
Budapest University of Technology and Economics
Department of Measurement and Information Systems

OCL –
The Object Constraint Language

Gábor Bergmann, Ákos Horváth, Dániel
Varró, István Majzik and Gergely Pintér

Model Driven Software Development

Lecture 4b

OCL Motivation

How to capture restrictions / constraints of domain classes?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation

Graphical modeling languages are generally not able to

describe all facets of a problem description

 MOF, UML, ER, …

 Special constraints are often (if at all) added to the

diagrams in natural language

 Often ambiguous

 Cannot be validated automatically

 No automatic code generation

Constraint definition also crucial in the definition of new

modeling languages (DSLs).

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation

 Example 1

Employee

age: Integer

age > 15

Please no

underaged

employees!

alter = 11

e3:Employee e1:Employee

age = 19

e2:Employee

age = 31 

Additional question: How do I get all Employees younger than 30 years old?

 

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation

 Formal specification languages are the solution
 Mostly based on set theory or predicate logic

 Requires good mathematical understanding

 Mostly used in the academic area, but hardly used in the industry

 Hard to learn and hard to apply

 Problems when to be used in big systems

Object Constraint Language (OCL): Combination of
modeling language and formal specification language
 Formal, precise, unique

 Intuitive syntax is key to large group of users

 No programming language (no algorithms, no technological APIs, …)

 Tool support: parser, constraint checker, codegeneration,…

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

 Constraints in UML-models

 Invariants for classes, interfaces, stereotypes, …

 Pre- and postconditions for operations

 Guards for messages and state transition

 Specification of messages and signals

 Calculation of derived attributes and association ends

 Constraints in meta models

 Invariants for Meta model classes

 Rules for the definition of well-formedness of meta model

 Query language for models

 In analogy to SQL for DBMS, XPath and XQuery for XML

 Used in transformation languages

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

OCL field of application
 Invariants context C inv: I

 Pre-/Postconditions context C::op() : T
 pre: P post: Q

 Query operations context C::op() : T body: e

 Initial values context C::p : T init: e

 Derived attributes context C::p : T derive: e

 Attribute/operation definition context C def: p : T = e

Caution: Side effects are not allowed!
 Operation C::getAtt : String body: att allowed in OCL

 Operation C::setAtt(arg) : T body: att = arg not allowed in
OCL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

 Field of application of OCL in model driven engineering

Formal definition of software

systems (models)

Language definition (meta models) –

well-formedness of meta models

Query language

Model transformations

Code generation

Constraint language

Invariants

Invariants

Pre-/Post-conditions

Queries

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

OCL-Types

OCL-

Expressions

Constraints

Queries

Transformations

Standard

OCL

Usage of OCL in other

languages

Bsp: ATL, xPand, QVT

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage
How does OCL work?

 Constraints are defined on the modeling level
 Basis: Classes and their properties

 Information of the object graph are queried
 Represents system status, also called snapshot

 Anaology to XML query languages
 XPath/XQuery query XML-documents

 Scripts are based on XML-schema information

 Examples

«instanceOf»

«defined»

context Person

inv: self.age > 18

OCL-Constraint

Snapshot

fs1:Driverlicense p1:Person a1:Car

fs2:Driverlicense p2:Person a2:Car
Age = 19

Age = 16



 «evaluated»

Model

Car Driverlicense Person
age: Integer

First OCL Examples

Informal Constraints on Championship

 What are the restrictions?

o name is not empty

o minParticipants ≤
maxParticipants

o minParticipants ≥ 0

o maxParticipants > 0

First OCL constraints

 Name is not empty

context Championship inv:
self.name <> ''

 Constraints on participants
context Championship inv:
self.minParticipants >=
0

context Championship inv:
self.maxParticipants >=
1

context Championship inv:
self.maxParticipants >=
self.minParticipants

Context Invariant

Instance of
the class

Navigation along
attributes

Informal Constraints on Player

 What are the restrictions?

o userName is not empty

o userName is unique

o 1800 ≤ birth ≤ 3000

o password is not empty

o age = current_year - birth

Informal Constraints on Player

 1800 ≤ birth ≤ 3000
context Player inv:
self.birth >= 1800 and
self.birth <= 3000

 Name is unique
context Player inv:
Player.allInstances()->
forAll(p1, p2 | p1<>p2 implies
p1.userName <> p2.userName)

Logical
AND

Get all instances into
a collection

Universal quantification: For all
objects in the collection

If p1 ≠ p2

Then p1.userName ≠
p2.userName

Logical
implication

Navigation along roles

 Multiplicity 0..1
context Championship inv:
self.organizer.birth >
1976

 Multiplicity * (many)
context Championship inv:
self.players.birth > 1976

context Championship inv:
self.players-> …
(operations on
collections)

self.players results in a collection
self.players.birth: the coll. of birth years

Only attributes of an
object can be

compared with a
value

Consistency of bidirectional associations

 If a bidirectional association exists
between two objects then it is
navigable from both directions

context Championship inv:
self.organizer.organized=self

context Championship inv:
self.organizer.organized
-> includes(self)

Coll->includes(e):
Tests collection

membership: e Coll

Collection = Single object
Such an equality is invalid

Consistency of bidirectional associations

 If a bidirectional association exists
between two objects then it is
navigable from both directions
context Player inv:

self.organized->exists(
c | c.organizer = self)

context Player inv:
self.organized->forAll(
c | c.organizer = self)

Incorrect: constraint is
prescribed for all champs

Coll->forAll(e|cond(e))
Quantifiers can only be applied

to collections

Consistency of bidirectional associations

 If a bidirectional association exists
between two objects then it is
navigable from both directions
context Championship inv:

self.players->forall(
p | p.championships->
includes(self))

context Player inv:
self.championships->forall(
c | c.players ->
includes(self))

Consistency of bidirectional associations
 The organizer of the championship

organizes at least one
championship
context Player inv:

self.organized->size() > 0

context Championship inv:
self.organizer.organized->
size() > 0

context Championship inv:
self.organizer.organized->
notEmpty()

Context should be
Championship

No player is forced to
organize a champs

Application specific constraints
 A player is allowed to organize

a single active championship at a
time
context Player inv:

self.organized->
forall(c1, c2 | c1<>c2 implies
(c1.status = ChS::closed or
 c1.status = ChS::cancelled)
or
(c2.status = ChS::closed or
 c2.status = ChS::cancelled))

context Player inv:
self.organized->select(c |
c.status = ChS::announced or
c.status = ChS::started)->
size() <=1

Values of an
enumeration

Application specific constraints

 A championship can only be started
when the sufficient number of
participants are present.
context Championship inv:

(self.status =
ChampStatus::started or
self.status =
ChampStatus::finished)
implies
(self.players->size() >=
 self.minParticipants and
 self.players->size() <=
 self.maxParticipants)

Application specific constraints

 Youth championship: the average
age of participants is below 21.

context Championship inv:
self.players.age->sum() /
self.players->size() < 21

players.age is the collection of
the age attributes of players

sum() can only be applied to a
collection that contains numbers

An Overview of OCL Constructs

Types and Boole algebra in OCL

 All OCL expressions are typed
o OclAny:

The type that includes all
others. E.g. x, y : OclAny

o x = y
x and y are the same object.

o x <> y
not (x = y).

o x.oclType()
The type of x.

o x.isKindOf (T)
True if T is a supertype
(transitive) of the type of x.

o T.allInstances() :
Collection
All the instances of type T.

 Boolean operators:
o b and b2, b or b2,

b xor b2, not b
If any part of a Boolean expression
fully determines the result, then it
does not matter
if some other parts of that
expression have unknown or
undefined results.

o b implies b2
True if b is false or if b is true and
b2 is true.

o if b then e1 else e2
endif
If b is true the result is the value
of e1; otherwise, the result is the
value of e2.

Overview of Collection Valued Terms

 Size / aggregation:
o c->size(): Integer

Number of elements in the
collection; for a bag or
sequence, duplicates are
counted as separate items.

o c->sum(): Integer
Sum of elements in the
collection. Elements must be
numbers

o c->count(e): Integer
The number of times that e is in
c.

o c->isEmpty(): Boolean
Same as c->size() = 0.

o c->notEmpty(): Boolean
Same as not c->isEmpty().

 Equality
o c = c2 : Boolean

 Collection membership
o c->includes(e): Boolean;

c->exists (x | x = e).
o c->excludes(e): Boolean;

not c->includes(e).
o c->includesAll(c2):

Boolean;
c includes all the elements in
c2.

o c->including(e): Collection
The collection that includes all
of c as well as e.

o c->excluding(e): Collection
The collection that includes all
of c except e.

Overview of Collection Valued Terms

 Existential quantifier:
o c->exists(x | P):

Boolean;
there is at least one element in
c, named x, for which predicate
P is true.

o Equivalent notation is:
c->exists(P),
c->exists(x:Type |
P(x))

 Universal quantifier:
o c->forAll(x | P): Boolean;

for every element in c, named
x, predicate P is true.

o Equivalent notation is:
c->forAll(P)
c->forAll(x:Type | P)

 Selection:
o c->select(x | P):

Collection
The collection of elements in c
for which P is true.

o Equivalent is: c->select(P)

 Filtering:
o c->reject(x | P):

Collection
c->select(x | not P).

o Equivalent is: c->reject(P)

 Collection:
o c->collect(x | E) : Bag

The bag obtained by applying E
to each element of c, named x.

o c.attribute : Collection
The collection(of type of c)
consisting of the attribute of
each element of c.

Sets, Bags, Sequences
Literals:
Set{ 1, 2, 5, 88 }

Set{ ’apple’, ’orange’,
’strawberry’}

Sequence{ 1, 3, 45, 2, 3 }

Sequence{ ’ape’, ’nut’ }

Bag{1, 3, 4, 3, 5 }

Sequence{ 1..(5+4) } =

Sequence{ 1.. 9 } =

Sequence{ 1, 2, 3, 4, 5, 6,
7, 8, 9 }

Traditional operations are defined
(union, intersection, etc.)

 Conversion from Collection:
o c->asSet(): Set

A set corresponding to the
collection (duplicates are
dropped, sequencing is lost).

o c->asSequence(): Sequence
A sequence corresponding to
the collection.

o c->asBag(): Bag
A bag corresponding to the
collection.

 Comments:
o --

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

OCL – OBJECT

CONSTRAINT LANGUAGE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL Topics

 Introduction

OCL Core Language

OCL Standard Library

 Tool Support

 Examples

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Design of OCL

 A context has to be assigned to each OCL-statement

 Starting address – which model element is the OCL-statement defined for

 Specifies which model elements can be reached using path expressions

 The context is specified by the keyword context followed by the name of the

model element (mostly class names)

 The keyword self specifies the current instance, which will be evaluated by the

invariant (context instance).

 self can be omitted if the context instance is unique

 Example:
Employee

age: Integer

context Employee

inv: self.age > 18

context Employee

inv: age > 18

=

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Design of OCL

OCL can be specified in two different ways

 As a comment directly in the class diagram

(context described by connection)

 Separate document file

Microwave

temperature : Integer

status: State

turnOn()

turnOff()

post: status=State::off

post: status=State::on

inv: self.temperature > 0
«enumeration»

State

• on

• off

context Microwave :: turnOn()

post: status = State::on

Separate text document

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types

 OCL is a typed language
 Each object, attribute, and result of an operation or navigation is assigned to a

range of values (type)

 Predefined types
 Basic types

 Simple types: Integer, Real, Boolean, String

 OCL-specific types: AnyType, TupleType, InvalidType, …

 Set-valued, parameterized Types
 Abstract supertyp: Collection(T)

 Set(T) – no duplicates

 Bag(T) – duplicates allowed

 Sequence(T) – Bag with ordered elements, association ends {ordered}

 OrderedSet(T) – Set with ordered elements, association ends {ordered, unique}

 Userdefined Types
 Instances of Class in MOF and indirect instances of Classifier in UML are types

 EnumerationType – user defined set of values for defining constants

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types
Examples

 Basic types

 true, false : Boolean

 -17, 0, 1, 2 : Integer

 -17.89, 0.01, 3.14 : Real

 “Hello World” : String

 Set-valued, parameterized types

 Set{ Set{1}, Set{2, 3} } : Set(Set(Integer))

 Bag{ 1, 2.0, 2, 3.0, 3.0, 3 } : Bag(Real)

 Tuple{ x = 5, y = false } : Tuple{x: Integer, y : Boolean}

 Userdefined types

 Passenger : Class, Flight : Class, Provider : Interface

 Status::started - enum Status {started, landed}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types
OCL meta model (extract)

OCLType

TupleType

Signal

ModelElementType

Operation

DataType

PrimitiveType CollectionType

MessageType AnyType VoidType InvalidType

String Boolean Integer Real

OrderedSetType SequenceType BagType SetType

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Expressions

 Each OCL expression is an indirect instance of OCLExpression
 Calculated in certain environment – cf. context

 Each OCL expression has a typed return value

 OCL Constraint is an OCL expression with return value Boolean

 Simple OCL expressions
 LiteralExp, IfExp, LetExp, VariableExp, LoopExp

 OCL expressions for querying model information
 FeatureCallExp – abstract superclass

 AttributeCallExp – querying attributes

 AssociationEndCallExp – querying association ends
 Using role names; if no role names are specified, lowercase class names have to be

used (if unique)

 AssociationClassCallExp – querying association class (only in UML)

 OperationCallExp – Call of query operations
 Calculate a value, but do not change the system state!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Expressions

 Examples for LiteralExp, IfExp, VariableExp, AttributeCallExp

 Abstract syntax of OCL is described as meta model

 Mapping from abstract syntax to concrete syntax
 IfExp -> if Expression then Expression else Expression endif

let annualIncome : Real = self.monthlyIncome * 14 in

if self.isUnemployed then

 annualIncome < 8000

else

 annualIncome >= 8000

endif

IntegerLiteralExp VariableExp AttributeCallExp

IfExp

LetExp

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Expressions
OCL meta model (extract)

IfExp LiteralExp

FeatureCallExp

TypedElement

TypeExp

IteratorExp IterateExp

LetExp

initExpression

source

body

result

iterator

LiteralExp: CollectionLiteralExp, PrimitiveLiteralExp,

 TupleLiteralExp, EnumLiteralExp

referredVariable LoopExp

Variable

VariableExp

OCLExpression

CallExp

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Query of model information

 Context instance
 context Person

 AttributeCallExp
 self.age : int

 OperationCallExp
 Operations must not have side effects

 Allowed: self.getAge() : int

 Not allowed: self.setAge()

 AssociationEndCallExp
 Navigate to the opposite association end using role names

 self.employer – Return value is of type Company

 Navigation often results into a set of objects – Example

 context Company

 self.employees – Return value is of type Set (Person)

Person

age : int

getAge() : int

setAge()

Company
employees employer
* 1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Query of model information
Example

Person

age : int

getAge() : int

setAge()

Company
employees employer
* 1

context Company

self.employees

context Person

self.employer
context Company

self.employees

p2:Person

age = 34

c1:Company

p3:Person

age = 54

p1:Person

age = 22

employees

employer

employees

employees

employer

employer

c1 : Company Set{p1,p2,p3} :
Set(Person)

p1:Person

age = 34

c1:Company

employees

employer

Set{p1} :
Set(Person)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Query of model information
OCL meta model (extract)

AttributeCallExp

FeatureCallExp

NavigationCallExp OperationCallExp

AssociationEndCallExp AssociationClassCallExp

Operation Attribute

AssociationEnd AssociationClass

1 1

1 1

Only in UML

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL Library: Operations for OclAny

 OclAny - Supertype of all other types in OCL
 Operations are inherited by all other types.

 Operations of OclAny (extract)
 Receiving object is denoted by obj

Operation Explanation of result

=(obj2:OclAny):Boolean True, if obj2 and obj reference the same object

oclIsTypeOf(type:OclType):Boolean
True, if type is the type of obj

oclIsKindOf(type:OclType):

 Boolean

True, if type is a direct or indirect supertype or the

type of obj

oclAsType(type:Ocltype):

 Type

The result is obj of type type, or undefined, if the

current type of obj is not type or a direct or indirect

subtype of it (casting)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for OclAny
Predefined environment for model types

Person

Student Professor

OCLAny

Exam Lecture

OCLType

instanceOf

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for OclAny

 oclIsKindOf vs. oclIsTypeOf

Person

Student Professor

context Person

self.oclIsKindOf(Person) : true

self.oclIsTypeOf(Person) : true

self.oclIsKindOf(Student) : false

self.oclIsTypeOf(Student) : false

context Student

self.oclIsKindOf(Person) : true

self.oclIsTypeOf(Person) : false

self.oclIsKindOf(Student) : true

self.oclIsTypeOf(Student) : true

self.oclIsKindOf(Professor) : false

self.oclIsTypeOf(Professor) : false

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types

 Predefined simple types
 Integer {Z}

 Real {R}

 Boolean {true, false}

 String {ASCII, Unicode}

 Each simple type has predefined operations

Simple type Predefined operations

Integer *, +, -, /, abs(), …

Real *, +, -, /, floor(), …

Boolean and, or, xor, not, implies

String concat(), size(), substring(), …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types

 Syntax

 v.operation(para1, para2, …)

 Example: “bla”.concat(“bla”)

 Operations without brackets (Infix notation)

 Example: 1 + 2, true and false

Signature Operation

Integer X Integer  Integer {+, -, *}

t1 X t2 Boolean {<,>,≤,≥}, t1, t2 typeOf {Integer or Real}

Boolean X Boolean Boolean {and, or, xor, implies}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types
Boolean operations - semantic

 OCL is based on a
three-valued (trivalent) logic
 Expressions are mapped to the three

values {true, false, undefined}

 Semantic of the operations
 M(I, exp)= I(exp), if exp not further resolvable

 M(I, not exp)= ¬M (I, exp)

 M(I,(exp1 and exp2)) = M(I, exp1)  M(I, exp2)

 M(I,(exp1 or exp2)) = M(I, exp1)  M(I, exp2)

 M(I,(exp1 implies exp2)) = M(I, exp1)  M(I, exp2)

 Truth table: true(1), false (0),undefined (?)

¬

0 1

1 0

? ?

 0 1 ?

0 0 0 0

1 0 1 ?

? 0 ? ?

 0 1 ?

0 0 1 ?

1 1 1 1

? ? 1 ?

 0 1 ?

0 1 1 1

1 0 1 ?

? ? 1 ?

Undefined: Return value if an

expression fails

1. Access on the first element of

an empty set

2. Error during Type Casting

3. …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types
Boolean operations - semantic

 Simple example for an undefined OCL expression
 1/0

Query if undefined– OCLAny.oclIsUndefined()
 (1 / 0).oclIsUndefined() : true

 Examples for the evaluation of Boolean operations
 (1/0 = 0.0) and false : false

 (1/0 = 0.0) or true : true

 false implies (1.0 = 0.0) : true

 (1/0 = 0.0) implies true : true

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for collections

 Collection is an abstract supertype for all set types
 Specification of the mutual operations

 Set, Bag, Sequence, OrderedSet inherit these operations

 Caution: Operations with a return value of a set-valued type
create a new collection (no side effects)

 Syntax: v -> op(…) – Example: {1, 2, 3} -> size()

 Operations of collections (extract)
 Receiving object is denoted by coll

Operation Explanation of result

size():Integer Number of elements in coll

includes(obj:OclAny):Boolean True, if obj exists in coll

isEmpty:Boolean True, if coll contains no elements

sum:T
Sum of all elements in coll

Elements have to be of type Integer or Real

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for collections

Model operations vs. OCL operations

 Bottle

isEmpty() : Boolean

Container *

content

context Container

inv: self.content -> first().isEmpty()

context Container

inv: self.content -> isEmpty()

Operation isEmpty()

always has to return true

Container instances must

not contain bottles

OCL-Constraint Semantic

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operationen for Set/Bag

 Set and Bag define additional operations

 Generally based on theory of set concepts

 Operations of Set (extract)

 Receiving object is denoted by set

 Operations of Bag (extract)

 Receiving object is denoted by bag

Operation Explanation of result

union(set2:Set(T)):Set(T) Union of set and set2

intersection(set2:Set(T)):Set(T) Intersection of set and set2

difference(set2:Set(T)):Set() Difference set; elements of set, which do not consist in set2

symmetricDifference(set2:Set(T)):

Set(T)

Set of all elements, which are either in set or in set2, but do

not exist in both sets at the same time

Operation Explanation of result

union(bag2:Bag(T)):Bag(T) Union of bag and bag2

intersection(bag2:Bag(T)): Bag(T) Intersection of bag and bag2

A∩B

B A

A\B B\A

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for OrderedSet/Sequence

 OrderedSet and Sequences define additional operations
 Allow access or modification through an Index

 Operations of OrderedSet (extract)
 Receiving object is denoted by orderedSet

 Operations of Sequence
 Analogous to the operations of OrderedSet

Operation Explanation of result

first:T First element of orderedSet

last:T Last element of orderedSet

at(i:Integer):T Element on index i of orderedSet

subOrderedSet(lower:Integer,

 upper:Integer):OrderedSet(T)

Subset of orderedSet, all elements of orderedSet including the

element on position lower and the element on position upper

insertAt(index:Integer,object:T)

 :OrderedSet(T)

Result is a copy of the orderedSet, including the element object

at the position index

0 1 2 3 … n

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations

 OCL defines operations for Collections using Iterators
 Expression Package: LoopExp

 Projection of new Collections out of existing ones

 Compact declarative specification instead of imperative algorithms

 Predefined Operations
 select(exp) : Collection

 reject(exp) : Collection

 collect(exp) : Collection

 forAll(exp) : Boolean

 exists(exp) : Boolean

 isUnique(exp) : Boolean

 iterate(…) – Iterate over all elements of a Collection
 Generic operation

 Predefined operations are defined with iterate(…)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Select-/Reject-Operation

 Select and Reject return subsets of collections
 Iterate over the complete collection and collect elements

 Select
 Result: Subset of collection, including elements where booleanExpr is

true

 Reject
 Result: Subset of collection, including elements where booleanExpr is

false

 Just Syntactic Sugar, because each reject-Operation can be defined as a
select-Operation with a negated expression

collection -> select(v : Type | booleanExp(v))

collection -> select(v | booleanExp(v))

collection -> select(booleanExp)

collection-> reject(v : Type | booleanExp(v))

collection-> select(v : Type | not (booleanExp(v))

=

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 Semantic of the Select-Operation

Iterator-based operations
Select-/Reject-Operation

context Company inv:

 self.employee -> select(e : Employee | e.age>50) ->

notEmpty()

List persons<Person> = new List();

for (Iterator<Person> iter = comp.getEmployee();

iter.hasNext()){

 Person p = iter.next();

 if (p.age > 50){

 persons.add(p);

 }

}

Java

OCL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Collect-Operation

 Collect-Operation returns a new collection from an existing one. It

collects the Properties of the objects and not the objects itself.

 Result of collect always Bag<T>.T defines the type of the property to be

collected

 Example

 self.employees -> collect(age) – Return type: Bag(Integer)

 Short notation for collect

 self.employees.age

collection -> collect(v : Type | exp(v))

collection -> collect(v | exp(v))

collection -> collect(exp)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Collect-Operation

 Semantic of the Collect-Operator

 Use of asSet() to eliminate duplicates

context Company inv:

 self.employee -> collect(birthdate) -> size() > 3

List birthdate<Integer> = new List();

for (Iterator<Person> iter = comp.getEmployee();

iter.hasNext()){

 birthdate.add(iter.next().getBirthdate()); }

Java

OCL

context Company inv:

 self.employee -> collect(birthdate) -> asSet()

OCL

Bag
(with duplicates)

Set
(without

duplicates)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
ForAll-/Exists-Operation

 ForAll checks, if all elements of a collection evaluate to true

 Example: self.employees -> forAll(age > 18)

 Nesting of forAll-Calls (Cartesian Product)

 Alternative: Use of multiple iterators

 Exists checks, if at least one element evaluates to true

 Beispiel: employees -> exists(e: Employee | e.isManager = true)

collection -> forAll(v : Type | booleanExp(v))

collection -> forAll(v | booleanExp(v))

collection -> forAll(booleanExp)

context Company inv:

self.employee->forAll (e1 | self.employee -> forAll (e2 |

 e1 <> e2 implies e1.svnr <> e2.svnr))

context Company inv:

self.employee -> forAll (e1, e2 | e1 <> e2 implies e1.svnr <> e2.svnr))

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Iterate-Operation

 Iterate is the generic form of all iterator-based operations

 Syntax
 collection -> iterate(elem : Typ; acc : Typ =
 <initExp> | exp(elem, acc))

 Variable elem is a typed Iterator

 Variable acc is a typed Accumulator
 Gets assigned initial value initExp

 exp(elem, acc) is a function to calculate acc

 Example
collection -> collect(x : T | x.property)

-- semantically equivalent to:

collection -> iterate(x : T; acc : T2 = Bag{} | acc -> including(x.property))

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 Semantic of the Iterate-Operator

 Example
 Set{1, 2, 3} -> iterate(i:Integer, a:Integer=0 | a+i)

 Result: 6

Iterator-based operations
Iterate-Operator

collection -> iterate(x : T; acc : T2 = value | acc -> u(acc, x)

iterate (coll : T, acc : T2 = value){

 acc=value;

 for(Iterator<T> iter =

coll.getElements(); iter.hasNext();){

 T elem = iter.next();

 acc = u(elem, acc);

 }

}

Java

OCL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool Support

 Wishlist

 Syntactic analysis: Editor support

 Validation of logical consistency (Unambiguous)

 Dynamic validation of invariants

 Dynamic validation of Pre-/Post-conditions

 Code generation and test automation

 Today

 UML-tools provide OCL-editors

 MDA-tools provide code generation of OCL-expressions

 Meta modeling platforms provide the opportunity to define OCL
Constraints for meta models.

 The editor should dynamically check constraints or restrict modeling,
respectively.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL Tools

 Some OCL-parsers, which check the syntax of OCL-constraints
and apply them to the models, are for free.

 IBM Parser

 Dresden OCL Toolkit 2.0

 Generation of Java code out of OCL-constraints

 Possible integration with ArgoUML

 OCL-frameworks are originated in the areas of EMF and the
UML2 project of Eclipse

 Octopus

 Frauenhofer Toolkit

 OSLO

 EMFT OCL-Framework/Query-Framework

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL-Tools

 EMFT OCL-Framework

 Based on EMF

 OCL-API – Enables the use of

OCL in Java programs

 Interactive OCL Console –

Enables the definition and

evaluation of OCL-constraints

 EMFT Query-Framework

 Goal: SQL-like query of model

information

 select exp from exp where

oclExp

Context

TUWEL: Interactive OCL Console Screencast

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 1: Navigation (1)

 self.persons   {Person p1, Person p2}

 self.persons.name  {jack, lisa}

 self.persons.alter  {30, 22}

Person

name: String

age: int

parent

children

1
0..*

p1:Person

name = „jack“

age = 30

Administration

2

*

persons

p2:Person

name = „lisa“

age = 22

v:Administration

context Administration:

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 1: Navigation (2)

 self.persons.children  {{p3, p4}, {p3, p4}}

 self.persons.children.parent  {{{p1, p2}, {p1, p2}}, ...}

 self.persons.car.type  {{“audi“}}

Person

name: String

age: int

parent

children

1
0..*

p1:Person

name = „jack“

age = 30

Administration

2

*

persons

p2:Person

name = „lisa“

age = 22

v:Administration

context Administration:

p3:Person

name = „mick“

age = 1

p4:Person

name = „paul“

age = 2

Car
type: String

*

1

a1:Car

type=„audi“

Kinder: Eltern:

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (1)

context Person

inv: self.children->forAll(k : Person | k.age

< self.age-15)

Person

name: String

age: int

parent

children

2

0..*

Constraint: A child is at least 15 years

younger than his parents.

p1:Person

name = „jack“

age = 30

p2:Person

name = „lisa“

age = 22

p3:Person

name = „mick“

age = 1

p4:Person

name = „paul“

age = 17

Children: Parents:



Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (2)

context Administration

inv uniqueRegnr :

 self.persons -> select(e : Person| e.oclIsTypeOf(Student))

 -> forAll(e1 |

 self.persons -> select(e : Person | e.oclIsTypeOf(Student))

 -> forAll(e2 |

 e1 <> e2 implies e1.oclAsType(Student).regnr <>

 e2.oclAsType(Student).regnr))

Person

name: String

age: int

1 Administration *

persons

Student

regnr: int

Constraint: The registration number

of a student has to be unique

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (2) cont.

context Administration

inv uniqueRegnr :

 self.persons -> select(e : Person| e.oclIsTypeOf(Student))

 -> forAll(e1, e1 | e1 <> e2 implies

 e1.oclAsType(Student).regnr <>

 e2.oclAsType(Student).regnr)

)

Person

name: String

age: int

1 Administration *

persons

Student

regnr: int

Constraint: The registration number

of a student has to be unique.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (2) cont.

context Student

inv uniqueRegnr :

 Student.allInstances() -> forAll(e1, e1 | e1 <> e2 implies

 e1.oclAsType(Student).regnr <>

 e2.oclAsType(Student).regnr))

Person

name: String

age: int

Student

regnr: int

Constraint: The registration number

of a student has to be unique.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 3: Inherited attribute

context Person::familyallowance

derive: self.age < 18 or

 (self.age < 27 and self.studies -> size() > 0)

Person

name: String

age: int

/familyallowance:

 boolean

Study
*

*

A Person obtains family allowance, if he/she is younger than 18 years,

or if he/she is studying and younger than 27 years old.

studies

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 4: Definitions

context Person

def: relative: Set(Person) = children-> union(relative)

inv: self.relative -> excludes(self)

Person

name: String

age: int

parent

children

2

0..*

Constraint: A Person is not a relative

of itself

p1:Person

name = „jack“

age = 30

p2:Person

name = „lisa“

age = 22

p3:Person

name = „mick“

age = 1

p4:Person

name = „paul“

age = 17

Children: Parents:

kind



Assumption: Fixed-point semantic, otherwise if then else required

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (1)

 (self.children->select(k | k = self))->size() = 0

 The Number of children for each person „self“, where the children are the person

„self“, have to be 0.

 (self.children->select(k | k = self))->isEmpty()

 The set of children for each person „self, where the children are the person
„self“, has to be empty.

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (2)

 not self.children->includes(self)

 It is not possible, that the set of children of each person „self“ contains the

person „self“.

 self.children->excludes(self)

 The set of children of each person „self“ cannot contain

„self“.

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (3)

 Set{self}->intersection(self.children)->isEmpty()

 The intersection between the one element set, which only includes one person

„self“ and the set of the children of „self“ has to be empty.

 (self.children->reject(k | k <> self))->isEmpty()

 The set of children for each person „self“, for whome does not apply, that they

are not equal to the person „self“, has to be empty.

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (4)

 self.children->forAll(k | k <> self)

 Each child of the person „self“ is not the person „self“.

 not self.children->exists(k | k = self)

 There is no child for each person „self“, which is the person „self“

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

References on OCL

 Literature
 Object Constraint Language Specification, Version 2.0

 http://www.omg.org/technology/documents/formal/ocl.htm

 Jos Warmer, Anneke Kleppe: The Object Constraint Language -
Second Edition, Addison Wesley (2003)

 Martin Hitz et al: UML@Work, d.punkt, 2. Auflage (2003)

 Tools
 OSLO - http://oslo-project.berlios.de

 Octopus - http://octopus.sourceforge.net

 Dresden OCL Toolkit - http://dresden-ocl.sourceforge.net

 EMF OCL - http://www.eclipse.org/modeling/mdt/?project=ocl

