EMF-INCQUERY

Incremental evaluation of model queries

Model Driven Systems Development
Lecture 04

--% INC
ﬂ

r us

Budapest University of Technology and Economics

Department of Measurement and Information Systems

MOTIVATION

Motivation: Early validation of design rules

SystemSngnaIGroup de5|gn rule (from AUTOSAR)

== 1 1 TN 1

Mapping ISlgnals to IPDUs

o AUTOSAR:

3

T [Sana e standardized SW architecture
FA &_sigredalPosition A sigPedalPosition a c 5
3 & sospeedvlue sty of the automotive industry
EF4 ch_sigEngineTemperature J|,z— sigEngineTemperal .
() ch sigigtion - siglantion e now supported by modern modeling tools
B3 ch_sigrpm A sighpm - -
= B st s U Design Rule/Well-formedness constraint:
ch_status_cchctive skatus_cchctive o

4| e each valid car architecture needs to respect
Postion ofSianals nthe selected 1700 e designers are immediately notified if violated
%h_status_ccﬁpeedl_l %h_status_cc.ﬁ.ctive %h_status_ C ha I Ienge :

” e >500 design rules in AUTOSAR tools

[Vodellce | & 5ystem cdkor: cenosysien & . >1 million elements in AUTOSAR models

® Elemenk desaton | 4 . models consta ntIy evolve by designers

} erraors, 2 warnings, O others

Descripkion =

= @ Errors (4 items) /
3 I5ignal of a grouped Svstem Signal should be mapped ta an IPdu along with the IR0 the System Signal Group demo_swc, arxml lalma frootP,.. AUTOSARP...
3 I5ignal of a grouped Svstem Signal should be mapped ta an IPdu along with the ISignal of the System Signal Group | dema_swe, arxml falma frootP,.. AUTOSARP...

@ 15ignal of a grouped System Signal should be mapped ko an IPdu along with the ISignal of the System Signal Group | demo_swi,arxml falma frootP,.. AUTOSARP...
@ peference iPduTimingSpecification has invalid multiplicicy! (Must be in: [1, 1T demno_swi, arxml lalma JrootP... AUTOSARP...
[I H -

Domain-Specific Modeling Languages

Signal L+ entry Route - Sensor
@ actualState : SignalStatekind | | + '”“E”‘Eﬁ“'t:_[‘:: -
‘\ L | + route + sensor | ¥
N «type»
Y
SignalStateKind >y * | + switchPosition + trackElement | *
= 5TOP \\ SwitchPosition TrackElement |
=1 FAILUIRE N | @ switchState : SwitchStateKind
= GO \ . + connectsTo
\\ * | + switchPosition . |
\\
SwitchStateKind \ _ '
= FAILURE \‘ L | + switch
Bl LEFT "\ Switch Segment
=1 RIGHT | [z actualate : SwitchStateKind i length : Eint Meta-
=] STRAIGHT N
AN X model

Cbstract 3 !/j
-

Validation of Well-formedness Constraints

Domain-specific U .

modeling languages pattern switchWOSignal(sw) {
) E Switch(sw);
' - neg find switchHasSignal(sw);

)

pattern switchHasSignal(sw) {
- Switch(sw);

= Signal(sig);
Signal.mountedTo(sig, sw);

E Signal + mountedTa E TrackElement

Model sizes in practice

"= Models with 10M+ elements are common:
o Car industry
o Avionics
o Source code analysis

= Models evolve and change continuously

Application Mod Validation can take hours |
System models 108

Sensor data 10°

Geospatial models 1012

Source: Markus Scheidgen, How Big are Models — An Estimation, 2012.

MODEL QUERIES
AND GRAPH PATTERN MATCHING

What is a model query?

®" For a programmer:
o A piece of code that searches for parts of the model

= For the scientist:

o Query = set of constraints that have to be satisfied by
(parts of) the (graph) model

o Result = set of model element tuples that satisfy the
constraints of the query

o Match = bind constraint variables to model elements

" A query engine: SupportiialCr:) il siGHE)
e all tuples of model elements g,6

o the definition&execution BRI R =Re 1= oo sl Lalo]
of model queries e along the match A=aand B=b6
‘» parameters A,B can be input/ output)

— SiC

M ECYETEM I TERZ

Categorization of Query Languages

= Hard to write?

= Your options
o Java (or C/C++, C#, ...)
o Declarative languages (OCL, EMF Query 1-2, ...)

_ Imperative query languages Declarative query languages

Expressive power ® (you write lots of code) © (very concise)
Safety ©O (precise control over what ©®

happens at execution) (unintended side-effects)
Learning curve © (you already know it) @ (may be difficult to learn)
Reusability © (standard OO practices) A® (??7?)
Performance ®Q© (considerable manual ©® (depends on various

optimization necessary) factors)

Graph Pattern Matching for Queries

switchPosition y W
switch

8 routeDefinition ::
- sensor . : .
sensor: Sensor < ..- switch: Switch

- -. oa8°® y
. .------!------II"‘
: 2= Match:
i N = NP omL>6
. straight By < I .
: s (graph morphism)

= o CSP:
’ * Variables: Nodes of L

* Constraints: Edges of L

ﬁ Ie“ * Domain values: G
;@ o Complexity: |G| NI

All sensors with a switch that belongs to a route must directly be linked to the same route.

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
m routeDefinition 0
Y sensor

sensor: Sensor [€ switch: Switch

. = Search Plan:

gﬂ i «’&J ﬁ‘l ﬁ‘ﬂ o Select the first node

to be matched

switch

o Define an ordering on

R
==—1C = graph pattern edges

ﬁ T él ﬁj = Search is restarted from
L@ scratch each time

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
m routeDefinition 0
Y sensor

sensor: Sensor [€ switch: Switch

. = Search Tree:

%ﬂ straight 4M 6“ {ﬁhq

switch

Graph Pattern Matching (Local Search)

O route: Route
“ routeDefinition
v

switchPosition

sensor: Sensor

<€

sensor

sp: SwitchPosition

e switch

=~

%ﬂ straight " M

switch: Switch

= Alternate Search Tree:

/ Local Search
based PM
e Runtime depends
on search plan
e Good search plan:
narrow at root
wide at leaves

y

INCREMENTALITY IN

QUERIES AND TRANSFORMATIONS

Performance of query evaluation

= Query performance = Execution time
as a function of
o Query complexity
o Model size
o Result set size

= Motivation for incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
qguery results are needed all the time.

o Incremental evaluation is an essential, but not a well
supported feature.

Incremental Graph Pattern Matching

Y

sensor: Sensor

sensor

<€

switchPosition ; w
8 routeDefinition

switch

=~

%ﬂ straight {M

ujty

switch: Switch

route _|sp[switch | sensor
rl spl swl

= Main idea: More space to less time
o Cache matches of patterns
o Instantly retrieve match (if valid)
o Update caches upon model changes
o Notify about relevant changes

= Approaches:
o TREAT, LEAPS, RETE, ...

o Tools: VIATRA, GROOVE, MoTE, TCore

Batch vs. Live Query Scenarios

= Batch query
(pull / request-driven):

1.
2.

Designer selects a query

One/All matches are
calculated

Rule is applied on one/all
matches

All Steps 1-3 are redone if
model changes

= Query results obtained
upon designer demand

= Live query

(push / event-driven):
Model is loaded
Rule system is loaded

N S

Calculate full match set

D

Model is changed (rules
fired or designer updates)

5. lterate Steps 3 and 4 until
rule system is stopped
= Query results are always
available for designer

EMF-IncQuery: An Open Source Eclipse Project

-

e Declarative graph query

language
e Transitive closure,
Negative cond., etc.

e Compositional, reusable

http://eclipse.org/incquery

\

-

¢ Incremental evaluation

\

e Cache result set

e Maintain incrementally
upon model change

Execution

e Derived features,
e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

INCREMENTAL MODEL QUERIES:
THE LANGUAGE

The IncQuery (1Q) Graph Query Language

switchPosition
route: Route
8 routeDefinition

Y

sensor

sensor: Sensor <€

pattern routeSensor(sensor: Sensor) = {
TrackElement.sensor(switch,sensor);
Switch(switch);
SwitchPosition. switch(sp, switch);
SwitchPosition(sp);
Route.switchPosition(route, sp);
Route(route);
neg find head(route, sensor);

}

pattern head(R, Sen) ={
Route.routeDefinition(R, Sen);

sp: SwitchPosition

switch

Switch: Switch

= |Q: declarative query language

O

O O O O

Attribute constraints

Local + global queries
Compositionality+Reusabilility
Recursion, Negation,

Transitive Closure over
Regular Path Queries

Syntax: DATALOG style

Statecharts metamodel

= Other detailed examples

..{ H TratfichstL

[0..*%] visualisations N
[1.1] tophlodel [0..*] transitions

[0.%] ,-“interluptTran:itiu:un:

[0..%] states
! - - r
E Visualisation E State]— | EE Transition
- [1..1] start

= red : EBoolean = false = name : EString 1

= green : EBoolean = false % — [1..1] fromState [0..*] autTransition

= yellow : EBoolean = false [L.1] wisualisation [::

= : EStri

¢ hame: ESiring | [1.1] toState -

[0..%] inTransition - _}

E TimedTransition]

= delay ; EInt=0

[0, fimedTransitions

E InterruptTransition

:

—_—

= name : EString

(o] B Simple queries

// S is a state of a statemachine with name N

pattern state(S:State, N) {
State.name(S,N);

}

// 01ld VIATRA style

pattern state(S,N) {
State(S);
State.name(S,N);

}

// Smart type inference

pattern state(S,N) {
State.name(S,N);

}

// Checks if a state is red

pattern redState(S: State) {
State.visualisation.red(S, true);
State.visualisation.green(S, false);
State.visualisation.yellow(S, false);

e pimple queries

1s a state of a statemachlne with name N

pattern state(S:State, ySyntactm:sugar
State.name(S,N); {

Query parameter |

}
// 0ld VIATRA style

pattern state(S,N) {. _
State(S); Type constraint J
State.name(S,N); °

}

// Smart type inference

pattern state(S,N) { _ —
State.name(S,N)lom .(Attrlbute navigation

}
// Checks if a state is red

pattern redState(S: State) {
State.visualisation.red(S, true);
State.visualisation.green(S, false);
State.visualisation.yellow(S, false);

""|'Path expression

M ECYETEM I TERZ

[o] /NN Simple queries

// S is a state of a statemachine with name N Support for built-in
pattern state(S:State, N) { EMF datatypes:

State.name(S,N); Strings, integers, etc.
}

// 01d VIATRA style // T is a timed transition between a
pattern state(S,N) { // from state and a to state with delay D
State(S); pattern timedTransition(T,from,to,D) {

State.name(S,N); Transition.fromState(T,from);

} Transition.toState(T,to);

// Smart type inference TimedTransition(T);

pattern state(S,N) { TimedTransition.delay(T,D);
State.name(S,N); }

} // T is an interrupt transition between a

// Checks if a state is r // from state and a to state with delay D
pattern redState(S: State pattern interruptTransition(T,from,to,E) {

State.visualisation.r« Transition.fromState(T,from);
State.visualisation.gi Transition.toState(T,to);
State.visualisation.y InterruptTransition(T);

} InterruptTransition.name(T,E);

Pattern composition and NAC

Pattern composition / call

ult of Event is non-deterministic in State
¥/nondeterministicState(State, Event) {
find interruptTransition(_,State,Tol,Event);
find interruptTransition(_,State,To2,Event);
Tol != To2;
}
// No timed transition going out of a State
pattern noTimedTransition(State) {
State(State);
neg find timedTransition(_,State, ,);

Negative application Anonymous variables
condition (see Prolog)

[o] /N Transitive closure and disjunction

pattern transition(from,to) {
Transition.fromState(T,from);
Transition.toState(T,to0);

}
pattern reachable(from:State,to:State) {
== - (. . .
y orf°m to; Disjunction
find transition+(from,to); (Pn_ Pattem level)
}

(. .
__Transitive closure

pattern unreachableState(S:State) { ,___(_over 2 param pattems)J

TrafficDSL.states(dsl,S);
TrafficDSL.start(dsl,Start);
neg find reachable(Start,S);) ot firi

e negative calls do not bind
variables of header parameters

e patterns should be connected by

edges (avoid Cartesian product)
N —— S

MUEGYETEM 1762

Check expressmn & Match count

teachersWithMostCourses(S,T)

-
1 I
1 1
1 1
| i
H teachers courses HN | |
I | S:School =2 T:Teacher > :Course :
' i
1 1
i NEG - courses | #M E
: Tonchors 21T2: Teacher :Course :
1 1
E check (M > N) i
1 1
1

pattern teachersWithMostCourses(

School : School, Teacher : Teacher) = {
School.teachers(School,Teacher);
V(e aNeol8(gli[gle} neg find moreCourses(Teacher);}

Ctern_moreCourses(Teacher : Teacher) = {
count find coursesOfTeacher(Teacher, Course);
count find coursesOfTeacher(Teacher2, Course2);

N
M
Teacher(Teacher2);
Teacher != Teacher2; Check expression

check(N < M);} “Ifor attribute values

H I: YETEMITB

Overview of IncQuery Pattern Language

= Features of the pattern language
o Works with any (pure) EMF based DSL and application
o Reusability by pattern composition
o Arbitrary recursion, negation
o Generic and parameterized model queries
o Bidirectional navigability of edges / references
o Immediate access to all instances of a type
o Complex change detection

= Benefits

o Fully declarative + Scalable performance

INCQUERY Development Tools

Java - school.instancemodel /BUTE.school - Eclipse - /Users/Isg

e =N " e Works with most EMF-

& BUTE.schoal

S based editors out-of-

v | HY G

=g

=

schoolqueries.eiq £3

Courses of a teacher. ource/sc

¥ <= 5choal Hapest U
) b < Yeal h _b 111
. FTeacher T teaches in Course C b 4 Yea t e OX 15

!

< Teag Andras

= pattern coursesOfTeacher(T:Teacher, C:Course) = { ‘ I h
Teacher.courses(T,C); i:: ° Revea S matc eS aS ::::rn;
<+ Teal . Daniel '
<4 Cou I Model-d
[* < Cou Se eCtIO n Fnorr:al r

<= Course S
<4 Course Prolog progra
< Course Graph transfermatio

ourse Fault-to
4 Course Pralog p
4 Course Graph tr

* Teacher T teaches a course which is being taught to School

£

pattern classesOfTeacher(T:Teacher, 5C:SchoolClass) = {
find coursesOfTeacher(T,C);
Course.schoolClass(C,5C);

Selection | Parent | List | Tree | Table | Tree with Col

E Properties &2 = & blems | (7 SVN Repositories | & Console iQ Query Explorer &3 €] Error Log B — 0

Praperty Value - A e - Details / Filters [
Courses 4 Course Model-driven s... " ee SE:DD:'_CD_:_'I:Ewlllh";:;g_hﬂ-dh'ms_ L T:Ih {Lﬂur?me}l Parameter \."al.u_e
Homeroomed... | 4 Class D 'a schoclinTheCircleOffFriends matches untime T Daniel Varro

@8 school.classesOfTeacher - 4 matches (Runtime)
» 8 school.teachers - 4 matches (Runtime)
. . F B school.theOnesWithTheBiggestCircle - 3 matches (Runtime)
Qu e rl e S a re a p p I I e d & F B school.teachersOfSchool - 4 matches (Runtime)
85 bpmnl.lonelyActivity - No matches (Runtime)

» 8g school.schools - 1 match (Runtime)
u p d ates O n —t h e—fl y » 8 school.studentOfschool - 5 matches (Runtime)

¥ ®g school.teachesTheMostCourses - 1 match (Runtime)

® T=Daniel Varro

» @ school.finalPattern - 2 matches (Runtime)
» 8 school teacherWithoutClass - 1 match (Runtime)

®g bpmnl.badLoopingActivity - No matches (Runtime) Qu e ry EXp I O re r

n® Selected Object: Teacher Daniel Varro

EMF-IncQuery: An Open Source Eclipse Project

-

e Declarative graph query

language
e Transitive closure,
Negative cond., etc.

e Compositional, reusable

http://eclipse.org/incquery

\

-

¢ Incremental evaluation

\

e Cache result set

e Maintain incrementally
upon model change

Execution

e Derived features,
e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

OVERVIEW OF
INCREMENTAL QUERY EVALUATION

Development workflow

Semi-automated for
typical scenarios,

some manual coding
Develop EMF ' Integrate into EMF

domain application
Automated PP

Develop and test Use/Generate
gueries - INCQUERY code

Supported by
Xtext 2

EMF-INCQUERY Architecture v0.8

.
Generated | Ll] Pattern/Query
pattern matcher specification

Validation Reflective pattern |

Engine matcher

> IncQuery BASE

EMF INC PM
Core

RETE Core

/

 The RETE algorithm makes all it work

el et * Well-known in rule-based systems

Incremental Query Evaluation by RETE

= AUTOSAR well-formedness validation rule
Communication
channel

Logical signal Mapping Physical signal

* |nstance model

" Invalid model fragment |

" Valid model fragment |

Incremental Query Evaluation by RETE

worker nodes

MPUE hees
Read the changes in the
result set (deltas)

@ 0o &

Construction of RETE network

Pattern,

/
/7 neg

 Single network for all
patterns

- Node sharing:
controlled by the developer

(pattern call graph)
......................... Pattern SalSaPh, « RETE visualization

RETE Network

 Advanced construction
algorithm
by dynamic programming:
G. Varro et. al (ICMT 2013)

Pattern, Pattern,

EMF-INCQUERY Architecture v0.8

Generated Ll] Pattern/Query
pattern matcher specification

Validation Reflective pattern
Engine matcher

> IncQuery BASE

EMF INC PM
Core

RETE Core

Basic incremental

model access queries

R
M ECYETEM I TEZRZ

IncQuery Base

= Light-weight Java library for basic (yet very powerful) EMF model
access queries with incremental evaluation

= Supports
o Get all instance elements by type
o Reverse navigation along references
o Get model elements by attribute value/type

= Very easy to integrate into any EMF tool (pure Java) — standalone!
= Same high performance and scalability as IncQuery

" |ncremental transitive closure

o Computation of e.g. reachability regions, connected model partitions, ...

o Innovative new algorithm for general graphs

EMF-IncQuery: An Open Source Eclipse Project

-)
e Declarative graph query

language
e Transitive closure,
Negative cond., etc.

e Compositional, reusable

http://eclipse.org/incquery

Query

p
e Derived features,

e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

p
¢ Incremental evaluation

e Cache result set

e Maintain incrementally
upon model change

\

Execution

INCQUERY VALIDATION
FRAMEWORK

IncQuery Validation Framework

= Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses IncQuery graph patterns to specify constraints

= Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

* Execution model is different

Well-formedness rule specification by graph patterns

= WFRs: Invariants which must hold at all times
= Specification = set of elementary constraints +
context

o Elementary constraints: Query (pattern)

o Location/context: a model element on which the
problem marker will be placed

= Constraints by graph patterns

A violation

o Define a pattern for the “bad case” of the

 Either directly
* Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Statechart validation constraint

= “All interrupt names on transitions going out of a single state must
be distinct.”

= Capture the bad case as a query

o There are two outgoing interrupt transitions triggered by the same event

= Add a @constraint annotation to derive an error/warning message

// The result of Event is non-deterministic in State
@Constraint(location = A, message = "$A.name$ is a bad looping activity",
severity = "warning")
pattern nondeterministicState(A, Event) {

find interruptTransition(_,A,Tol,Event);

find interruptTransition(_ ,A,To2,Event);

Tol != To2;

}

// No timed transition going out of a State
@Constraint(location = State, message = "There should be at most one timed
transition going from a state", severity = "error"
pattern noTimedTransition(State) {
State(State);
neg find timedTransition(_,State, ,);

Validation lifecycle

= Constraint violations
o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present
= Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

Validation Ul integration

= A menu item (command) to start the validation
engine

" Generic (part of the IncQuery Validation
framework)

o GMF editor command
* Appears in all GMF-based editor’s context menu
o Sample Reflective Editor command

* Appears on the toolbar

= Generated

o EMF generated tree editor command

* Appears on the toolbar

CALCULATING DERIVED FEATURES

BY INCREMENTAL QUERIES

Metamodels with Derived Features

/interruptTransitions(A,B): | Derived
B is an InterruptTransition ‘ Reference
- B is a transition in A ’

Y

..{ H TratfichstL

0..*] visualisations) I "
0.1 [1..1]topr-.-10del-‘ [0..*] transitions [0..*] finterfuptTransitions

[0..%] states

v . § .
E Visualisation E State]— t | Eﬁ Transition

- [1..1] start
= red : EBoolean = false = name : EString t

= green : EBoolean = false

|
[1..1] visualisation

= yellow : EBoolean = false
T name : EString

[1..1] from5tate [: [0..*] outTransition ‘

[1..1] toState - [0..%] inTransition - _}

E TimedTransition] E InterruptTransition

(De rived Featu res. = delay - Eint=0 = name : EString ‘

:

e Values calculated from other elements
! e Defined declaratively as model queries
~ (e.g. OCL, graph queries)
e Tooling: handle as reqgular EMF elements

—_—

DF specification:

as a query

H TratfichstL

Handling Derived Features as Queries

Derived

Reference

alisations

@QueryBasedFeature
pattern

interruptTransitions(DSL:TrafficDSL,T)

[1.1] tanodel_‘ " [0..*] transitions

[0.%] ,-“interll.u:utTran:itiu:un:

{

EQ Transition

start

TrafficDSL.transitions(DSL,T); | ' |
InterruptTransition(T); Auto-generated

} DF handler (Java)

private IncqueryDerivedFeature interruptTransitionsHandler;
public EList<InterruptTransition> getInterruptTransitions() {
if (interruptTransitionsHandler == null) {

interruptTransitionsHandler = IncqueryFeatureHelper.getIncqueryDerivedFeature(

this, SystemPackageImpl.Literals.DATA READING_ TASK,

"system.queries.InterruptTransitions”, "TrafficDSL", "InterruptTransition",

FeatureKind.MANY_REFERENCE, true, false);}

return interruptTransitionsHandler.getManyReferenceValueAsEList(this);}

INCQUERY VIEWERS

Live abstractions

Complex model Computed overlay
aka. “View”

1 Defined by a query
ltems = SELECT ...

Id Label Prop0 Propl

0 N1 a B

1 N2 o D

Live abstractions

Ul update

Complex model Computed overlay
aka. “View”
Change notification

1 Defined by a query
ltems = SELECT ...

Id Label Prop0 Propl

0 N1 a B

IncQuery

| 1 N2 c D

Query result update 2 N e F

INCQUERY Viewers

On-the-fly
abstractions over
the model

Labeled, hierarchic
property graph

1. Model
Modification

\ -
I % oeied 3 U
Queries Model
2. Change
Notifications

3. Continuous,
efficient
synchronization

4. Ul updates

= Visualize things that are not (directly) present in your model

" Provides an easy-to-use API for integration into your presentation layer
o Eclipse Data Binding

o Simple callbacks

m Query based view annotations

4 Unblink

T “¢ Blink

¥4 Light event

@Format(color = "#ff0000")
@Item(item - S, 1abe1 = "N")
pattern redState(S: State,N) { .. }

X Police event

ﬁmmiaa

¥4 Polife event
4 Yellow

@Item(item = S, label = "N")]
pattern state(S,N) = { .. } 60 ms
@Format(lineColor = "#0000ff") wileaIEED,
@Edge(source = from, target = to, label = "D ms")
pattern timedTransition(T,from,to,D) = { .. }

@Format(lineColor = "#ff0000")
@Edge(source = from, target = to, label = "E event")
pattern interruptTransition(T,from,to,E) = { .. }

What can | do with all this? — query-based live abstractions

Eclipse
technology —

Trees, tables,

Properties EMF.Edit
(JFace viewers)
Diagrams GEF, GMF,
& Graphiti
Textual DSLs Xtext

JFace, Zest,

yFiles INCQUERY

Viewers

Your tool!

The real deal:
doesn’t hide abstract syntax

Easy to read and write
for non-programmers

Easy to read and write
for programmers

Makes understanding and
working with complex models
a lot easier

PERFORMANCE BENCHMARKS

The Train Benchmark

= Model validation workload: = Models:
o User edits the model Randomly generated

o Instant validation of Close to real world instances

®
®
well-formedness constraints o Following different metrics
o Model is repaired accordingly o Customized distributions

®

Low humber of violations

= Scenario: m Queries:
o Load o Two simple queries
o Check (<2 objects, attributes)
o Edit o Two complex queries
o Re-Check (4-7 joins, negation, etc.)

o Validated match sets

Batch validation Incremental validation

>
Instance Read > Check » ' Edit > ReCheck » v
model

What Tools are Compared?

19Drools
?® Neoy]
@ the graph database i‘ >
: i IncQuery
Ml.__]S(:‘IRI_®
clarkparsia store

Batch validation runtime (complex queries)

Batch Modelvalidation (x,y:logscale)

432177.000

181949.503

76601.998

32249.970

13577.460 -

5716.205

2406.562

1013.179

Time [ms]

179.583

75,606

31.830

530478.000

220304.255

91491.004

37995.652

15779.361 -

6553.072

2721.450 -

1130.202

Time [ms]

459.366

194.925

80,951

W

426,555 -

[EMF-IncQuery:

Batch execution is dominated by
* l[oading the model
* initializing the indexers

n (x,y:logscale)

2.8 million nodes +
11.2 million edges

')

—
—
—

4____..-9/

88k nodes +

347k edges

(4

= 0.7 million nodes +
ko

2.8 million edges

Tools
=t Allegro Graph
#= Drools
= Eclipse OCL+IA
=t 4store
3 EMF-IncQuery
Jawva Refactored
= Pellet
& Neody
Eclipse OCL
= Sesame
MySQL
&= Stardog
OpenVirtuoso

Tools
= Allegro Graph
&= Drools
& Eclipse OCL+1A
= 4store
-)|é EMF-IncQuery
Java Refactorec
“ Neodj
Eclipse OCL
= Stardog
OpenvVirtuoso

Re-validation time (complex queries)

Incremental Transformation and Validation (x,y:logscale)

4536.000
0 /
2120.055 t |
990.880 //]// = //
463.122 F/ ! . : | | = { | _ _.
216.456 ?__--—‘/:; / - — /: > [Egsegro Graph
101.168 —_— 4_-.._..—--'""':?———-—— / = . AEEF;S; OCL+1A
_ 47.284 i = T 7 | [= 4store
E 22100 s | B e ooy
E 10.329 / . gijeelfzj
4.828 5y Eclipse OCL
__ - A = Sesame
B Incremental Transformation and Validation (x,y:logscale) " HgltySSL
| ardog
5058.000 r OpenVirtuoso
2170625 /”_%—///i/]
931.517 = - 5
399.758 - e
171.555 '/’2
. i / . EMF-IncQuery:
L‘ (= . . | .
o e - Characteristic * close to zero response time
E) .
o o r . difference * up to models with
i: 4 . .
2497 . (note the log scale) 14 million elements
1.072
0.460 i |
0.197 /l(—_—/ f |
0.085 . o / .
0.035
Co1e | 3 0 0de
O BOLE

http://incquery.net/publications/trainbenchmark for more details

Memory [kByte]

1e+07 |

1e+06 |

100000 |

AllTestCaseAvg Memory Usage

Incremental engines impose
a linear memory
consumption overhead
INCQUERY’S overhead is only
slightly larger than OCL-IA

BUT: Most standard JVMs start
having severe performance
issues with large models

Java —— Drools —a— Eclispe OCL -

EMF-IncQuery —w— OCL Impact Analysis —=—

418k

CONCLUSIONS

Selected Applications of EMF-IncQu

(
e Complex traceability
e Query driven views

e Abstract models by
derived objects

lTooIchain for
I

MA configs

e Experiments on open
source Java projects
e Local search vs.

Incremental vs.
Native Java code

Detection of .
bad code smells §

-
e Rules for operations

-
e Connect to Matlab

Simulink model
e Export: Matlab2EMF
e Change model in EMF
e Re-import:
EMF2Matlab

ery

ATLAB-EMF
Bridge

~

e Complex structural
constraints (as GP)

e Hints and guidance

e Potentially infinite
state space

-
¢ Live models

(refreshed 25
frame/s)

e Complex event
processing

Gesture

recognition

Design Space
Exploration

-
e Itemis (developer)

e Embraer

e Thales

e ThyssenKrupp
e CERN

N

EMF-IncQuery: An Open Source Eclipse Project

-

e Declarative graph query

language
e Transitive closure,
Negative cond., etc.

e Compositional, reusable

http://eclipse.org/incquery

\

-

¢ Incremental evaluation

\

e Cache result set

e Maintain incrementally
upon model change

Execution

e Derived features,
e On-the-fly validation
e View generation,

e Works out-of-the-box
with EMF applications

