EMF-INCQUERY:
A high-performance model query engine for EMF

models

Istvan Rath
rath@mit.bme.hu
Budapest University of Technology and Economics

Fault Tolerant Systems Research Group

Overview

= A model query engine
o Supports batch queries Query: a piece of code

o Optimized for incremental queries! that looks/iterates
through certain parts of

an (EMF) instance

" |[ncrementality
o Compute once, update afterwards

model

o Gain: Instant re-evaluation
o Price: Uses some more memory

* Manageable with proper life cycles
= Why?
o Queries are everywhere
e Ul (views), business logic (transformations), tooling (validation)

o Existing technology has performance issues with large models

o Current query languages are difficult (to reuse)

= Makes on-the-fly well-formedness validation, view maintenance, ...
feasible over really large instance models
o Large: >1M elements
o Difference is noticeable for a few hundred elements too, depending on your
queries
= Simplifies writing really complex queries
o Graph pattern language
o Highly reusable, you can even build query libraries
o Performance does not (significantly) depend on query complexity!

= Easy-to-integrate into existing apps
o works with any EMF DSL
o Query engine can be attached to any Notifier or TransactionalEditingDomain

SCVLEN A simple UML validation constraint

= “All Behaviors must have an
Operation as their specification.” | '

o Otherwise they do not have any

“interface” through which they could b

accessed = “dead code” ethod
OperationWithParameters: Operation

= Bad case:

@Constraint(mode="problem”,location="Behavior",
message="The behavior $Behavior$ has no specification operation.™)
pattern OpaqueBehaviorWithoutOperation(Behavior) = {
OpaqueBehavior(Behavior);

neg pattern behaviorHasSpecification(Behavior) = {
Behavior(Behavior);
Behavior.specification(SpecRel,Behavior,Specification);
BehavioralFeature.method(BFRel,Specification,Behavior);
Operation(Specification);

A simple UML validation constraint

viorQ: OpaqueBehavior

Expressive declarative query language

by graph patterns
Capture local + global queries efhod
Com pOSiﬁOna I |ty + Reusa bl I | I |ty JperationWithParameters: Operation
,Arbitrary” Recursion, Negation

i1fication operation.”)
fviorWithoutOperation(Behavior) = {
Avior(Behavior);

pattern
OpaqueBé

neg pattern behaviorHasSpecification(Behavior) = {
Behavior(Behavior);
Behavior.specification(SpecRel,Behavior,Specification);
BehavioralFeature.method(BFRel,Specification,Behavior);
Operation(Specification);

A simple UML validation constraint

viorQ: OpaqueBehavior

Expressive declarative query language

by graph patterns
Capture local + global queries
Compositionality + Reusabilility
,Arbitrary” Recursion, Negation

mgethod
JperationWithParameters: Operation

i1fication operation.”)
mon(Behavior) = {

pattern

AviorWiithoutOperg

Uses the IncQuery Validation Engine to manage
validation markers on-the-fly
No manual coding necessary
Generically integrates into EMF tree editors and

GMF editors

Batch mode

Resource load + SSG validation time
100000 A

10006 /

)
£
= &EMF/Java
,g == MDT-OCL
“V=INCQuery
1000
100 I I I 1 1 | | | |

Elements 2373 4748 9449 18850 37721 75692 151359 302778 605402

Batch mode

100000

10000

Time [ms]

1000

100
Elements

Resource load + SSG validation tig

Linear function of
model size, orders
of magnitude faster

&EMF/Java
== MDT-OCL
“V=INCQuery

I I I I I

2373 4748 9449 18850 37721 75692

| | I 1

151359 302778 605402

Incremental mode

SSG validation time
1000000

100000 / /.

10000
/ B EMF/Java
== MDT-OCL

V= INCQuery

1000

Time [ms]

100

10
v 7 v

V Ve

1 | | | | | | | | |

Elements 2373 4748 9449 18850 37721 75692 151359 302778 605402

Incremental mode

Time [ms]

1000000

SSG validation time

100000

Evaluation time is
uniformly near zero
(independent of
model size)

B EMF/Java
== MDT-OCL
“V=INCQuery

R v o

1 I T

Elements 2373 4748

| | | | | | |

9449 18850 37721 75692 151359 302778 605402

EMF-INCQUERY Architecture v0.7

Application

Your code

Pattern/

Query
specification

Generated

Validation Reflective pattern
Engine matcher

IncQuery BASE
EMF INC PM

RETE Core
Core

Framework

EMF-INCQUERY Architecture v0.7

Application

Your code

Generated P(alttem/
uer
nattern matcher Speciﬁca{ﬁon

Validation Reflective pattern
Engine matcher

IncQuery BASE The RETE algorithm
makes all the magic work

RETE Core

Well-known in rule-
based systems

IncQuery BASE

= Light-weight Java library for simple (yet very powerful) EMF model
queries, with incremental evaluation

= Supports
o Get all instance elements by type
o Reverse navigation along references
o Get model elements by attribute value/type

= Very easy to integrate into any EMF tool (pure Java) — standalone!
= Same high performance and scalability as IncQuery

= |ncremental transitive closure
o Computation of e.g. reachability regions, connected model partitions, ...

o Innovative new algorithm for general graphs

Development roadmap: IncQuery v0.7

= Tooling
o Xtext2-based tooling
o Incorporating
* Unlimited recursion and transitive closure
e Short attribute notation
* Aggregate functions

e Match (or even exceed) most of the expressive power of OCL, while providing
better re-use and more concise notation

" Runtime

o Reflective queries
* Build and execute queries on-the-fly, using Java and 1Q PL

o RETE construction optimizations

e Goal: to significantly reduce memory footprint

Further plans & collaboration opportunities

" |ntegrate IncQuery Base and IncQuery to EMF
modeling tools

o Support for Epsilon, ATL, OCL, ...
= Performance boost for derived EFeatures

o and notifications!

= Pointers

o http://viatra.inf.mit.bme.hu/incquery
* Documentation, language reference

* Tutorials
* Examples

o http://viatra.inf.mit.bme.hu/incquery/base
o rath@mit.bme.hu

o viatra-dev@inf.mit.bme.hu

