Domain Modeling

Model Driven Systems Engineering
Lecture 2

Metamodel: Specify Concepts an Appl. Domain

Coiaidii = Metamodel:

/ 1\ Metamodel o Precise specification of
' = fransitions 3

places domain concepts

© Transition G Place o A language for defining the
o token : Elnt
abstract syntax of a DSM

1 - toPlace

- fromTramsition 1 16 fromPlace
- toTransiti 1 .
- outgoingArcs = IREErTI i + r outgoingbrcs . Goal. to deflne.“
Gtwarc | NG prar o Basic concepts
o Relations between concepts
Iiﬁ:lées;:::rf:;resu:uurce,l'PNExampIe,l'myMndel.petri (InStance) MOdel © Attrlbu.te.s Of Concepts
o4 e o Abstraction / refinement
I (Taxonomy, Ontology)
=] = '-Ell:E= u]
¢ pracs between model elements
< Place p2
o Aggregation
Selection | Parent | List | Tree | Table | Tree with Columns O Multlpllcity restrlctlons

Tasks | = Properties 53

o Derived features

Property Yalue
Incoming Arcs

Mame I=p1
Taoken

Metamodels and instance models

Reference /
Association

Aggregation

Attribute

Concrete syntax

Classes and Objects

Type hierarchy

=" Generalization
[State J

o =Inheritance
[r o Transitive
o Reflexive? / Irreflexive?

Simple J [Compound] . ,
[State State How to read:

? o SimpleState is a subclass of
State

AND OR o State is a superclass of
[State] [State J SimpleState

= Substitutability
v’ Subclass instead of Superclass
- Superelassinstead-of
Subelass

Typical Use of Generalization

Parent class is more general
than its children classes

[«Entity» |

& Organizer
o name ; String

& Player

o name ; string

& User

[<Entity» |

o pame : string

& Organizer

i Player

Aim: Lift up

common features
to the superclass

Type conformance /Instantiation /Classification

refine

(Automaton]

initial Tstates

\ from

CompState [>[State
ki

ind:StateEnunt

transitions

Transition

.

to

\«instanceOf»

st‘

fr

= Each model element is
an instance of (conforms to)
a metamodel element

= Direct type:

o No other type exists
lower in the type hierarchy

o s1 - CompState

= Indirect type:
o Superclass of the direct type
o s1 - State

Classification vs. Generalization

Fido is a Poodle v' 1+2 = Fido is a Dog

v 1+2+3 = Fido is an Animal

' 1+4 = Fido is a Breed

' 245 = A Poodle is a Species

A Poodle is a Dog

Dogs are Animals
A Poodl|

A Dog |

is a Breed

Al S

pecies

Generalization (SupertypeOf)
IS transitive

= Classification (InstanceOf) is

NOT transitive

Multiple inheritance

= Multiple inheritance:

Animal M
Element o A class in the metamodel
? l} has more than 1 supertype
o Typical use: merge features
Pets .
from different classes
I l} I * One is generic, thus reused
in different domains
Dog Cat (cf. NamedElement)
'I‘ . * Otheris a general but
«instanceOf» domain-specific superclass
FBae (cf. Animal)

, = Restriction:
How many types
O E T For each model element:

a single type

Multiple classification

[

ARINC653]
Element

]

[Module J

R {(instanceOf»/
N /
N /
AV 4

[m1:Module, Asset]

= Multiple typing /
classification:

o One model element typed
against multiple
metamodels

o Rationale:
Multi-paradigm / view
modeling

o UML Stereotypes

= Restriction:
For each model element:
a single type in a domain

References and Links

Type conformance of references

Metamodel

(State L from TransitionI
|

2 - TJ
I
CompState [(instance» |

| «instancey

1 i l
%1:C0mp5tat+ t1:Transition

' Can you define generalization
for references?

= Alinkin a modelis
type conformant if

o type(src(link)) is subtype of
src(type(link))

o type(trg(link)) is subtype of
trg(type(link))

o Informally:

* The type of the source object
is a subtype of the source
class of the link’s type.

* The type of the target object
is a subtype of the target
class of the link’s type.

Containment hierarchy

= Each model element has a
unigue parent

o N children = 1 parent

o Single root element

= Aggregation as relationship:

o Defined in the metamodel
along reference edges

o Provides restriction for
instance models
Circularity

o No circular containment
(in the model)

o Aggregation relations in the
metamodel may be circular
(hierarchy)

Multiplicity restrictions

= Definition: Lower bound .. Upper bound

o Lower bound: 0, 1, (non-negative integer)

o Upper bound: 1, 2, ... * (positive integer + any)
= Scope:

o References: allowed number of links
between objects of specific types

o Attributes: e.g. arrays of strings (built-in values)

(Team]
\) Which are the most
1 Imembers common multiplicity
0. definitions in practice?
captai Player]

Notation Guide

Multiplicity
should be 1 for
aggregation Composition:
at most one container

Multiplicity

1 playedIn 4

Multiplicity

Navigability: one can access
white player from a game

but not vice versa
/ at most one

0,1
- whitePlaver

Role name

Advanced Concepts and

Best Practices

In Domain Modeling

Derived Features
= A derived feature can be et

calculated from others & Player

o Usage: helpers for o hirth : Integer
designers / tools o Jage : Integer

o It need not be persisted
o Automatic updates

= Derived attributes:
age = currYear - birth

= Derived references:

dogs = -- pets --> Dog
= Derived objects: | knows w
7. /member /member
o ,,Gang”: ST e
everyone knows everyone Jmember

 Peter

knows

Enumerations

= Enhumeration:
o a fixed set of symbolic values

. [«enumeration»
o represented as a class with ‘= ChampStatus
values as attributes o Announced
o Started
= Usage: o Cancelled
o Finished

o Frequently define possible states

o Use enumerations instead of hard-wired String literals
whenever possible

o Can be better than Boolean — extensibility

o Use as attribute types

Built-in classes vs. User defined classes

m

) Championship

(+ | - championships

User classes:

Associations |
participants

) — - players
Built-in classes + EETr—
Enumeration Type: @ Player |- .

Attributes A ame : String - organizer

When to avoid generalization?

[Entty | = What happens if a
R — started championship

is finished?
= Problem: Retyping of an
object is required
W - .
@ StartedChamp @ FinishedChamp NOTE:
Use status attribute with

enumeration values to
store the state of an

ety | [cemumerations object that can change
& Championship := ChampStatus J 5
o status ; ChampStatus a Announced
o Started
o Finished
o Cancelled

What is Bad Design/Smell here?

& Championship /
o organizer : Player

* | - championship

partigipants —

o Playel q—
[<Entity» |

& Player

" Properties of a user
defined type (class)
should rather be
denoted explicitly

o OK, if multiplicity is 1
= Naming of associations:

o prefer verbs to nouns

o OK: participatesin,
participantsOf

= Naming of roles:
o 1:singular
o *: plural

o OK: players,
championships

What is Bad Design/Smell here?

= Arrays in attributes

& Championship o Solution:
- organizers(] an organizes association

1] r:I'|..=|m|:|i::||'|sI.'|i|:| - EXp“Cit || sts
blayers | o Solution:
1| - playerlist a single playsin association
G = NOTE:

Lists and arrays are
programming constructs
and not domain elements!

&) Player

Domain Modeling Examples

Practical exercises

The School Domain

= A school (identified by its name and address) has
teachers as employees who teach courses
(identified by their subject) in different years.

= Each class in a specific school year has a
headmaster (homeroom) teacher

= Students of a specific year attend their own
classes, and they may be friends with each other

" Teachers and students are identified by their
names.

= Specialization courses can be taken by 11th and
12th grade students

The School Domain

0..1 school years E
Year
School
s e 0'-'1 0..* | = startingDate : Eint 0..1

0 name ! trmg school year

= address : EString

school’ 0..1 0 eachers

h homeroomTeacher
H Teacher e
= name : EString -
teacher]
0..1
courses
0.~ 0.. courses 0..1] homeroomedClass
EH Course 0. B SchoolCi
choolClass
= subject : EString | courses
- schoolClass = code : EChar 0.5
= weight : Eint
0..1
% schoolClasses
5 SpecialisationCourse schoolClass 0..1
= specialisation : EString
students
O -
5 Student

=9 name : EString

friendsWith |0..*

Paper Review System: The Story

The paper review system is used by authors who log in electronically for the conference
and then fill in a form including their name, the most important attributes of the paper to
be submitted (such as title, abstract), and mark the conference topics related to the
paper. The paper itself is usually submitted by a later deadline using the paper ID
received when registering the paper. Later the authors may observe the reviews received
for their paper. If their paper gets accepted by the program committee, the final version
of the paper needs to be uploaded to the system

The paper review system is also used by the reviewers, who receive their login
parameters in email. They need to fill in their contact details for the conference chair
when logging in to the system for the first time.

After skimming through the titles and abstracts of submitted papers, each reviewer
indicates their conflicts (i.e. those paper where the authors are close colleagues or
former co-author). He or she also indicates those topics where he or she is an expert.

The conference chair assigns the papers to at least three reviewers using semi-automated
assistance from the system. The basis of assignment is the relevant topics indicated by
the reviewers.

The reviewers fill a review form to evaluate the paper from different aspects including a
three-line summary, originality, strong and weak points, reviewer’s confidence, author
comments, confidential comments. The most important part is the overall
recommendation, which can be a score and a textual assessment ranging from strong
reject to strong accept.

Finally, the conference chairs decide on the acceptance or rejection of each paper and
send a notification mail to the authors together with the reviews of the paper.

The Paper Review System

wenumeration
ReviewStatus

= draft
= completed
= pending

wenumerations
ResultKind

=l Accepted

= Conditionally Accepted
=l Rejected

= Withdrawn

= UnderEvaluation

aEntitys»
@ chair

Rty
@ user

1

«Entitys
@ UserAccount
Eg firstMame : String
[Eg lastMame : String
Egemall ; String

[Lsername ; String

Fiy

wEntity»
@ Reviewer

- reviewer

- reviews

- userAccount

swEntity

@ Review

*

1 - conference

wEntitys
@ conference

- chairs

- competences

*
*

= topics
Rty P

g abstractDeadline : Date
g paperDeadine ; Date

1

1“*

[Eg overallRecommendation : Integer
[Cg reviewsStatus : ReviewStatus

-

g password : String
g affiliation : String
[Eg address : String
[Eg phone ; String

aEntitys
@ Author

- authors | 1.

writtenBy

- papels

swEntity»
@ Paper

- submissions

N

*

[Eg title : String

Eg keywaords : String

[Eg abstract : String

g submittedPaper : File

g finalversion : File

[Cg result : Resultkind

[Eg abstractSubmission : Date
[Eg paperSubmission : Date

("] Topic
[Cgname ; String

- topics

qualifiedBy

- relatedPapers

