
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Fault Tolerant Systems Research Group

Design for Dependability Laboratory Exercises
Autumn Semester 2013/2014

Distributed Data Storage in NoSQL Databases

Syllabus
v1.0

Author: Gábor Szárnyas
(szarnyas@mit.bme.hu)

October 16, 2014

Contents

1 Introduction 2
1.1 Big Data and the NoSQL Movement . 2

2 Concepts 2
2.1 Consistency in a Distributed System . 2

2.1.1 The CAP-theorem . 2
2.2 Replication . 4
2.3 Sharding . 4

3 Apache Cassandra 4
3.1 Data Model . 4
3.2 Serialization and Client Options . 5
3.3 Sharding in Cassandra . 5

3.3.1 Consistent Hashing . 5
3.3.2 Virtual Nodes . 5

3.4 CQL . 6

4 Exercises 7
4.1 Setting up the Environment . 7

4.1.1 Hostnames . 7
4.1.2 Running Cassandra on a Single Node 8
4.1.3 Restarting Cassandra . 8
4.1.4 Running Cassandra on a Cluster of Nodes 8

4.2 Data Modeling . 8
4.3 Replication and Consistency . 8

4.3.1 Network Partition without Replication 9
4.3.2 Network Partition with Replication and Weak Consistency 9
4.3.3 Network Partition with Replication and Quorum Consistency 9

4.4 Advanced Data Modeling . 10

5 Additional exercises 10

6 Tips 11

1

1 Introduction

This document contains the theoretical and practical background for the Distributed Data
Storage in NoSQL Databases session of the Design for Dependability Laboratory Exercises course.
The purpose of this session is to demonstrate the practical side of replication and distributed
data storage (lecture notes in Hungarian are available in [15]).

1.1 Big Data and the NoSQL Movement

Since the 1980s, database management systems based on the relational data model domi-
nated the database market. Relational databases have a number of important advantages:
precise mathematical background, understandability, mature tooling and so on. However,
due to their rich feature set and the strongly connected nature of their data model, relational
databases often have scalability issues [13]. They are typically optimized for transaction
processing, instead of data analysis (see data warehouses for an exception). In practice, these
render them impractical for a number of use cases, e.g. running complex queries on large
data sets.
In the last decade, large organizations struggled to store and process the huge amounts of
data they produced. This problem introduces a diverse palette of scientific and engineering
challenges, called Big Data challenges.
Big Data challenges spawned dozens of new database management systems. Typically,
these systems broke with the strictness of the relational data model and utilized simpler,
more scalable data models. These systems dropped support for the SQL query language
used in relational databases and hence were called NoSQL databases1 [5]. Because relational
databases are not suitable for large-scale model-driven applications, we experimented with
numerous NoSQL databases.

2 Concepts

2.1 Consistency in a Distributed System

2.1.1 The CAP-theorem

In 1999, Eric Brewer, a professor at Berkeley University published a set of informal require-
ments for a distributed system, called the CAP properties. Next year, in the keynote speech
of PODC (Principles of Distributed Computing), he presented the CAP-conjecture [8]. The
conjecture states that in any given moment, a web service can only guarantee two of the
following properties: consistency, availability, partition tolerance. The concepts are roughly
defined as follows [9]:

Consistency Consistency means if and how a system is in a consistent state after the exe-
cution of an operation. A distributed system is typically considered to be consistent if after
an update operation of some writer all readers see his updates in some shared data source.
(Nevertheless there are several alternatives towards this strict notion of consistency as we
will see below.) See Figure 1.

1The community now mostly interprets NoSQL as ”not only SQL”.

2

V = V0 V = V1

read V

V0

read V

V1

C1 C2N1 N2

Figure 1: The V data item is not consistent, clients C1 and C2 see different values

V = V0 V = V1

read V

N/A

read V

V1

C1 C2N1 N2

Figure 2: The V data item is not available for client C1

Availability Availability means that a system is designed and implemented in a way that
allows it to continue operation (i.e. allowing read and write operations) if e.g. nodes in a
cluster crash or some hardware or software parts are down due to upgrades. See Figure 2.

Partition tolerance Partition tolerance is the the ability of the system to continue operation
in the presence of network partitions. These occur if two or more ”islands” of network nodes
arise which (temporarily or permanently) cannot connect to each other. Some people also
understand partition tolerance as the ability of a system to cope with the dynamic addition
and removal of nodes (e.g. for maintainance purposes; removed and again added nodes are
considered an own network partition in this notion).
The conjecture was formalized and proved in 2002 by two researchers in MIT (Massachusetts
Institute of Technology), Seth Gilbert and Nancy Lynch [11]. In this form, the CAP-theorem
defines a limitation for all distributed systems.
In short, the CAP-theorem can be stated as follows: in a distributed system in the case of
network partition, the operations of the system will not be atomic and/or the data elements
will be unavaiable.
Formally: in a distributed system running on an asynchronous network, the system cannot
guarantee the following properties:

• availability,

• atomic consistency.

3

2.2 Replication

Replication, consistency and availability are strongly correlated. We use the following nota-
tions [16]:

• N – the number of nodes that store a replica of the data.

• W – the number of replicas that need to acknowledge the receipt of the update before
the update completes.

• R – the number of replicas that are contacted when a data object is accessed through a
read operation.

Quorum protocols enforce that the following inequalities holds:

1. W > N/2

2. W +R > N

The first condition guarantees that any two write quorums have a mutual node, which
makes it possible to preserve the order of subsequent writes. The second guarantees that
each read quorum and write quorum overlap, so that we will not read stale data.

2.3 Sharding

Sharding is the process of determining the location of each data item in a distributed system.
Sometimes this process is called partitioning or segmenting.

3 Apache Cassandra

Figure 3: The logo of Apache Cassandra

Cassandra is one of the most widely used NoSQL databases [2]. Originally developed by
Facebook [14], Cassandra is now an Apache project. Cassandra is a column family database
with advanced fault-tolerance mechanisms. It allows the application to balance between
availability and consistency by allowing it to tune the consistency constraints. Cassandra
is used mainly by Web 2.0 companies, including Digg, Netflix, Reddit, SoundCloud and
Twitter. It is also used for research purposes at CERN and NASA [6].

3.1 Data Model

Cassandra uses the column family data model. A column family is similar to a table of a rela-
tional database: it consists of rows and columns. However, unlike in a relational database’s
table, the rows do not have to have the same fixed set of columns. Instead, each row can
have a different set of columns. This makes the data structure more dynamic and avoids the
problems associated with NULL values.

4

3.2 Serialization and Client Options

Cassandra uses the Apache Thrift framework [4] for serializing data. Like Cassandra, Thrift
was originally developed by Facebook, but unlike Cassandra it is still used there.
The most straightforward option is to use the command-line CQL Shell for Apache Cassandra
provided by the bin/cqlsh executable. While new Cassandra projects are encouraged
to use CQL (the official Java driver is available at [10]), there are also Thrift-based ORM
libraries available (e.g. [12].

3.3 Sharding in Cassandra

3.3.1 Consistent Hashing

To distribute the data across the cluster, Cassandra uses a partitioner mechanism. The ba-
sic partitioners distribute the rows evenly based on their key’s hash value using consistent
hashing.
In a cluster with n nodes, the naïve method for determining the location for a row with key
x is computing h(x) mod n, where h(x) is the hash function. Currently, Cassandra provides
partitioners based on the MD5 and the Murmur3 hash functions2. However, this approach
has a serious limitation: if we remove or add nodes to the cluster, we have to recompute the
hash values and possibly relocate almost all rows in the cluster. To avoid this, Cassandra
uses a special kind of hashing called consistent hashing.
The ring is divided into ranges equal to the number of nodes, with each node being respon-
sible for one or more ranges of the data. Before a node can join the ring, it must be assigned
a token. The token value determines the node’s position in the ring and its range of data. The
ring is walked clockwise until it locates the node with a token value greater than that of the
row key. Each node is responsible for the region of the ring between itself (inclusive) and
its predecessor (exclusive). With the nodes sorted in token order, the last node is considered
the predecessor of the first node; hence the ring representation3 [1].
For example, consider a simple four-node cluster, where all of the row keys managed by the
cluster are in the range of 0 to 100. Each node is assigned a token that represents a point
in this range. In this example, the token values are 0, 25, 50 and 75. The first node (with
token 0), is responsible for the wrapping range (76+), the second node (with token 25) is
responsible for the data range 1 − 25, and so on [1]. Figure 4 shows the token ring for this
cluster.

3.3.2 Virtual Nodes

Prior to Cassandra 1.2, you had to calculate and assign a single token to each node in a clus-
ter. Each token determined the node’s position in the ring and its portion of data according
to its hash value. Although the design of consistent hashing used prior to version 1.2 (com-
pared to other distribution designs), allowed moving a single node’s worth of data when
adding or removing nodes from the cluster, it still required substantial effort to do so.
Starting in version 1.2, Cassandra changes this paradigm from one token and range per
node to many tokens per node. The new paradigm is called virtual nodes (vnodes). Vnodes

2From Cassandra 1.2, the default partitioner uses the Murmur3 hash function. Although the MD5 hash
function has important cryptographic properties, these are irrelevant for distributing data. Hence, the MD5-
based partitioner is no longer recommended.

3Note that consistent here is different from both the idea of consistency in data consistency and in the ACID
(atomicity, consistency, isolation, durability) properties guaranteed by transactions. It refers to the fact that tries
to map the same rows to the same machine, even if the number of machines (n) changes over time slightly.

5

Figure 4: Cassandra’s ring for data partitioning [1]

allow each node to own a large number of small partition ranges distributed throughout the
cluster. Vnodes also use consistent hashing to distribute data but using them doesn’t require
token generation and assignment [7].

Figure 5: Virtual nodes in Cassandra

3.4 CQL

Cassandra provides the Cassandra Query Language (CQL). The reference for CQL3 is avail-
able in [3]. CQL’s goal is to offer a query language similar to the Structued Query Language
(SQL) used in most relational databases.
CQL allows the user to set the data consistency on a per operation basis. The desired level
can be set with the CONSISTENCY [ANY | ONE | TWO | THREE | QUORUM | ALL | ...]

command. The CONSISTENCY command displays the current consistency level.

6

4 Exercises

4.1 Setting up the Environment

The topology consists of three machines (Figure 6), based on the same VMware virtual ma-
chine image. The virtual image contains the following software:

• Linux Mint 15 Xfce (32-bit)

• Apache Cassandra 1.2.11

• ClusterSSH 4.01

host1host0 host2

Cassandra cluster

db0
(seed)

db1coordinator

Figure 6: Topology

4.1.1 Hostnames

Set hostnames on the database nodes Because the machines are based on the same image,
they have the same hostname (cassandra-vm). To distinguish between them, change the
hostnames in the /etc/hostname file to different ones, e.g. coordinator, db0, db1. Also
change the hostname associated with the 127.0.1.1 IP address in the /etc/hosts file as
well4.

Set hostnames on the coordinator To allow easier access (e.g. when using ssh), add the
hostnames to the coordinator’s /etc/hosts file.

10.0.0.100 db0
10.0.0.101 db1

Listing 1: hosts file

This way, we connect to all database servers using Cluster SSH:
cssh db0 db1

4This is due to a quirk in Debian-based Linux distributions. For details, visit http://qref.
sourceforge.net/quick/ch-gateway.en.html#s-net-dns.

7

http://qref.sourceforge.net/quick/ch-gateway.en.html#s-net-dns
http://qref.sourceforge.net/quick/ch-gateway.en.html#s-net-dns

4.1.2 Running Cassandra on a Single Node

In the provided virtual machines, Cassandra is already set up to run in a sin-
gle node. This means that the appropriate directories for storing the log files
(/var/log/cassandra/) and the data (/var/lib/cassandra/) are created and their
permissions are set. To run Cassandra, open a terminal emulator, navigate to the Cassandra
folder (~/apache-cassandra-1.2.11/) and run the following command:
bin/cassandra -f
The -f switch forces Cassandra to run in foreground mode.

4.1.3 Restarting Cassandra

If Cassandra runs in foreground mode, simply send the Ctrl + C interrupt signal to kill the
process. Else, send a termination signal with the following command:
pkill -f cassandra
To delete all previous data and restart the server, issue the following command:
rm -rf /var/lib/cassandra/*; rm -rf /var/log/cassandra/*;
bin/cassandra -f

4.1.4 Running Cassandra on a Cluster of Nodes

The next step is to configure the Cassandra cluster. The main configuration file is stored in
the conf/cassandra.yaml file. Follow the documentation [3] and configure Cassandra
to run in a two node cluster.

4.2 Data Modeling

Create a database that stores road cars. Cars have a manufacturer, a type. Each car has a
maximum performance and a maximum torque value. Table 1 shows an example.

manufacturer type maximum performance maximum torque
Ford Focus 100 170
Mercedes E class 184 270

Table 1: Column family for storing cars

4.3 Replication and Consistency

To test Cassandra’s replication schema and consistency models, we define a few steps. The
task is to follow these steps, observe the cluster’s behaviour and try to explain it.
It is important to note that some of the steps may throw error messages as their expected
behaviour. In these cases, try to determine the reason of the error message and proceed to
the next step.
Between the steps, it is suggested to delete all previous data (from the
/var/lib/cassandra/ directory) and restart the server.

8

4.3.1 Network Partition without Replication

1. Create a keyspace with the replication factor set to 1.

2. Create a column family and fill it with data.

3. Query the data from both db0 and db1.

4. Disconnect db0 from the network. The easiest way to do this is to disable the network
interface in VMware.

5. Query the data from db1.

6. Modify the data from db1, e.g. add new rows to the column family.

7. Reconnect db0 and query the data from db0.

4.3.2 Network Partition with Replication and Weak Consistency

1. Create a keyspace with the replication factor set to 2.

2. Create a column family and fill it with data.

3. Query the data from both db0 and db1.

4. Disconnect db0 from the network.

5. Query the data from db1.

6. Modify the data from db1, e.g. add new rows to the column family.

7. Disconnect db1 from the network.

8. Reconnect db0 from the network.

9. Also query and modify from db0. Modify the same rows as previously so it will conflict
with the previous write operations.

10. Reconnect db1 to the network.

11. Query the data from both db0 and db1.

4.3.3 Network Partition with Replication and Quorum Consistency

1. Create a keyspace with the replication factor set to 2.

2. Create a column family, fill it with data, query it and disconnect db0.

3. On db1, set the consistency to QUORUM.

4. Query and modify the data.

9

4.4 Advanced Data Modeling

Cars have different powertrains (e.g. hybrid systems [17]). Each type can be described with
different parameters:

• Internal combustion engine: fuel type, displacement, maximum torque, maximum
power

• Electric motor: maximum torque, maximum power

• Both: all of the above and the combined maximum torque and power values

<<abstract>>

Powertrain

maximum power : Integer

Internal combustion engine

fuel type : Fuel type

Electric motor

displacement : Integer

maximum torque : Integer

Hybrid powertrain

<<enumeration>>

Fuel type

Petrol
Diesel

Figure 7: UML class diagram showing different powertrain types

The class hierarchy for different powertrain types are shown on Figure 7.

1. Extend the cars column family to store the powertrain of each car.

2. Write a query that collects the cars with an internal combustion engine.

3. Write a query that collects the cars with an internal combustion engine or an electric
motor.

5 Additional exercises

Cars have different transmissions systems. The main categories are the following:

• Automatic

– fixed ratios: list of gear ratios, type (e.g. semi-automatic, dual-clutch, etc.)

– continuously variable (CVT): gear ratio range

10

Manual

Fixed ratio

ratio : Double

Automatic with fixed ratios

<<abstract>>

Transmission

<<abstract>>

Transmission with
discrete ratios

type : String

CVT

maximum ratio : Double
minimum ratio : Double

Figure 8: UML class diagram showing different transmission types

• Manual: list of gear ratios

• No gearbox: gear ratio

Figure 8 shows the class hierarchy for different transmission types.
Extend the cars column family to store the transmission for each car. To store the list of
gear ratios, use CQL’s list collection type.

6 Tips

• Ctrl + Alt + T launches a terminal emulator application. You can open new tabs with
the Ctrl + + T hotkey. Ctrl + D sends and end-of-transmission character which
closes the Terminal.

• Use ifconfig to determine a machine’s IP address.

• The most important hotkeys for mcedit are the following:

– F7 – search

– + F7 – find next

– Ctrl + 0 – exit

• Use the watch command to repeatedly run a tool, e.g.
watch -n 1 bin/nodetool status

• To check if Cassandra is running in the background, run:
ps aux | grep cassandr[a]
To repeat the check later, simply run !ps.

11

• Useful Bash hotkeys: Ctrl + A jumps back to the start of the line, Ctrl + U deletes the
current line.

12

References

[1] About Data Partitioning in Cassandra. http://www.datastax.com/docs/1.1/
cluster_architecture/partitioning, October 2013.

[2] Apache Cassandra. http://cassandra.apache.org/, October 2013.

[3] Apache Cassandra 1.2 Documentation. http://www.datastax.com/
documentation/cassandra/1.2/webhelp/, October 2013.

[4] Apache Thrift. http://thrift.apache.org/, October 2013.

[5] NoSQL Databases. http://nosql-database.org/, October 2013.

[6] Planet Cassandra – Companies. http://planetcassandra.org/Company/
ViewCompany, October 2013.

[7] Virtual nodes. http://www.datastax.com/documentation/
cassandra/1.2/webhelp/index.html#cassandra/architecture/
architectureDataDistributeVnodesUsing_c.html, October 2013.

[8] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the
nineteenth annual ACM symposium on Principles of distributed computing, PODC ’00, pages
7–, New York, NY, USA, 2000. ACM.

[9] Christof Strauch. NoSQL Databases. http://www.christof-strauch.de/
nosqldbs.pdf, October 2013.

[10] DataStax. Java Driver for Apache Cassandra. https://github.com/datastax/
java-driver, October 2013.

[11] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[12] impetus-opensource. Kundera. https://github.com/impetus-opensource/
Kundera, October 2013.

[13] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August 2009.

[14] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[15] Majzik István. Többpéldányos adatkezelés. http://www.inf.mit.bme.
hu/sites/default/files/materials/category/kateg%C3%B3ria/
oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%
C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_
adatkezeles.pdf.

[16] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009.

[17] Wikipedia. Hybrid vehicle drivetrain. http://en.wikipedia.org/wiki/
Hybrid_vehicle_drivetrain, October 2013.

13

http://www.datastax.com/docs/1.1/cluster_architecture/partitioning
http://www.datastax.com/docs/1.1/cluster_architecture/partitioning
http://cassandra.apache.org/
http://www.datastax.com/documentation/cassandra/1.2/webhelp/
http://www.datastax.com/documentation/cassandra/1.2/webhelp/
http://thrift.apache.org/
http://nosql-database.org/
http://planetcassandra.org/Company/ViewCompany
http://planetcassandra.org/Company/ViewCompany
http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html#cassandra/architecture/architectureDataDistributeVnodesUsing_c.html
http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html#cassandra/architecture/architectureDataDistributeVnodesUsing_c.html
http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html#cassandra/architecture/architectureDataDistributeVnodesUsing_c.html
http://www.christof-strauch.de/nosqldbs.pdf
http://www.christof-strauch.de/nosqldbs.pdf
https://github.com/datastax/java-driver
https://github.com/datastax/java-driver
https://github.com/impetus-opensource/Kundera
https://github.com/impetus-opensource/Kundera
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://www.inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/szolg%C3%A1ltat%C3%A1sbiztons%C3%A1gra-tervez%C3%A9s/13/SZBT-2013_EA05_tobbpeldanyos_adatkezeles.pdf
http://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain
http://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain

	Introduction
	Big Data and the NoSQL Movement

	Concepts
	Consistency in a Distributed System
	The CAP-theorem

	Replication
	Sharding

	Apache Cassandra
	Data Model
	Serialization and Client Options
	Sharding in Cassandra
	Consistent Hashing
	Virtual Nodes

	CQL

	Exercises
	Setting up the Environment
	Hostnames
	Running Cassandra on a Single Node
	Restarting Cassandra
	Running Cassandra on a Cluster of Nodes

	Data Modeling
	Replication and Consistency
	Network Partition without Replication
	Network Partition with Replication and Weak Consistency
	Network Partition with Replication and Quorum Consistency

	Advanced Data Modeling

	Additional exercises
	Tips

