
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Concrete Syntax Design
for Domain-specific Languages

Model Driven Software Development

Lecture 6

Structure of DSMs
Graphical syntax

Code generation

View

Well-formedness
constraints

Behavioural semantics,
simulation

Abstract syntax

Textual syntax

Mapping

Code
(documentation,

configuration)

2

DSM aspects

DSM

Abstract
syntax

Concrete
syntax

Well-
formedness
constraints

Behavioural
(dynamic)
semantics

Views,
translations,

mappings

3

Concrete Syntax Design

 User-facing parts of a modeling language

o Performance

o Robustness

o Usability issues

 Creating model editors

o Similar problems at programming languages

o IDE extensions needed

 Viewers are also important!

o ~read-only editors

4

Concrete Syntax Approaches

 Graphical

o Focus of latter half of today’s lecture

o Typically graph-based modeling (Edges, Nodes)

 Textual

o More details to come in next lecture

 Form-based

o Tree views

o Property sheets, combo / radio /etc.

o Table/matrix approaches

5

Example: Petri net editor

6

Tree-based
outline view

Example: Social Network editor

7

Graphical
outline view

Properties
view

Project
Explorer

extensions

Advanced features

Viewer features

• Outlining / folding /
abstraction

• Details / documentation
overlay (e.g. Javadoc)

• Validation / task / etc. overlay

• Search, navigability

• Automatic layout/formatting

Editor features

• Templates/snippets/examples

• Content assist

• Composite
operations/tools/refactorings

• Automatic fixes

• Undo&Redo, Transactionality

8

Technology

 Eclipse Modeling Tools

o Several related subprojects

o Each supports a single aspect

o Examples of today

 Microsoft Visual Studio 2010 Visualization &
Modeling SDK

o DSL modeling framework from Microsoft

o Own metamodeling core

o Focuses on graphical modeling

 JetBrains MPS

9

Human Aspects

Textual vs. Graphical
Visual Design

Layouting

Question: textual or graphical?

 No clear choice, just rules of thumb

o Simple languages: consider form-based as well

• Like graphical, but cross-references poorly supported

 …why not both?

11

Textual Languages (raw editing) Graphical Languages

Quick and simple editing More cumbersome editing

References as string identifiers References displayed visually

Inconsistent during editing Always syntactically correct

Trivial diff&patch, copy&paste,
search&replace

Editing services require tool
development effort

Typically better for behavior Typically better for stucture

Textual + Graphical

 Same model, two syntaxes

o Text editor + graphical view
• Xtext Generic Viewer

o Textual + graphical editors
• Xtext + GMF side-by-side

 Different aspects of model

o Diagram with text fields
• Embedded Xtext support

12

Visual Design 101

 What belongs together?
„Gestalt
principles of grouping”

o E.g. which label belongs to
which node?

 What is similar?
„Bertin’s visual variables”

o Size, shape

o Color hue, value, intensity

o Line style / orientation / texture

13

Sources: http://wiki.gis.com/wiki/index.php/Visual_variable
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/

http://wiki.gis.com/wiki/index.php/Visual_variable
http://wiki.gis.com/wiki/index.php/Visual_variable
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/

Scaling issues

 Cumbersome editing

o E.g., automatically reorganize diagram when
inserting a node to the middle

 Handling large models

o 20+ nodes on a diagram:

• Logical structure, readability possible

• But needs human support

o 100-1000+ nodes on a diagram

• Technological limitations

• Usability limitations

14

Example: Layouting

15

Example: Layouting

16

Layouting Support for Graphical Editors

 Computation of the position of nodes

o Possible to do automatically

o For a given metamodel

• No unified visual requirements possible

• We have to decide what is important to show

17

Minimum
amount of

edge crossings

Minimum edge
length

Layouting Support for Graphical Editors

 GraphViz - http://graphviz.org

o Layouting project with high quality layout algorithm

o Hard to integrate into Eclipse applications

 Zest - http://wiki.eclipse.org/index.php/Zest

o Easily Eclipse integration (SWT-based graph widget)

o So-so layout algorithms

 ELK (née KIELER) - https://www.eclipse.org/elk/ (relatively new)

o Eclipse Layout Kernel

o Some built-in support: GMF, Graphiti

o Highly extensible

18

http://graphviz.org
http://wiki.eclipse.org/index.php/Zest
https://www.eclipse.org/elk/
https://www.eclipse.org/elk/

Editor Engineering

Editing Workflows
Transactionality
Notation Models

Projectional vs Raw

 Workflow 1: projectional editing

o AKA syntax-driven editing, structural editing

20

Model
Derive / project
concrete representation
• Pretty print (textual)
• Visualize / layout (graphical)

2

Edit abstract representation
• Insert model element
• Remove model element
• Insert reference
• Remove reference
• Modify attribute

1

Concrete
Syntax

Projectional vs Raw

 Workflow 2: raw editing (w. textual syntax)

o AKA source editing

21

Model Concrete
Syntax

Edit concrete representation
• Insert character(s)
• Delete character(s)
• Replace character(s)

Derive
abstract representation
• Parse textual format

1 2

Projectional vs Raw

 Workflow 2: raw editing (w. graphical syntax)

22

Model Concrete
Syntax

Edit concrete representation
• Paint diagram (e.g. PNG)

Derive
abstract representation
• Image processing with

convolutional neural nets
• OCR, etc.

Highly impractical

1 2

Projectional vs Raw

 „Feature matrix” + examples

23

Graphical
syntax

Textual
syntax

Raw
editing

Typical

Projectional
editing

Typical Rare

Mixed workflow

24

Model Concrete
Syntax

1 2

2 1

Complex manipulation of
abstract representation
• Quick fix
• Refactor
• M2M

Derive / project
concrete representation

Normal raw
editing workflow

Transactions in projectional editing

 Complex manipulation sequence as single action

o „Extract subprocess”, „Drag&drop attribute” etc.

25

START
• Begin Transaction

DO

• Manipulation step 1

• Manipulation step 2…

FINISH

• Precommit

• Postcommit

W
ri

te
 T

ra
n

sa
ct

io
n

Transaction finalized
• Issue change notifications

(if not earlier)
• Refresh projections

Optional: check validity
• Reject & roll back if violated

Transaction initialized
• Check for concurrent read

or write transactions

Revertibility
• Rollback
• Manual undo

How to ensure?
• Declarative

commands
• Record change

notifications

Superfluous notational parameters

 Workflow 1: projectional editing

26

Model
Derive / project
concrete representation
• Pretty print (textual)
• Visualize / layout (graphical)

2 1

Concrete
Syntax

Must include notational parameters:
• Whitespace and comments, etc. (textual)
• Layout, edge routing, size, shape, etc. (graphical)

…even though not domain information

Deriving notational parameters

 Notational parameters can be…

o …”baked into” projection code

• e.g. all lines are black, all fonts are 10pt (graphical)

• e.g. apply this code formatting template (textual)

o …derived from domain information

• e.g. shape determined by type, color by visibility

o …stored in the model

27

Problem 1:
Editable parameters cannot
be a function of the domain

model, must be stored

Problem 2:
Providing sane values is

difficult for some parameters
e.g. position in diagram

Notation/view models

 Decompose model:

o Domain model (abstract syntax)

o Notation model (view model): presentation state

• may be editable by user

• but still needs derivable defaults see layouting

 Generic implementation in GMF and Graphiti

o Based on EMF, in fact

 Often stored in external files

o Separation of concerns

o E.g. code generator not interested in view information

28

M.Fowler’s
„Presentation Model”
architectural pattern

Editing workflow with notation models

 Workflow 1: projectional editing

o Scenario A: co-modifying domain¬ation models

29

Domain
Model

1

View

2

Notation
Model

Concrete syntax Abstract syntax

1

Render

Coordinated edit of
both models

• „Create state here” etc.

Coordinated edit of
both models

• „Create state here” etc.

Editing workflow with notation models

 Workflow 1: projectional editing

o Scenario B: modifying domain model only

30

Domain
Model

1

View

3

Notation
Model

Concrete syntax Abstract syntax

Edit domain model only
• M2M
• Refactor, quick fix, etc.

Change
notification

2

Render
Derive missing parameters
• Sane defaults for size etc.
• Layout position

Graphical Editor Technologies

Graphical Editor Technologies

GEF
• Draw2D

EMF
• EMF.Edit

GMF Graphiti

Sirius EuGENia

GEF3D Zest

Spray

Implementation

 Presentation

o Based on a Canvas

o Using vector-graphic libraries (GEF/Draw2d)

 Model manipulation

o EMF Edit model manipulation commands

• Atomic operations: create/modify/remove node/edge

o Transactional modifications with EMF Transactions

• Undo/redo support

 Notation/view model

o Domain-independent implementation in GMF, Graphiti

33

Technologies 1. - GEF

 Graphical Editing Framework (GEF)

o “Low level” editor framework

o Not EMF-specific

 Model-View-Controller approach

 Generic graph-based editor framework

o Including undo/redo support

o Graphical outlines

 Manual coding for every possible element

 GEF4 FX – JavaFX-based
replacement of the core

34

Technologies 2. – GMF

 Graphical Modeling Framework

 Based on GEF and EMF

 Well-separated view and domain models

o Generic view model

o Synchronization provided by GMF framework

 Relatively old technology

o Widely used

o Very complex to start

35

Technologies 2. – GMF

 Model-driven development environment
o Common model for graphical editors, using

• Figure definition model
– Basic symbol definition of the graphical language

• Tooling model
– Defining model manipulation commands

• Mapping model
– Mapping figures and tools to domain model

o Fully functional editor can be generated
• Problematic manual modifications

 Or a high-level editor framework
o Manual coding

36

Technologies 3. - Graphiti

 Newer high level graphical editor framework

o Based on EMF and GEF

o But: different approach then GMF

• Simplified programmatic API

• Manual coding

o Idea

• All Graphiti based editors should
– Look similar

– Behave similar

37

Technologies 3. - Graphiti

 Development methodology

o Coding over a high-level Java framework

• Much simpler then GMF

• Repetitive code needed

 Spray project

o Textual modeling environment for graphical editors

o Generates code over the Graphiti framework

38

Technologies 4. - Sirius

39

 New modeling project

o Since 2013 on eclipse.org

o Previously Obeo Designer – commercial tool

 How stable is it?

o Old projects are to be migrated

o Version history

• 0.9: 2013-12-10

• 1.0: 2014-06-25 (Kepler release train)

• …

• 5.1: 2017-10-26

• …

Sirius Viewpoints

 Base concept:

o Every diagram is a view of the model

o With a defined syntax

• Graphical

• Table/Tree syntax

• Xtext-based textual syntax

 Viewpoint definition

o Viewpoint specification model

Viewpoint Specification Model

Viewpoint

Feature Provider
registration

Mappings

Creation tools

Node & Edge Mapping

Domain class

Filter settings

Edge class

Source features

Target features

Feature Selection

 Interpreted model query expressions
o Special interpreters

• var: accessing specification model variables

• feature: accessing EMF model features

• service: accessing service methods

o Acceleo
• Acceleo expressions

– Basic operations

– Comparison with single ‘=‘ symbols

• Syntax: [theExpression/]

o Raw OCL
• Not recommended, Acceleo provides superset features

o Custom interpreter

Node & Edge Tool

Tool parameter
variables

Model creation
sequence

Different
variables

More complex
creation steps

Interpreted Modeler Development
Viewpoint

specification

View model using
the interpreted

specification

Technology Comparison
GEF GMF Graphiti Sirius

Model Arbitrary EMF EMF EMF

Non
graph-based
presentation

Manageable Large amount of
customization
needed

Not supported Tree, Table

Code size Large,
repetitive code

Mostly
modeling,
some coding

Smaller amount,
but repetitive
code

Negligible

Development
workflow

Only coding Modeling and
coding

Coding Modeling

46

Concrete Syntax Design

Conclusion

Concrete Syntax Design

 Multiple approaches

o Textual and/or graphical syntaxes

o Combinable

 Large amount of development work needed

o Directly used by users

o Usability issues

 Not everything is coded in an editor

o Editor + corresponding views form the interface

48

