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Overview

= A model query engine
o Supports batch queries Query: a piece of code

o Optimized for incremental queries! that looks/iterates
through certain parts of

an (EMF) instance

" |[ncrementality
o Compute once, update afterwards

model

o Gain: Instant re-evaluation
o Price: Uses some more memory

* Manageable with proper life cycles
= Why?
o Queries are everywhere
e Ul (views), business logic (transformations), tooling (validation)

o Existing technology has performance issues with large models

o Current query languages are difficult (to reuse)




= Makes on-the-fly well-formedness validation, view maintenance, ...
feasible over really large instance models
o Large: >1M elements
o Difference is noticeable for a few hundred elements too, depending on your
queries
= Simplifies writing really complex queries
o Graph pattern language
o Highly reusable, you can even build query libraries
o Performance does not (significantly) depend on query complexity!

= Easy-to-integrate into existing apps
o works with any EMF DSL
o Query engine can be attached to any Notifier or TransactionalEditingDomain




SCVLEN A simple UML validation constraint

= “All Behaviors must have an
Operation as their specification.” | '

o Otherwise they do not have any

“interface” through which they could b

accessed = “dead code” ethod
OperationWithParameters: Operation

= Bad case:

@Constraint(mode="problem”,location="Behavior",
message="The behavior $Behavior$ has no specification operation.™)
pattern OpaqueBehaviorWithoutOperation(Behavior) = {
OpaqueBehavior(Behavior);

neg pattern behaviorHasSpecification(Behavior) = {
Behavior(Behavior);
Behavior.specification(SpecRel,Behavior,Specification);
BehavioralFeature.method(BFRel,Specification,Behavior);
Operation(Specification);




A simple UML validation constraint

viorQ: OpaqueBehavior

Expressive declarative query language
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A simple UML validation constraint

viorQ: OpaqueBehavior

Expressive declarative query language

by graph patterns
Capture local + global queries
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,Arbitrary” Recursion, Negation

mgethod
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pattern

AviorWiithoutOperg

Uses the IncQuery Validation Engine to manage
validation markers on-the-fly
No manual coding necessary
Generically integrates into EMF tree editors and

GMF editors




Batch mode
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Batch mode
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Incremental mode
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Incremental mode
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EMF-INCQUERY Architecture v0.7
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EMF-INCQUERY Architecture v0.7

Application

Your code

Generated P(alttem/
uer
nattern matcher Speciﬁca{ﬁon

Validation Reflective pattern
Engine matcher

IncQuery BASE The RETE algorithm
makes all the magic work

RETE Core

Well-known in rule-
based systems




IncQuery BASE

= Light-weight Java library for simple (yet very powerful) EMF model
queries, with incremental evaluation

= Supports
o Get all instance elements by type
o Reverse navigation along references
o Get model elements by attribute value/type

= Very easy to integrate into any EMF tool (pure Java) — standalone!
= Same high performance and scalability as IncQuery

= |ncremental transitive closure
o Computation of e.g. reachability regions, connected model partitions, ...

o Innovative new algorithm for general graphs




Development roadmap: IncQuery v0.7

= Tooling
o Xtext2-based tooling
o Incorporating
* Unlimited recursion and transitive closure
e Short attribute notation
* Aggregate functions

e Match (or even exceed) most of the expressive power of OCL, while providing
better re-use and more concise notation

" Runtime

o Reflective queries
* Build and execute queries on-the-fly, using Java and 1Q PL

o RETE construction optimizations

e Goal: to significantly reduce memory footprint




Further plans & collaboration opportunities

" |ntegrate IncQuery Base and IncQuery to EMF
modeling tools

o Support for Epsilon, ATL, OCL, ...
= Performance boost for derived EFeatures

o and notifications!




= Pointers

o http://viatra.inf.mit.bme.hu/incquery
* Documentation, language reference

* Tutorials
* Examples

o http://viatra.inf.mit.bme.hu/incquery/base
o rath@mit.bme.hu

o viatra-dev@inf.mit.bme.hu




