EMF-INCQUERY: A high-performance model query engine for EMF models

István Ráth

rath@mit.bme.hu

Budapest University of Technology and Economics Fault Tolerant Systems Research Group

Overview

- A model query engine
 - Supports batch queries
 - Optimized for incremental queries!
- Incrementality
 - Compute once, update afterwards
 - Gain: Instant re-evaluation
 - Price: Uses some more memory
 - Manageable with proper life cycles
- Why?
 - Queries are everywhere
 - UI (views), business logic (transformations), tooling (validation)
 - Existing technology has performance issues with large models
 - Current query languages are difficult (to reuse)

Query: a piece of code that looks/iterates through certain parts of an (EMF) instance model

Benefits

- Makes on-the-fly well-formedness validation, view maintenance, ...
 feasible over really large instance models
 - Large: >1M elements
 - Difference is noticeable for a few hundred elements too, depending on your queries
- Simplifies writing really complex queries
 - Graph pattern language
 - Highly reusable, you can even build query libraries
 - Performance does not (significantly) depend on query complexity!
- Easy-to-integrate into existing apps
 - works with any EMF DSL
 - Query engine can be attached to any Notifier or TransactionalEditingDomain

EXAMPLE A simple UML validation constraint

- "All Behaviors must have an Operation as their specification."
 - Otherwise they do not have any "interface" through which they could b accessed → "dead code"


```
@Constraint(mode="problem",location="Behavior",
    message="The behavior $Behavior$ has no specification operation.")
pattern OpaqueBehaviorWithoutOperation(Behavior) = {
    OpaqueBehavior(Behavior);

    neg pattern behaviorHasSpecification(Behavior) = {
        Behavior(Behavior);
        Behavior.specification(SpecRel,Behavior,Specification);
        BehavioralFeature.method(BFRel,Specification,Behavior);
        Operation(Specification);
    }
}
```


EXAMPLE A simple UML validation constraint

Expressive declarative query language by graph patterns

Capture local + global queries Compositionality + Reusabilility "Arbitrary" Recursion, Negation

```
vior0: OpaqueBehavior
 pecification
              .method
 OperationWithParameters: Operation
```

```
cification operation.")
                 aviorWithoutOperation(Behavior) = {
pattern
   OpaqueBenavior(Behavior);
   nea pattern behaviorHasSpecification(Behavior) = {
        Behavior(Behavior);
        Behavior.specification(SpecRel, Behavior, Specification);
        BehavioralFeature.method(BFRel,Specification,Behavior);
        Operation(Specification);
```


EXAMPLE A simple UML validation constraint

Expressive declarative query language by graph patterns

Capture local + global queries Compositionality + Reusabilility "Arbitrary" Recursion, Negation

```
vior0: OpaqueBehavior
 pecification
  perationWithParameters: Operation
```

```
cification operation.")
                  viorWithoutOperation(Behavior)
pattern
    OpaqueBenavior (Reha
```

neg patte Behav Behav Behav Opera

- Uses the IncQuery Validation Engine to manage validation markers on-the-fly
- No manual coding necessary
- Generically integrates into EMF tree editors and **GMF** editors

Batch mode

Batch mode

Incremental mode

Incremental mode

EMF-IncQuery Architecture v0.7

EMF-INCQUERY Architecture v0.7

IncQuery BASE

- Light-weight Java library for simple (yet very powerful) EMF model queries, with incremental evaluation
- Supports
 - Get all instance elements by type
 - Reverse navigation along references
 - Get model elements by attribute value/type
- Very easy to integrate into any EMF tool (pure Java) standalone!
- Same high performance and scalability as IncQuery
- Incremental transitive closure
 - Computation of e.g. reachability regions, connected model partitions, ...
 - Innovative new algorithm for general graphs

Development roadmap: IncQuery v0.7

Tooling

- Xtext2-based tooling
- Incorporating
 - Unlimited recursion and transitive closure
 - Short attribute notation
 - Aggregate functions
 - Match (or even exceed) most of the expressive power of OCL, while providing better re-use and more concise notation

Runtime

- Reflective queries
 - Build and execute queries on-the-fly, using Java and IQ PL
- RETE construction optimizations
 - Goal: to significantly reduce memory footprint

Further plans & collaboration opportunities

- Integrate IncQuery Base and IncQuery to EMF modeling tools
 - Support for Epsilon, ATL, OCL, ...
- Performance boost for derived EFeatures
 - o and notifications!

Check it out!

Pointers

- http://viatra.inf.mit.bme.hu/incquery
 - Documentation, language reference
 - Tutorials
 - Examples
- o http://viatra.inf.mit.bme.hu/incquery/base
- o rath@mit.bme.hu
- o viatra-dev@inf.mit.bme.hu

