Modeling Physical properties

Model Driven Systems Development
Lecture 12

A A A

SRR

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Learning Objectives

Modeling physical parameters and constraints

e|nclude physical properties in a model
e|nclude rules constraining physical properties
eCapture properties and constraints using the SysML language

Joint analysis of the system and the environment

e Modeling the controller, the plant, and the environment
e Capture both continuous-time and discrete time properties

e |dentify the connection between the system, the plant, and the
controller

e Analyze system properties and execute simulations using models
e Learn the basic modeling concepts of the Modelica language

Controller, Plant, and Environment

= Typical system control loop

Environment

Disturbance

: I
I
I
I
I
I
: I
Controller ' Plant —><5—>I
Outputl

Reference signals
and settings

Important step of controller design:
process identification based on measurements

= Co-designing controller and the plant would be
the ideal setting

Controller design

= Controller functional design using blocks
o BDD: defines element hierarchy and containment
o IBD: template for component internal structure

" Challenge: validate the design of the controller
o On-site testing and calibration can be

* Expensive (time + cost)
* Dangerous
o Instead:

* create plant model and environment model with physical
properties and

* run simulations

Example railway system controller

= Controller aims to
o monitor the trains
o apply brakes when necessary

* too close to each other

e prevent derailment at turnouts

Train
destination

Railway
system
controller

v

Train status

Railway
infrastructure

ol

= Parameters influencing braking distance Environmental

o Weather conditions
o Speed
o Landscape

O ... (anything else?)

conditions

Modelica

A language for modeling and simulating
complex physical systems

Overview of Modelica

= Modelica is an object-oriented, equation based language
designed to model complex physical systems containing
process-oriented subcomponents of different nature

o Describing both continuous-time and discrete-time behaviour

* The Modelica Standard Library provides more than 1000
ready-to-use components from several domains

o Full high-school + 1st year university physics (and much more)

" |mplementations
o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore
o Open-source: JModelica

= Modeling and simulation IDE: OpenModelica

Example: modeling a simple pendulum

= Simple pendulum

(9)=(59)

Modelica code for simple pendulum
Model name Continuous time
model SimpPlePendulum variables, constants

parameter Real L=2.0;
constant Real g=9.81;
Real thetha (each start.= 1.0);

Real omega;
Initial value

equation
der (thetha) = omega;
der (omega) = -(g/L)*thetha;

end SimplePendulum;

(Differential) equations

Pendulum simulation results

thetha

omega

Modelica Standard Library

" Provides reusable building blocks (called classes) for
Modelica models
= Version 3.2.1. has more than 1340 classes and models

= \/arious domains

L ambient

Or1

A

transformerR transformerL

trans former
O

Modelica Standard Library

= Pl pefinition in Modelica:

y = pre(auxiliary([n]);

equation
auxiliary[1l] = x[1];
. for 1 in 1:n - 1 loop
auxiliary[i + 1] = D.Tables.AndTablelauxiliary[i], x[1 + 1]1;
. end for;

inertia?
1

R &

=

> 2
&

i)

planetary
L=

—

ambient

a=q
Auncd2 L
o

c3

Definition in Modelica:

equation
phi
phi
W =
a =
J*a

= flange a.phi;

= flange b.phi;

der (phi);

der (w) ;

= flange a.tau + flange b.tau;

Modelica and Simulation

= Simulating a model means to calculate the values
of its variables at certain time instants

= Advantages

o Observing dangerous/expensive bevaviour at low cost
with no risks

o Resolves scaling issues (size, duration)

= Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations
(ODEs) generated from the model

o Numerical techniques

Example plant model — train brakes

= Physical model for braking system carrying a mass
brake

E R
massi
m=1
—

startTime=0.1

= Graphical notation in OpenModelicaEditor

Example plant model — train brakes

= Physical model for braking system carrying a given

M ass brake
N

Class

Path: Modelica. Mechanics, Translational. Components. Brake

Comment: Brake based on Coulomb friction

Parameters

MUE_pos [v, f] Positive sliding friction characteristic {v>=0)

peak peak*mue_pos[1,2] = Maximum friction force for v==

COeo Geometry constant containing friction distribution assumption

fn_max N Maximum normal force

useSupport = true, if support flange enabled, otherwise implicitly grounded

useHeatPort =true, if heatPort is enabled

Example plant model — train brakes

model BrakeExample
Brake brake (Brake, Mass, and Step are inbuilt
classes to Modelica Library

Mass massl (
m=1,
s (fixed=true),
VAEaebass Can describe both causal

Step step(and acausal connections
startTimg between ports
height=

equation

connect (massl.flange b, brake.flange a);

connect (step.y, brake.f normalized);
end BrakeExample;

Brake times and distance

= Plot values w.r.t. time (displacement)

0,6 -

=
-
1l

massl.s [m]

[}
=

mass 1.5 vs time

200
P
Ll11)

The mass stopped

after 1s at 0.6m

0.5

1
time

= X-Y plot (speed w.r.t. displace MR L R ke

= massl.s

Om/s after the mass

e o ed 0.6m

0,1

0,2

0,3 0,4 0,5 0,6
massl.s [m]

= Modeling both discrete-time and continuous-time
behaviour of cyber-physical systems

o Modeling language for this purpose: Modelica

= Connecting models to study joint behavior

o Simulation of models is especially useful when
implementing and testing the system is expensive

o Provides early validation of critical design decision

