 subcomponents

 weapon: system WeaponSystem;

end F22System.impl;

end F22Package;

19

AADL SW Components

 System – hierarchical organization
of components

 Process – protected address space

 Thread group – logical organization
of threads

 Thread – a schedulable unit of
concurrent execution

 Data – potentially sharable data

 Subprogram – callable unit of
sequential code

20

Subprogram

Process

Thread group

Thread

System

Data

AADL SW Components

 Process

o Protected virtual address space

o Contains executable program and data

o Must contain 1 thread

 Thread

o Concurrent tasks

o Periodic, aperiodic, sporadic ,background, etc.

o Interaction through port connection, subprogram calls
or shared data access

o errors: recoverable, unrecoverable

21

AADL SW Components

 Ports and Connections

o Data (non queued data), Event (queued signals) or
Event data (queued messages)

o Complex Connection hierarchies through components

o Timing

o Feature groups

 Data

o Optional but makes the analysis more precise

 Flows

o Logical flow of data and control

22

AADL Computer Components

 Processor / Virtual Processor –
Provides thread scheduling and

 Memory – provides storage for
data and source code

 Bus / Virtual Bus – provides
physical/logical connectivity
between processors

 Device – interface to external
environment (sensor, actuator)

23

BUS Virtual Bus

Processor

Virtual Proc.

Memory

Device

AADL Computer Components

 ”Real” HW components

o Bus transmission time, latency,

o Processor timing, jitter

o Memory capacity

o Etc.

 Logical resources

o Thread scheduling of a processor

o Communication protocol overt network connection
(modeled as bus)

o Transactional memory (modeled as memory)

24

AADL Computer Components
 Processor

o As HW
• MIPS rating, size, weight, clock, memory manager

o As Logical resource
• Schedule threads  scheduling policies and interruption
• Execute SW

 Bus
o As HW

• Physical connection inside/between HW components

o As logical resource
• Protocol, which are used for the communication

 Memory
o Processes must be in memory
o Processors need access to memory

 Device Components
o Represents element that are not decomposed further
o Sensors/Actuators
o Device Driver

25

AADL Binding

 Binding

o Bringing SW models and the execution platform
together

o Virtual processors  can be subcomponents of other
virtual processors  ARINC653 partitioning

o Hierarchical Scheduling

o virtual buses to physical ones

• One-to-one

• Many-to-one

26

Summary

 After 15 years of mainly DoD research it is getting
mature enough

 Many pilot project uses AADL

o FAA

o DoD

o Lockheed Martin

o Rockwell Collins (Steven P. Miller)

 Many research paper on formal analysis,
simulation and code generation

 Ongoing harmonization with SysML and MARTE

27

AUTOSAR & EAST-ADL

History
 AUTomotive Open System ARchitecture
 Started in 2002
 BMW, Bosch, Daimler, Conti, VW, + Siemens
 Industrial standardization group

o Current standard version: 4.0 (end 2009)
o Currently we use 3.1 (end 2008)

 Members: OEMs, Tool vendors, Semiconductor manufacturers Europe-
dominated

 Scope
o Modeling and implementation of automotive systems
o Distributed
o Real-time operating system
o String interaction with HW and environment

 Out of scope
o GUI, Java, internet connectivity, File systems, Entertainement systems, USB

conncetivity etc.

29

Key Concepts of AutoSAR
 A standard runtime architecture

o component-oriented
o layered
o extensible

• New functionalities
• New components (component implementations)

o all major interfaces standardized
o Standardized Run Time Environment (RTE)

 A standard modeling and model interchange approach
o follows the principles of model-driven design
o supports the interchange of designs
o supports the collaborative development

• Between different developers,
• Teams,
• And even companies

 Conformance test framework
o assuring the conformance to the standard
o Still evolving – new in version 4.0

30

High-level design flow

31

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level software modeling
• Definition of

• components
• component ports
• port interfaces
• data types – logical

• Result
• Virtual Functional Bus (VFB)-level
software model

High-level design process
Component
Model (VFB)

High-level
SW modeling

Detailed
Component

Design
Component

Internal
Behavior

Detailed component design
• Specification of

• component internal behavior
• functional breakdown
• implementation/use of ports

• Non-AutoSAR
• specification of detailed behavior
• any tool can be used

• UML
• Simulink
• etc.

• Result
• AutoSAR component internal behavior
model
• Non-AR: behavioral models/design

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

Detailed
Component

Design
Component

Internal
Behavior

High-level hardware modeling
• Specification of

• Electronic Control Unit (ECU) resources
• CPU
• memories
• peripherals
• communication hw

• system topology
• ECU instances
• clusters
• connections

• Result
• ECU resource model – for all ECUs
• System topology model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Hardware-software integration
• mapping

• software component allocation
• component implementation selection
• data-element to signal mapping

• inter-ECU communication
• communication configuration

• signal to Protocol Data Unit (PDU) mapping
• PDU to frame mapping
• Signal, PDU, Frame triggering
• Cluster and controller configuration
• Frame scheduling (LIN, FlexRay)

• Result
• System model describing the integrated
HW/SW system

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Component implementation
• Implemeting all components

• automatically
• TargetLink
• Simulink Realtime workbench
• SCADE
• etc.

• manually
• Result

• implementation of the components
• C/C++/…

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

ECU configuration
• Configuring all basic software modules

• based on the system model
• for each ECU separately

• Result
• ECU configuration model

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation Basic Software Services (BSW) configuration

generation
• Configuration generation for basic software

• from the configuration model
• Result

• Configuration files (c,h)
• Generated modules/module fragments

High-level design process
Component
Model (VFB)

High-level
SW modeling

High-level
HW modeling

ECU
resource

model

HW/SW integration
• component allocation
• communication

• mapping
• configuration
• scheduling

System
model

ECU
configuration

Configuration
model

Code
generation

BSW config
files

Detailed
Component

Design
Component

Internal
Behavior

Component
Impl.
files

Component
Impl.
files

Component
Impl.
files

Component
implementation

Compiling
Linking

Binary

Compilation and linking
• Building and linking all sources

• application component implementations
• basic software modules
• BSW configuration files

• Result
• Deployable binary file

Models in the design flow

 Software Component Template

o Components, ports, interfaces

o Internal behavior

o Implementation (files, resource consumption, run time,
etc.)

 ECU Resource Template

o Hardware components, interconnections

 System Template

o System topology, HW/SW mapping

o Comm. matrix

Models in the design flow 2

 Basic Software Module Template

o BSW modules
• Services

• Schedulable entities

• Resource consumption

 ECU Configuration Parameter Definition Template

o Configurable parameters of BSW modules

 ECU Configuration Description Template

o Actual configurations of BSW modules

o Based on the ECU Parameter Definition

AutoSAR vs. UML/SysML/... modeling

 AutoSAR defines models with

o Domain Specific Constructs

o Precise syntax

o Synthesizable constructs
• Direct model -> transformations

• Direct model -> detailed model mappings

o Different abstraction levels
• From Virtual Function Bus to configuration

 Result

o Models are primary design and implementation artifacts
• More precise, consistent modeling should be done

AUTOSAR Components

43

Component-oriented design

 What is a component?
o “A component is a self contained, reusable entity that

encapsulates a specific functionality (and/or data), and
communicates with other components via explicitly defined
interfaces.”

 AutoSAR uses the term component for application-level
components

o Elements related to the high-level functionality of the system
under design

 Basic software (middleware) components are called modules.

o Standard elements of the AutoSAR architecture

Component-based approach

Component

Component

• Encapsulates a specific functionality
• Different kinds

• Composite component – hierarchical refinement
• Application SW component – generic, high level functionality
• Sensor/actuator SW-C – handling sensor or actuator data
• ECU HW abstraction – higher level device driver and abstraction
• ComplexDeviceDriver – time-critical, low-level driver
• Calibration parameter SWC – collects system calibration
parameters
• Service SWC – represents a basic software module from the service
layer

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach

Component

Ports

• The only interaction points between the component and its
environment
• Are implementing port interfaces

• sender receiver (message-based unidirectional
communication)
• client-server (remote procedure call)

<<interface>>
SenderReceiver1

dataElement1
dataElement2

Component-based approach – port notation

Component

Receiver port Sender port

Server port Client port

Service port
To Basic Software (BSW)

Module services

Virtual Functional Bus

Component A

Component interconnection – the Virtual Functional Bus

Component B

Virtual Functional Bus (VFB)

• Abstract interconnection layer
• Implementation of data/control transport between components
• No hardware/network dependency
• Hides the details of the implementation

• Allows high-level integration and simulation of components
• Before hardware architecture is chosen

Component C Component X

…..

…..

Software Components

 On high-level, atomic components are black
boxes

 Detailed design “looks into” these black boxes

 Main goals

o Detail the behavior to get schedulable entities

o Specify the semantics of port handling

o Specify any service needs

o Specify any RAM, nvRam needs

Refinement of a component

Component

Comp.c Comp.h

Black box definition of a component

Definition of component internal
behavior
Schedulable entities, connections to
the ports

Component implementation.
Specification of source and header
files

Component internal behavior

 Specification of the internals of an atomic
SWC

 Schedulable elements

o Called: runnable entities

 Connection of ports

o Port semantics

o Port API options

 Inter-runnable communication

 Runnable activation and events

Summary

 AutoSAR defines

o A component-oriented system design approach
• Domain specific modeling language

• A high level design process

• Standard middleware (basic software) stack

– Standard interfaces

– Standard configuration descriptors

 AutoSAR compliant ECU software

o Includes several BSW and application components

o RTE provides the integration (glue) between these

o Configuration and glue code is mostly auto-generated

EAST-ADL

EAST-ADL

 DSL for the vehicle electronics domain

 Complement/Embrace AUTOSAR

 Goal: handle all engineering information in an
integrated way

 Development started in 2001

 Industry and Academic partners

 Acceptance (currently) is relatively low

55

Characteristics

 Extends traditional ADL
o Variability, requirements, safety, behavior environment

modeling, design methodology

 Why not
o UML : more vehicle specific

o SysML: many concepts are similar but more vehicle specific

o AUTOSAR: complements with respect to safety, functional
structure, requirements, etc.

o AADL: starts on a more abstract level

o Proprietary (Matlab, Modelica, Statemate): provides an
information structure of the engineering data and
integrates external tools

56

EAST-ADL (by ATTESST)

 Typical vehicle engineering scenario

o Vehicle manufacturer what to include in the next
product

o Chassis engineer analyses a novel algorithm

o Application expert defines detailed design

o SW engineer defines

• SW architecture

• Packing and allocation

• Integration on ECU

o Quality team does early phase validation and
verification

57

EAST-ADL

 System modeling
Approach/framework

 Template how engineering
information is organized and
presented

 Separation of concerns

 Several abstraction
layers

 Embrace the de-facto
AUTOSAR SW
representation

58

Feature content

Abstract functional
architecture

Functional architecture,
HW architecture,
platform abstraction

AUTOSAR Software
architecture

Embedded system in produced
vehicle (not modeled)

EAST-ADL

 Product Planner
o Decide what to put in the next product

 Features represent
o Properties/functionality/trait

o Power window, Brake, steering, Collision
Warning

 Vehicle Feature Model organize Features
for the vehicle

 Variability mechanism supports 
Product Line Architecture

59

EAST-ADL

 Chassis Engineers
o Analyses novel control algorithm

 Control algorithm is defined as a
Function for the Environment model 
OEM supplier agree on specification,
model describes the requirements with
traceability

 Focus on behavior and interaction
functions

 EAST-ADL defines structure and allows
legacy tools to be used for analysis,
simulation, etc.

 Realization details are omitted
o Mainly to understand key aspects

60

EAST-ADL

 Application expert defines detailed
design

 Detailed functional architecture consist
of
o HW architecture

o Allocation

o Fault tolerance

o Implementation concerns

o Sensor, actuator constraints

 Focus on behavior and interaction of
functions

 Abstract system architecture is defined
and assesses

61

EAST-ADL

 Software engineer defines the SW
Architecture

 AUTOSAR Application SW Components
are defined

 Set of SW components realizes the
Functional Architecture

 All SW related elements are defined in
this level
o Legacy code integration

o Allocation (code level)

o Performance tests and analysis

o Verification of final product

o Re-use

o Mapping  which functions are realized by which
SW component

62

EAST-ADL

 Additional models

o Environment model
• In-vehicle, near and far environment

• Different models for different scenarios

o Traceability
• Realization relation from top-to-down identify, which element is realized by

which more concrete element

 EAST-ADL complements AUTOSAR

o Aspects beyond SW architecture (variability, safety, etc.)

o Provides means to define what the SW does

o Provides means to model strategic properties

o Error behavior modeling and safety related aspects

 63

EAST-ADL

 Variability

o Feature trees (mandatory/optional)  product line

 Error modeling and failure analysis

o Modeling concepts of hazards and error propagation

o Basis for Fault Tree, Fault Mode and Effect analysis

 Behavior

o Definition of behavior semantics  allow legacy tool
integration (Simulink)

 Timing

o Formalization of timing requirements and properties in
structural models (e.g., reaction, age, synchronization, etc.)

64

Sample EAST-ADL model and binding

65

EAST-ADL Summary

 EAST-ADL provide information structure for the
design of vehicle embedded systems

 Uses multi layers of abstraction in a top-down
manner

 Fully aligned with AUTOSAR

66

