
Budapest University of Technology and Economics
Department of Measurement and Information Systems

MODEL MANAGEMENT

Dániel Varró
Ákos Horváth

Gábor Bergmann

further contributions by
M. Brambilla, J. Cabot and M. Wimmer

Model Driven Systems Development
Lecture 10

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MANAGING MODELS

Chapter #10

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Why Model managing?

 In MDE everything is a model but as important as that, no

model is an island

 All modeling artefacts in a MDE project are interrelated.

These relationships must be properly managed during the

project lifecycle

Requirements

Use Case

Class Diagram

Java Project

Content

 Model Interchange & Persistence

• Persistence to files (XMI, JSON)

• Persistence to repositories (CDO, EMFStore, NeoEMF)

• Interchange between tools

 Collaborative Modeling

o Connectivity

o Access Control

o Versioning

o Conflict Management

 Misc: Model Co-Evolution, Megamodeling

MODEL PERSISTENCE
AND INTERCHANGE

• Persistence to files (XMI, JSON)

• Persistence to repositories (CDO, EMFStore, NeoEMF)

• Interchange between tools

Persist to file: XMI 2.0 document

 OMG XMI Standard (XML Metadata Interchange)
o Supported by EMF out-of-the-box

<fb:Model xmlns:fb="…" xmlns:xmi="…"

<teams xmi.type="Team" xmi.id="t1" name="Hungary">

<players xmi.id=‘p1’
name=‘Puskas’
number=’10’
playsFor='t1'/>

</teams>
</fb:Model>

Puskas :
Player

Hungary :
Team

playsFor

players

Persist to file: emfjson document

 JSON standard: supported by emfjson project
o Similar to XMI, no substantial benefits

{

"eClass": "http://www.eclipselabs.org/emfjson/junit#//Node",

"label": "root",

"target": {

"$ref": "//@child.0"

},

"child": [

{

"eClass": "http://www.eclipselabs.org/emfjson/junit#//Node",

"label": "n1",

"source" : {

"$ref": "/"

}

}

]

}

Fundamental Question: Cross-refs

 Models are graphs, not trees cross-references

o AST not enough, must use linking

o Fragmentation into smaller files cross-file refs

 Cross-reference serialization options

Identifier-based Positional
(fragile!)

Path-based
(absolute or
relative)

../foo/bar/baz /child[3]/child[5]

Direct 123e4567-e89b-… -

XMI standard solutions
• XPath
• XMI ID (resource-relative)
• XMI UUID (globally unique)
emfjson is similar

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Persistence

 Typically models are serialized in plain files, following the

previous XMI format or any other proprietary XML format

 Doesn’t work well with large models. Scalability issues

 Loading the whole model in memory may not be an option

 Random access strategies plus lazy loading (i.e. loading on

demand) are needed

NeoEMF vs. CDO vs. EMF Store

 NeoEMF

o New & simple

o No collaboration

 EMF Store

o Compromise

o Offline checkout

 Eclipse CDO

o Most features

o Most daunting

Local checkout
Optional
local checkout

Client
modeling
tools

Collaborative
Repository
Server

Storage
Backend

Client
modeling
tools

Modeling
tool

Storage
Backend

Collaborative
Repository
Server

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Once Open Everywhere

 There’s a clear need to be able to exchange models among
different modeling tools

 In a perfect world, you’d be able to choose ToolA for specifying model,
ToolB to check its quality, ToolC to execute it….

 We are still far away from this goal

 Solution attempt: XMI (XML Metadata Interchange), a standard
adopted by OMG for serializing and exchanging UML and MOF
models

 But each tools seems to understand the standard in a different
manner

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

XMI example
(simplified and partial versions of the actual XMI files)

Employee
WorksIn1..*

- name : String

Department

- name : String
1

<packagedElement xmi:type="uml:Class" xmi:id="c001"
name="Employee">

<ownedAttribute xmi:id="a001" name="name"/>
</packagedElement>
<packagedElement xmi:type="uml:PrimitiveType"
xmi:id="t001" name="String"/>
<packagedElement xmi:type="uml:Class" xmi:id="c002"
name="Department">

<ownedAttribute xmi:id="a002" name="name"
type="t001"/>
</packagedElement>
<packagedElement xmi:type="uml:Association"
xmi:id="as001" name="WorksIn" memberEnd="e001e002">

<ownedEnd xmi:id="e001" type="c002"
association="as001"/>

<ownedEnd xmi:id="e002" name="" type="c001"
association="as001">

<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="un001" value=""/>

</ownedEnd>
</packagedElement>

<UML:Class xmi.id='c001' name='Employee'
visibility='public' isSpecification='false'
isRoot='false' isLeaf='false'
isAbstract='false' isActive='false'>
<UML:Classifier.feature>
<UML:Attribute xmi.id='a001' name='name'

visibility='public' isSpecification='false'
ownerScope='instance'
changeability='changeable'
targetScope='instance'>

<UML:StructuralFeature.multiplicity>
<UML:Multiplicity xmi.id='m001'>
<UML:Multiplicity.range>
<UML:MultiplicityRange xmi.id='mr001'

lower='1'upper='1'/>
</UML:Multiplicity.range>
</UML:Multiplicity>

</UML:StructuralFeature.multiplicity>
…

ECLIPSE ArgoUML

COLLABORATIVE MODELING

Connectivity
Access
Control

Versioning Conflicts

Challenges

 Connectivity (online/offline)

 Access Control

o Granularity & model fragmentation

o Read & write permissions, obfuscation, policies

 Versioning

o Versioned Storage

o Model Comparison (Matching, Differencing)

 Conflict Management

o Serialization & Locking to avoid conflict

oMerging to resolve conflict

Offline Connectivity

 Workflow

o „Take home” the model

• Work on the model separately

• Use desktop modeling tool

o Upload updated model

o VCS-like workflow

 Goal:

o Offline use of local copies

o VCS compatibility

o Pristine modeling tools

VCS

5) Merge
(Resolved
conflict)

3) Commit
attempt

4) Conflict

2) Commit

Local
Copy1

1a) Checkout

Local
Copy2

1b) Checkout

6) Commit

Online Connectivity

 Workflow

o Web client or
connected desktop tool

o Simulataneously by
several users

o ~Google Spreadsheets

 Goal:

o Efficient change
propagation
(incrementality)

Model
Server

3) Immediate
model
change

2) Modify

1a) View 1b) View

5) Updated
model

4) Immediate
change propagation

Model Repositories

 File-based VCS

 Model-aware repositories

o EMFStore: Eclipse open-source, model-level, offline

o CDO: Eclipse open-source, object-level, online

o Emerging enterprise solutions

• E.g. No Magic Teamwork Cloud, Obeo Designer Team

o Public cloud-based repositories

• Axellience GenMyModel

ACCESS CONTROL

• Granularity & model fragmentation

• Read & write permissions, obfuscation, policies

Connectivity
Access
Control

Versioning Conflicts

View for HW
Supplier1

View for SW
Provider2

View for SW
Provider1

Integrated System Model

Access Control in Collaboration

Writable by
HW Supplier1

 Different privileges for
o Stakeholders

o Subcontractors

o In-house teams
Challenge:
How to provide secure
access for collaboration?

File-level Access Control

Model
1

Model
2

Src
code

1

Src
code

2

Src
code

3

Doc
1

Doc
2

Deploy
Desc 2

Test
set 1

Test
set 2

Certification
Authorities

SW Supplier
Src

code
4System

Designer
Model

3

Deploy
Desc 3

Deploy
Desc 1

Problem: How to give
partial access to an artifact?

Platform
Provider

File-level Access Control

Model
1b

Model
2

Src
code

1

Src
code

2

Src
code

3

Doc
1

Doc
2

Deploy
Desc 2

Test
set 1

Test
set 2

Certification
Authorities

Src
code

4

Model
1a

System
Designer

Model
3

Deploy
Desc 3

Deploy
Desc 1

Traditional (Git/SVN) Solution:
• Splitting artifacts
• All-or-nothing access

SW Supplier

Platform
Provider

File-level Access Control

Model
1b

Model
2

Model
3b

Src
code

1

Src
code

2

Src
code

3

Doc
1

Doc
2

Deploy
Desc 2

Deploy
Desc 3

Test
set 1

Test
set 2

Certification
Authorities

Src
code

4

Model
1a1

Model
1a2

Model
3a

System
Designer

Deploy
Desc 1

SW Supplier

Platform
Provider

Consequence:
• ~1000 files for large automotive models

Limits:
• Rigidity – can we change permissions?
• Cyclic dependencies between files?
• Hiding only some attributes of an object?
• Obfuscating an attribute, without hiding it?

 Fine-grained access control

o Additional access restrictions

• complementing file-based solutions

o Grant separate permissions on each

• object (class instance)

• slot (attribute instance)

• link (reference instance)

Model-level Access Control

Challenge:
How to identify assets in
rule-based policy?

…rules may evaluate
model queries for
the model element

Challenge:
How to express policy
for so many assets?

…use access rules
instead of individual
permission assignment

assets

Internal (Referential) Consistency

 Goal: self-contained models in standard format

o Compatible with off-the-shelf model tooling

 Internal consistency (well-formedness rules)

o Object invisible slots, links, contents invisible

o Opposite references match up

o etc.

 Permission dependencies / conflicts
Deriving Effective Permissions for Modeling Artifacts from Fine-grained Access Control Rules.
Csaba Debreceni, Gábor Bergmann, István Ráth and Dániel Varró. First International
Workshop on Collaborative Modelling in MDE, Saint Malo, France, Oct 4. 2016

Filtering and Obfuscation

 Read Access Control

o Hide

• Objects

• Reference links

• Attribute values

o Obfuscate

• Attribute values

• (or Metamodel)

object

obfuscator

seed

attribute

obfuscated
content deobfuscator

original
content

: MyClass

myAttr = “value”

: MyClass

myAttr = “4562e0771”

: 08d6e0baf

c2e2be580 = “value”

Challenge:
required attributes
(e.g. IDs, names)

MODEL VERSIONING

• Versioned Storage

• Model Comparison (Matching, Differencing)

Connectivity
Access
Control

Versioning Conflicts

Model Versioning & Branch & Merge

 Versioned Storage

o Store revisions

• Requires more space

• Diff operations expensive

o Store deltas only

• Requires reliable model differencing & patching

• History operations expensive

 Version History Structure

o Linear

o Branching

revision

revision revision

revision

Δ Δ

Δ Δ

revision
Δ

In all cases,
model comparison required

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Comparison

Comparing two models is a key operation in many model-

management operations like model versioning

Goal of model comparison is to identify the set of differences

between two models

 These differences are usually represented as a model

themselves, called a difference model

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Comparison: Model matching
Phase 1 of a model comparison process

 Identify the common elements in the two models

 How do we establish which elements have the same identity?

 Static identity: explicit id’s annotating the elements

 Signture identity: Identity based on the model element features (i.e.

name, contained elements,…)

 Identity can be a probabilistic function (similarity matching)

 Works better if users redefine the concept of matching for

specific DSLs (so that their specific semantic can be taken into

account)
Model comparison =

Graph similarity problem

Example: Model Comparison

 What is the best matching?Animal
Name: string

Cat Dog

Mammal
Name: string

Cat Dog

Animal

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Comparison: Model differencing
Phase 2 of a model comparison process

Matched elements are searched for differences

 A difference corresponds to an atomic add / delete / update /

move operation executed on one of the elements

 These differences are collected and stored in the difference

model

Example: Model Difference

 What is the difference?

 Matching (A)
o Del Gen: Cat Animal

o Del Gen: Dog Animal

o Add Cls: Mammal

o Add Gen: Mammal Animal

o Add Gen: CatMammal

o Add Gen: Dog Mammal

o Move Att:
Name: AnimalMammal

 Matching (B)
o Rename: AnimalMammal

o Add Cls: Animal

o Add Gen: Mammal Animal

Animal
Name: string

Cat Dog

Mammal
Name: string

Cat Dog

Animal
(A)

(B)

Best Practices to Help Model Matching

 If possible, use element identifiers that are

o Unique

• Can be local (qualified), broken by moving elements

• Preferably globally unique (move-resitant)

o Stable (across reloading&saving)

 How?

o Intrinsic: part of the domain, available in metamodel

• E.g. book ISBN number

o Extrinsic: only provided by modeling tool / persistence

• Use UUID/GUID randomly generated, collisions unlikely

CONFLICT MANAGEMENT

• Serialization & Locking to avoid conflict

• Merging to resolve conflict

Connectivity
Access
Control

Versioning Conflicts

Conflict Management

 Can we avoid conflicts?

o Global serialization

• Changes are sequenced

• Online mode only

o Locking

• Temporary write ban

• Not for security,
but coordination

VCS

5) Merge
(Resolved
conflict)

3) Commit
attempt

4) Conflict

2) Commit

Local
Copy1

1a) Checkout

Local
Copy2

1b) Checkout

6) Commit

Locking Challenges

 Granularity (similar to Access Control)

o File-based (inflexible) by VCS

o Fine-grained by model-aware repos

 Lock compatibility (e.g. R/W)

 Incidental/accidental changes

o E.g. move on diagram conflicts?

 What initiates a lock?
Manually initiated

• Explicit locks

• Model regions are
manually locked by users

View-driven locking

• Derived locks

• Locks are placed based
on the focus of the user

Property-based locking

• Protecting preconditions
of complex refactoring

• Changes violating a
property are disallowed

Conflict Management

 Can we avoid conflicts?

o Global serialization

• Changes are sequenced

• Online mode only

o Locking

• Temporary write ban

• Not for security,
but coordination

 If conflict: merging

o Based on 3-way difference

o Lot of work, error-prone

VCS

5) Merge
(Resolved
conflict)

3) Commit
attempt

4) Conflict

2) Commit

Local
Copy1

1a) Checkout

Local
Copy2

1b) Checkout

6) Commit

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Versioning

A B

1. <State id=“S1”, name = “A”>

2. <State id=“S2”, name = “B”>

3. <Transition id=“T1”, source=“S1”, target=“S2”>

1. <State id=“S1”, name = “A”>

2. <State id=“S2”, name = “B”>

3. <Transition id=“T1”, source=“S1”, target=“S2”>

4. <Transition id=“T2”, source=“S2”, target=“S1”>

1. <State id=“S2”, name=“B”>

2. <Transition id=“T2”, source=“S2”, target=“S1”>

1. <State id=“S2”, name=“B”>

sm V0

sm.xmi

sm.xmi

sm V1’

B

sm.xmi

sm.xmi

A B

sm V1’’

B

sm V1

In
it

ia
l
V

e
rs

io
n

C
o

n
c

u
rr

e
n

t
V

e
rs

io
n

s
In

c
o

n
s
is

te
n

t

M
e

rg
e

d
 V

e
rs

io
n

Model Merge Solutions

 File-based merging

o Challenge: referential integrity

o Automated:

o Manual: XMI not really human-readable

oWhen it works: textual concrete syntax

 Model-aware merging

o Challenges:

• Referential integrity

• Incidental (non-essential) changes, e.g. diagram move

• High-level well-formedness

Model-aware Merging UI

 Generic Merge on
Abstract Syntax

o EMF Diff/Merge

o EMF Compare

 Domain-specific Merge on
Concrete Syntax

o Sirius support
in EMF Compare

Merging with DSE

41

Original

Local

Remote

Comparison

Comparison

Design Space
Exploration

∆L’ ∆R’

Merged

Cemetery

Solution

Solution

Solution

ConstraintsConstraintsConstraints

ConstraintsConstraintsOperations

∆L

∆R

∆L

∆R

Annotate
Changes

• Restrict Design Space

Execute
DSE Merge

• Three-way merge

• State-based

Select
Solution

• Conflict-free models

∆L’

∆R’Merged

Cemetery
MAYMUST

Incidental changes

Referential & well-formedness

Can be domain-specific

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MODEL CO-EVOLUTION

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Co-Evolution
Tools

 Model versioning keeps track of the changes in a single modeling
artefact but each change may affect many other related artefacts

 Co-Evolution in MDE

 Co-evolution is the change of a model triggered by the change of a
related model

 Current View

 Relationship: r(a,b)

 a a’

 b b’ | r(a’,b’)

 Challenge: Relationship Reconciliation

 Current research focus is on one-to-one relationships:

 Model / Metamodel evolution

 Metamodel / Transformation evolution

 …

a a'

b b'

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model / Meta-model Co-evolution

A

D

B

D1 D2

Metamodel A

a1:A

a2:A

b1:B

b2:B

a1:A

a2:A

c1:C

c2:C

Instance of Metamodel A Instance of Metamodel A’

A

D

C

D1 D2

Metamodel A‘

 rename(B, C)

 cast(b:B, c:C)

Assumption: Renamed Class does not represent a new modeling concept!

Metamodel

Models

c
o

n
fo

rm
s
T

o
Example

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model / Meta-model Co-Evolution
Process

Classification of meta-model changes

 Non-breaking operations: No need to migrate the models

 Breaking and resolvable: Automatic migration of existing models is

possible

 Breaking and unresolvable: User intervention is necessary

 Tools like Edapt and Epsilon Flock can derive a migration

transformation to adapt current models to the new

metamodel structure when possible

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Meta-model / Transformation co-evolution
Other co-evolution scenarios

MMa MMb

MMb‘

Source

Metamodel

Target MM

Evolution

t1

t2

t1 … Forward Transformation

t2,t3 … Migration Transformations

v1.0

v2.0

Target

Metamodel

v3.0
MMb‘‘

t3

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

GLOBAL MODEL

MANAGEMENT

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management

 Model-based solution to the problem of managing all this model
ecosystem appearing in any MDE project

 We represent with a model, the megamodel, all the models (and
related artefacts like configuration files) and relationships in the
ecosystem

 A megamodel can be viewed as a metadata repository for the
project

 A megamodel is a model whose elements are in fact other models

 As a model, a megamodel can be directly manipulated using the
same tools employed to manipulate “normal” models

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management
The metamodel of a megamodel

Terminal

Model

MetaMeta

Model

Entity

RelationshipModel

MetaModel

Weaving

Model Transformation

Model Mega

Model

1

Identified

Element

*

relatedTo

* sourceOf

* targetOf

* linked

* source

* target

extends *

conformsTo 1

Reference

Model

* elements

Transformation

*
*

srcReferenceModel

targetReferenceModel

Directed

Relationship

targetModel

srcModel

Transformation

Record

*
*

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management
Using megamodels

t

x

(x)= y
Synchronize

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it at: www.amazon.com

http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

