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Learning Objectives 

Modeling physical parameters and constraints 

•Include physical properties in a model 
•Include rules constraining physical properties 
•Capture properties and constraints using the SysML language 

 

Joint analysis of the system and the environment 

• Modeling the controller, the plant, and the environment 

• Capture both continuous-time and discrete time properties 

• Identify the connection between the system, the plant, and the 
controller 

• Analyze system properties and execute simulations using models 

• Learn the basic modeling concepts of the Modelica language 

 



Controller, Plant, and Environment 

 Typical system control loop 

 

 

 

 

 

 

 Co-designing controller and the plant would be 
the ideal setting 
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Important step of controller design:  
process identification based on measurements 



Controller design 

 Controller functional design using blocks 

o BDD: defines element hierarchy and containment 

o IBD: template for component internal structure 

 Challenge: validate the design of the controller 

o On-site testing and calibration can be  

• Expensive (time + cost) 

• Dangerous 

o Instead:  

• create plant model and environment model with physical 
properties and  

• run simulations 
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Example railway system controller 

 Controller aims to 

o monitor the trains 

o apply brakes when necessary 

• too close to each other 

• prevent derailment at turnouts 

 Parameters influencing braking distance 

o Weather conditions 

o Speed 

o Landscape 

o… (anything else?) 
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Modelica 

A language for modeling and simulating  
complex physical systems 

6 



Overview of Modelica 

 Modelica is an object-oriented, equation based language 
designed to model complex physical systems containing 
process-oriented subcomponents of different nature 

o Describing both continuous-time and discrete-time behaviour 

 The  Modelica Standard Library provides more than 1000 
ready-to-use components from several domains 

o Full high-school + 1st year university physics (and much more) 

 Implementations  

o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore 

o Open-source: JModelica 

 Modeling and simulation IDE: OpenModelica  
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Example: modeling a simple pendulum 

 Simple pendulum 

 

 

 

 

 

 Behavior of the pendulum as a function of time: 
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Modelica code for simple pendulum 
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model SimplePendulum 

  parameter Real L=2.0; 
  constant Real g=9.81; 
  Real thetha (each start = 1.0); 
  Real omega;  
equation  
 der(thetha) = omega;  
 der(omega) = -(g/L)*thetha; 

 end SimplePendulum; 

Model name Continuous time 
variables, constants  

Initial value 

(Differential) equations 



Pendulum simulation results 
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Modelica Standard Library 

 Provides reusable building blocks (called classes) for 
Modelica models 

 Version 3.2.1. has more than 1340 classes and models 

 Various domains 
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Modelica Standard Library 

 Provides reusable building blocks (called classes) for 
Modelica models 

 Version 3.2.1. has more than 1340 classes and models 

 Various domains 
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Definition in Modelica: 
equation 

 phi = flange_a.phi;  
 phi = flange_b.phi;  
 w = der(phi);  
 a = der(w); 

 J*a = flange_a.tau + flange_b.tau; 

Definition in Modelica: 
equation 

  auxiliary[1] = x[1];  

  for i in 1:n - 1 loop  

    auxiliary[i + 1] = D.Tables.AndTable[auxiliary[i], x[i + 1]];  

 end for;  

  y = pre(auxiliary[n]);  



Modelica and Simulation 

 Simulating a model means to calculate the values 
of its variables at certain time instants 

 Advantages 

o Observing dangerous/expensive bevaviour at low cost 
with no risks 

o Resolves scaling issues (size, duration) 

 Different algorithms and strategies for simulation 

o The task is to solve Ordinary Differential Equations 
(ODEs) generated from the model 

o Numerical techniques 
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Example plant model – train brakes 

 Physical model for braking system carrying a mass 

 

 

 

 

 

 

 

 Graphical notation in OpenModelicaEditor 
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Example plant model – train brakes 

 Physical model for braking system carrying a given 
mass 
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Example plant model – train brakes 
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model BrakeExample  
 Brake brake( 

   fn_max=1, 
   useSupport=false);  
 Mass mass1(  
  m=1, 

   s(fixed=true), 
   v(start=1, fixed=true));  
 Step step( 

  startTime=0.1,  

  height=2);  
equation  
 connect(mass1.flange_b, brake.flange_a);  
 connect(step.y, brake.f_normalized); 

 end BrakeExample; 

Brake, Mass, and Step are inbuilt 
classes to Modelica Library 

Can describe both causal 
and acausal connections 

between ports 



 Plot values w.r.t. time (displacement) 

Brake times and distance 
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 X-Y plot (speed w.r.t. displacement) 

The mass stopped 
after 1s at 0.6m 

The speed reduced to 
0m/s after the mass 

moved 0.6m 



Summary 

 Modeling both discrete-time and continuous-time 
behaviour of cyber-physical systems 

o Modeling language for this purpose: Modelica 

 Connecting models to study joint behavior 

o Simulation of models is especially useful when 
implementing and testing the system is expensive 

o Provides early validation of critical design decision 
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