
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Modeling Physical properties

Model Driven Systems Development
Lecture 12

Learning Objectives

Modeling physical parameters and constraints

•Include physical properties in a model
•Include rules constraining physical properties
•Capture properties and constraints using the SysML language

Joint analysis of the system and the environment

• Modeling the controller, the plant, and the environment

• Capture both continuous-time and discrete time properties

• Identify the connection between the system, the plant, and the
controller

• Analyze system properties and execute simulations using models

• Learn the basic modeling concepts of the Modelica language

Controller, Plant, and Environment

 Typical system control loop

 Co-designing controller and the plant would be
the ideal setting

3

Controller

Environment

Plant

Disturbance

Output
Feedback

Reference signals
and settings

Important step of controller design:
process identification based on measurements

Controller design

 Controller functional design using blocks

o BDD: defines element hierarchy and containment

o IBD: template for component internal structure

 Challenge: validate the design of the controller

o On-site testing and calibration can be

• Expensive (time + cost)

• Dangerous

o Instead:

• create plant model and environment model with physical
properties and

• run simulations

4

Example railway system controller

 Controller aims to

o monitor the trains

o apply brakes when necessary

• too close to each other

• prevent derailment at turnouts

 Parameters influencing braking distance

o Weather conditions

o Speed

o Landscape

o… (anything else?)

5

Railway
system

controller

Railway
infrastructure

Environmental
conditions

Train status

Train
destination

Modelica

A language for modeling and simulating
complex physical systems

6

Overview of Modelica

 Modelica is an object-oriented, equation based language
designed to model complex physical systems containing
process-oriented subcomponents of different nature

o Describing both continuous-time and discrete-time behaviour

 The Modelica Standard Library provides more than 1000
ready-to-use components from several domains

o Full high-school + 1st year university physics (and much more)

 Implementations

o Commercial e.g. by Dymola, Maplesoft, Wolfram MathCore

o Open-source: JModelica

 Modeling and simulation IDE: OpenModelica

7

Example: modeling a simple pendulum

 Simple pendulum

 Behavior of the pendulum as a function of time:

𝜃 (𝑡)
𝜔 𝑡

=
𝜔(𝑡)

−
𝑔

𝐿
𝜃(𝑡)

8

Ɵ L

ω
m

Modelica code for simple pendulum

9

model SimplePendulum

 parameter Real L=2.0;
 constant Real g=9.81;
 Real thetha (each start = 1.0);
 Real omega;
equation
 der(thetha) = omega;
 der(omega) = -(g/L)*thetha;

 end SimplePendulum;

Model name Continuous time
variables, constants

Initial value

(Differential) equations

Pendulum simulation results

10

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

11

Modelica Standard Library

 Provides reusable building blocks (called classes) for
Modelica models

 Version 3.2.1. has more than 1340 classes and models

 Various domains

12

Definition in Modelica:
equation

 phi = flange_a.phi;
 phi = flange_b.phi;
 w = der(phi);
 a = der(w);

 J*a = flange_a.tau + flange_b.tau;

Definition in Modelica:
equation

 auxiliary[1] = x[1];

 for i in 1:n - 1 loop

 auxiliary[i + 1] = D.Tables.AndTable[auxiliary[i], x[i + 1]];

 end for;

 y = pre(auxiliary[n]);

Modelica and Simulation

 Simulating a model means to calculate the values
of its variables at certain time instants

 Advantages

o Observing dangerous/expensive bevaviour at low cost
with no risks

o Resolves scaling issues (size, duration)

 Different algorithms and strategies for simulation

o The task is to solve Ordinary Differential Equations
(ODEs) generated from the model

o Numerical techniques

13

Example plant model – train brakes

 Physical model for braking system carrying a mass

 Graphical notation in OpenModelicaEditor

14

Icon

Connection

Port

Example plant model – train brakes

 Physical model for braking system carrying a given
mass

15

Example plant model – train brakes

16

model BrakeExample
 Brake brake(

 fn_max=1,
 useSupport=false);
 Mass mass1(
 m=1,

 s(fixed=true),
 v(start=1, fixed=true));
 Step step(

 startTime=0.1,

 height=2);
equation
 connect(mass1.flange_b, brake.flange_a);
 connect(step.y, brake.f_normalized);

 end BrakeExample;

Brake, Mass, and Step are inbuilt
classes to Modelica Library

Can describe both causal
and acausal connections

between ports

 Plot values w.r.t. time (displacement)

Brake times and distance

17

 X-Y plot (speed w.r.t. displacement)

The mass stopped
after 1s at 0.6m

The speed reduced to
0m/s after the mass

moved 0.6m

Summary

 Modeling both discrete-time and continuous-time
behaviour of cyber-physical systems

o Modeling language for this purpose: Modelica

 Connecting models to study joint behavior

o Simulation of models is especially useful when
implementing and testing the system is expensive

o Provides early validation of critical design decision

18

