Testing and Profiling

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem
Meéréstechnika és Informacids Rendszerek Tanszék

ECYETEM 1782

Goals of Testing

= Understand system quality

®= Provide information for decisions
o E.g. release-readiness

= Bug finding/preventing

o Beware: Testing shows the presence, not the absence
of bugs. (Dijkstra)

7 Testing Principles

A W N -

7 Testing Principles

Only presence of bugs can be shown
Exhaustive testing practically impossible
Test in the early development phases

Defect clustering
o Most defects relate to a small number of components

Pesticide paradox
o Efficiency of testing decreases when re-executed
o Every methodology misses some problems

Testing is context-dependent

Absence-of-errors fallacy
o Error-free test execution does not mean error-free program

A W N -

7 Testing Principles

Only presence of bugs can be shown
Exhaustive testing practically impossible
Test in the early development phases

Defect clustering
o Most defects relate to a small number of components

Pesticide paradox
o Efficiency of testing decreases when re-executed
o Every methodology misses some problems

Testing is context-dependent

Absence-of-errors fallacy
o Error-free test execution does not mean error-free program

A W N -

7 Testing Principles

Only presence of bugs can be shown
Exhaustive testing practically impossible
Test in the early development phases

Defect clustering
o Most defects relate to a small number of components

Pesticide paradox
o Efficiency of testing decreases when re-executed
o Every methodology misses some problems

Testing is context-dependent

Absence-of-errors fallacy
o Error-free test execution does not mean error-free program

A W N -

7 Testing Principles

Only presence of bugs can be shown
Exhaustive testing practically impossible
Test in the early development phases

Defect clustering
o Most defects relate to a small number of components

Pesticide paradox
o Efficiency of testing decreases when re-executed
o Every methodology misses some problems

Testing is context-dependent

Absence-of-errors fallacy
o Error-free test execution does not mean error-free program

A W N -

7 Testing Principles

Only presence of bugs can be shown
Exhaustive testing practically impossible
Test in the early development phases

Defect clustering
o Most defects relate to a small number of components

Pesticide paradox
o Efficiency of testing decreases when re-executed
o Every methodology misses some problems

Testing is context-dependent

Absence-of-errors fallacy
o Error-free test execution does not mean error-free program

A W N -

7 Testing Principles

Only presence of bugs can be shown
Exhaustive testing practically impossible
Test in the early development phases

Defect clustering
o Most defects relate to a small number of components

Pesticide paradox
o Efficiency of testing decreases when re-executed
o Every methodology misses some problems

Testing is context-dependent

Absence-of-errors fallacy
o Error-free test execution does not mean error-free program

Basics

Test

—> SUT -, Test —> Qracle [~ Verdict

input output

Basics

;epsjt —> SUT —— Iﬁf’;ut —> Oracle — Verdict
= Test case
o Input values, preconditions, expected results and
postconditions
= Test suite
= Oracle
o Compares real and expected outputs
= Verdict

o Pass, Fail, Inconclusive, Error

" Testing = debugging

Basics

;epsjt —> SUT —— Iﬁf’;ut —> Oracle — Verdict
= Test case
o Input values, preconditions, expected results and
postconditions
= Test suite
= Oracle
o Compares real and expected outputs
= Verdict

o Pass, Fail, Inconclusive, Error

" Testing = debugging

Basics

;epsjt —> SUT —— Iﬁf’;ut —> Oracle — Verdict
= Test case
o Input values, preconditions, expected results and
postconditions
= Test suite
= Oracle
o Compares real and expected outputs
= Verdict

o Pass, Fail, Inconclusive, Error

" Testing = debugging

Basics

;epsjt —> SUT —— Iﬁf’;ut —> Oracle — Verdict
= Test case
o Input values, preconditions, expected results and
postconditions
= Test suite
= Oracle
o Compares real and expected outputs
= Verdict

o Pass, Fail, Inconclusive, Error

" Testing = debugging

Problems, Challenges

= Test selection
o How to select test inputs

= Exit criteria
o When is testing finished

= Oracle
o How to define a good test oracle

= Testability

o How easy is to test the system?
* Observability

e Controllability

Problems, Challenges

= Test selection
o How to select test inputs

= Exit criteria
o When is testing finished

= Oracle
o How to define a good test oracle

= Testability

o How easy is to test the system?
* Observability

e Controllability

Problems, Challenges

= Test selection
o How to select test inputs

= Exit criteria
o When is testing finished

= Oracle
o How to define a good test oracle

= Testability

o How easy is to test the system?
* Observability

e Controllability

Problems, Challenges

= Test selection
o How to select test inputs

= Exit criteria
o When is testing finished

= Oracle
o How to define a good test oracle

= Testability

o How easy is to test the system?
* Observability

e Controllability

Software testing

Testing in
Test Design development
lifecycle

Methods of

Testing process Levels of Testing “esitine

Testing in

Methods of
Testing process Levels of Testing Testing Test Design development

lifecycle

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test Closure
Activities

Testing Strategy

= General policies
o Methodology
o Test types
o Test tools
o Who tests
o Exit criteria
o Testing documentation

O ...

Testing Strategy

= General policies = E.g.:
o Methodology o Extreme programming
o Test types o Module & system
o Test tools o JUnit & GUI Tester
o Who tests o Developers and test team
o Exit criteria o 90% code coverage & 100%
o Testing documentation USE Case Coveragy

O ...

Test Suite Evaluation

= Coverage
o Code

o Specification
= Qutput distribution
= Cost!

Analysis and
Design

« Test case planning/specification
— Goal of test case
— Test environment
— Test steps, test data
— Expected outcome
» Before test code is created
« Systematic method recommended

 Manual or automatic
 Sometimes automatic is too
expensive
« Automatic: part of the build

« Output logging
Iml tati . .
o Execution « Time, test environment

 Component versions
« System output

 Incident reporting

« Decide whether further testing
required

* End of testing
« Typically for each milestone
» Experience gathering

Evaluating Exit » Test tools, environment

Criteria and

Reporting ﬁnalization

Test Closure
Activities

Software testing

Testing in
Test Design development
lifecycle

Methods of
Testing

Testing process Levels of Testing

Unit / Module

Integration

Acceptance

Module Testing

T1 M2 Stub3

Module Testing

Module
under test

Stub3

Module Testing

(I'est executor A

 calls module Module
Test evaluator under test
(examines output ;

~

Stub3

Module Testing

(I'est executor

» calls module Module Test stub
Test ev_aluator under test Limited
* examines output , /{unctionality

— 1 4 r g

T1 M2 Stub3

\

Module Testing

(I'est executor

» calls module Module Test stub
Test ev_aluator under test Limited
* examines output , /{unctionality

| 4 ”

T1 M2 Stub3

\

Test program T J
or test script

Integration Testing

/!i M1 v .

T1: Tester

—

Integration Testing

/System under test A

 Consists of multiple
modules (here M1, M2,

'\@ J
x —

M1 M2 M3
T1 : Tester - % - B

t1(d1) | | |

el J
t2(d2,d21)
e2]

Integration Testing

/System under test A

 Consists of multiple
modules (here M1, M2,

p

M
Test 1 %) J
- test input % e
M1 M2 M3

* eXpeCted T1 : Tester %
Qutput t1(d1)

el J

t2(d2,d21)
e2]

Integration Testing

/System under test A

 Consists of multiple
modules (here M1, M2,

/

M
Test 1 %))
- test input % e
M1 M2 M3
* eXpeCted T1 : Tester %
\Output t1(d1)
Test result L |
sevaluation e e J
t2(d2,d21) u
e2]

Integration Testing

/System under test A

 Consists of multiple
modules (here M1, M2,

/

Test 1 @ /
« test input % - { o
* eXpeCted 11 : Tester _% - -
Qutput t1(d1)
Test result L
~evaluation S~ d J

Test2 | pazazy (b]

e2

Integration Testing

/System under test A

 Consists of multiple
modules (here M1, M2,

/

M
Test 1 %))
- test input % _ { —
* eXpeCted T1 : Tester _% - o
\Output t1(d1)
Test result L |
sevaluation e e J
[Test 2 | 2(d2,d21) |
e2]
]

Software testing

Testing process

Levels of Testing

Unit / Module

Integration

Acceptance

Methods of

Testing

Testing in
Test Design development
lifecycle

Even by customer
Final (or very similar)
environment

Entire system (all
dependency)

Based on specification

Testing in

Methods of

Testing process Levels of Testing e

Test Design development
lifecycle

Functional

Non-functional

Alpha/beta

Regression

Software testing

|
| | | | |
Testing in
Testing process Levels of Testing Methqu o Test Design development
IiEalil lifecycle

=l Functional

« Performance
« Stress testing
Non-functional L4 Usab|l|ty

Robustness

b

md Alpha/beta
_

Software testing

Testing process Levels of Testing Miter;:i?;()f

=l Functional

mal Non-functional

s Alpha/beta

Regression

Testing in
Test Design development
lifecycle

« After changes

Did we break
something
Limited test case
* Test suite
minimalization

|
Testing in
Test Design development
lifecycle

Methods of

Testing process Levels of Testing e

Tester
Experience

Specification
Based

Structure Based

Error Based

Probability
based

* Ad hoc testing
* Exploratory testing
* Understand system
» Test design and
application execution at
the same time

N

7
Tester
Experience

Software testing

Methods of =
Testing process Levels of Testing e Test Design development
lifecycle

Tester

- Black box / functional _ BXpeihes
testing >

Specification

« Only specification is the Based
iInput

Structure Based

_

Probability
based

SEE 5 o
ECYETEM 178

Software testing

Testing process Levels of Testing Miter;:i?;()f

|
Testing in
development
lifecycle

Test Design

Tester

) Experience
 \White box / structural

teStI n g Bl Specification
 Internal behaviour know e
e Source code, internal

mOdel Structure Based

sl Error Based

Probability
based

Select errors

E.g. based on earlier
bugs

* Mutation testing

Modify code —
evaluate tests
Modify tests — create
new ones

4

(Orthogonal category)
Test cases created
deterministically or random
Methods
« Random
* Operational
 Statistical (random +
criteria)

Probability
based

Software testing

Testing process Levels of Testing M?':ezgidnsg of

|
Testing in
development
lifecycle

Test Design

Tester

Experience

Bl Specification

Usually, these needs Based
to be combined

md Structure Based

sl Error Based

ad Probabilty based

Software testing

|
Testing in

development
lifecycle

Levels of Methods of
Testing Testing

Testing process Test Design

V model

Testing in the V-model

Requirement
analysis

\

System
specification

\

Architecture

Design

Module design

Module
implementation

Operation,
Maintenance

System
Validation
System
Verification
System
Integration
Module
verification

Test Design in the V-model

Operation,
Maintenance

A

Requirement System System
analysis | Validation | ® Validation
System System Test System

™ Verification

/

System
> Integration

Module

™ Verification

Specification

\

Architecture

Design

Module Design

Design

Integration Test
Design

Module Test

Module
Implementation

Testmgm
i e lifecycle
» Test-driven development (TDD)
* test-first development
« Continous testing gl

Testing In Practice

Testing in Practice

= Testing requires more than 50% of total
development cost!

o Test data generation
o Test code creation

o Test execution

o Result evaluation

= Subtasks automatizable

o Based on: e.g. models

* class diagram: module interfaces
— test controller and test stub generation

 state machines: cooperation between modules
 — test sequence generation

Further reading

International Software Testing Qualifications Board (ISTQB), URL:
http://istgb.dedicated.adaptavist.com/

o ISTQB Glossary of Testing Terms
o Foundation Level Syllabus (2010)
o Even in Hungarian: http://www.hstgb.com/index.php?title=Downloads

|IEEE, Software Engineering Body of Knowledge (SWEBOK), URL:
http://www.computer.org/portal/web/swebok/

o Chapter 5: Software Testing

|IEEE, Software and Systems Engineering Vocabulary (SE VOCAB), URL:
http://pascal.computer.org/sev_display/

o Searchable set of definitions

Testing process

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test Closure
Activities

Levels of Testing

Unit / Module

Integration

Acceptance

Methods of

Testing

Functional

Non-functional

Alpha/beta

Regression

Test Design

Tester
Experience

Specification
Based

Structure Based

Error Based

Probability
based

Testing in

development
lifecycle

V model

The JUnit Framework

Testing process

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test Closure
Activities

Levels of Testing

Unit / Module

Integration

Acceptance

Methods of

Testing

Functional

Non-functional

Alpha/beta

Regression

Test Design

Tester
Experience

Specification
Based

Structure Based

Error Based

Probability
based

Testing in

development
lifecycle

V model

= JUnit
o Very common Java test framework
o Original authors: Erich Gamma and Kent Beck

o Multiple test executors

* Command line
* Simple GUI
* IDE integrated

= JUnit 4

o Uses Java 1.5 features, e.g. annotations
o Completely different APl than JUnit 3

Simple JUnit Test

= Java annotated methods
o Similar to Eclipse 4 API

= Simple test cases:

o At least one method annotated with @org.junit.Test
 Annotated methods are the concrete test cases

e QOutput validation:
— Static methods of org.junit.Assert.*

— E.g. assertEquals(expected, actual)

Simple JUnit Test

package hu.bme.mit.junit.example;

import org.junit.Test;

import junit.framework.TestCase;

public class ListTest {
@Test
public void testAddToEmptyList () {
MyList 1 = new MyList();
l.add (1) ;

org.junit.Assert.assertEquals(l, l.getSize());

Simple JUnit Test

package hu.bme.mit.junit.example;

import org.junit.Test;

import junit.framework.TestCase;

public class ListTest {
@Test

Test method

public void testAddToEmptyList () {
MyList 1 = new MyList();
l.add (1) ;

org.junit.Assert.assertEquals(l, l.getSize());

Simple JUnit Test

package hu.bme.mit.junit.example;

import org.junit.Test;

import junit.framework.TestCase;

public class ListTest {
@Test

Test method

public void testAddToEmptyList () {
MyList 1 = new MyList();

l.add (1) ; Validation

org.junit.Assert.assertEquals(l, l.getSize());

JUnit Test Execution in Eclipse

= Select class containing tests
= Run As -> JUnit test

= Results:

o Colored by output
* Ok, Error, Failure

(18 Package Explorer ‘ Yo Hierarchy ‘.‘gi‘U JUnit 53 &4 ¢ g8 SEI Q2 izl v ¥ 7 &
Finished after 0,032 seconds

Runs: 3/3 8 Errors: 0 B Failures: 2]

fit) hu.opboware.junitcourse.example.AllTests (R = Failure Trace =

il hu.opbavare junitcourse.example.ListTes Jg junit.framework.AssertionFailedError: Not yet im
ei] testAddToEmptyList (0,000 s)

fit) hu.optvare junitcourse.example.Seconc
g testAdd (0,004 s)
g testGetSize (0,000 s)

= at hu.optxwarejunitcourse.example.SecondListT

Using JUnit in Eclipse - Preparations

= Convention: separate source folder for tests

— Properties for junit-basic

o Named: test

Java Build Path

Resource
Builders

Java Build Path

Java Code Style
Java Compiler

Java Editor

Javadoc Location
Project References
Run/Debug Settings
Task Repository
Task Tags

= JUnit Library in classpath

(*# Source IB Projectsl = Libraries] {}{f Order and Exportl

Source folders on build path:

(# junit-basic/src
(# junit-basic/test

Add Folder...

Link Source...

Using JUnit in Eclipse - Preparations

= Convention: separate source folder for tests

[)

o Named: test B,
Resource - .
Builders (# Source IB Projectsl B Libraries] % Order and Exportl
Java Build Path Source folders on build path:
Java Code Style (# junit-basic/src [Add Folder...]
Java Compiler (# junit-basic/test
Java Editor [Link Source...]
Javadoc Location
Project References Edit...
Run/Debug Settings
Task Repository [Remove]
Task Tags

= JUnit Library in classpath

— Properties for junit-basic

| Java Build Path T v
Resource - L n
Builders I (# Source I = Projects| B Libraries I “; Order and Export‘
Java Build Path JARs and class folders on the build path:
Jeria Cade Style = JRE System Library [JavaSE-1.6] [Add JARS...]
Java Cgmpller =) JUnit 4
Java Editor [Add External JARs...]
Javadoc Location
Project References I Add Variable..]
Run/Debug_ Settings I Add Library..]
Task Repository
Task Tags | Add Class Folder... |
Validation
WikiTed | Add External Class Folder...

JUnit Test Creation
T — = ==

JUnit Test Case
Select the name of the new JUnit test case. You have the options to specify E:
the class under test and on the next page, to select methods to be tested.
= Test Class Nam
eS a SS a e () New JUnit 3 test @ New JUnit 4 test 1

Sourcefolder: junit-basic/test
Package: (default)

o «Unit_namen»Tests Name

Superclass: java.lang.Object Browse...

o «Unit_namen»Test

I

Which metheod stubs would you like to create?
[] setUpBeforeClass() [~] tearDownAfterClass()

["] setUp([|tearDown()

= Select class under test

Do you want to add comments? (Configure templates and default value here)
E] Generate comments

Class under test: Browse...

= Helper methods
o ,test fixture”

o setup & teardown ©

Test fixture

" Prepares environment for tests:
o May be shared between tests
o Beware for interdependent tests!

= Once per testing process
o @BeforeClass, @AfterClass

= Before and after each test case
o @Before, @After

Test fixture - Example

public class ListTests {

List emptylList;

@Before
public void setUp() {
emptyList = Collections.EMPTY LIST;

}

@After

public void tearDown() {
emptyList = null;

}

@Test
public void testEmptyList() {
assertEquals ("Empty 1list should have 0 elements'",

0, emptyList.size());

Assertions

= Automatic validation of test cases
o Provide one per test case
o Unless it is harder to find concrete issue

= Static methods of org.junit.Assert
o assertEquals(expected,actual)
assertFalse(boolean)
assertTrue(boolean)
assertNull(object)
assertNotNull(object)
assertSame(expected,actual)
assertNotSame(expected,actual)
assertArrayEquals(expecteds, actuals)

O O O O O O O O

JUnit Annotations

@Test public void method() Defines test method

@Before public void method() Executes before each test
@After public void method() Executes after each test
@BeforeClass public void method() Executes once before all tests
@AfterClass public void method() Executes once after all tests
@Ignore Skips the test; use sparingly

Test case is succesful if throws the selected

Test(expected=IllegalArgumentException.class)
@Test(exp galArg p) i

@Test(timeout=100) Limits test execution time

e S

MUEGCYETEM 1782

Grouping Test cases

= Test Suites in JUnit 4:
o @RunWith: define test executor
o @SuiteClasses: defines members

import org.junit.runner.RunWith;

import org.junit.runners.Sulte;

@RunWith (Suite.class)
@Suite.SuiteClasses ({
ListTest.class, VectorTest.class})

public class AllTests {

// placeholder for the above annotations

Expected exception

= Evaluate error handling
o We sometimes expect the trowing of exceptions

public class RegularExpressiondJUnit4Test {
private static String zipRegEx = ""\\d{5} ([\\=-]\\d{4})?2s";
private static Pattern pattern;

@BeforeClass
public static void setUpBeforeClass () throws Exception {
pattern = Pattern.compile (zipRegkEx) ;

}

@Test (expected=IndexOutOfBoundsException.class)

public void verifyZipCodeGroupException () throws Exception{
Matcher matcher = this.pattern.matcher ("22101-5051");
boolean isValid = matcher.matches() ;

matcher.group (2) ;

}

Parameterized tests

= Common case: many similar tests
o only different in parameters
o test code should not be redundant

= JUnit 4: parameterized tests

o Separate test code and test data

o Framework executes the test code with all data

JUnit Parameterized Tests 1/6

= Write parameterless test code

@Test

public void testComplexCalculation() throws Exception
{

Integer r = calc.complexCalculation(a, b);

assertEquals (res, r);

" Test data is yet undefined:
o a, b: input

o res: expected output

JUnit Parameterized Tests 2/6

= Create ,feeder” method

o Static method, returning a collection of arrays
o Annotated with @Parameters
o Arrays are used to serialize test data

@Parameters

public static Collection<Object[]> complexCalcValue () {

return Arrays.asList (new Object[][] {
{1, 1, 12 },
{ -1, 1, -10 },
{ 10, 10, 30 },
{2, 2, 14 } });

JUnit Parameterized Tests 3/6

" Create attributes for single test data:

private Integer a;

private Integer b;

private Integer res;

JUnit Parameterized Tests 4/6

= JUnit will call the constructor parameters in order:

public ParametricTest (Integer a,
Integer b, Integer res) {

super () ;
this.a = a;
this.b = b;

this.res = res;

JUnit Parameterized Tests 5/6

= Selected specific test runner for the class

O org.junit.runners.Parametrized

dRunWith (Parameterized.class)

public class ParametricTest ({

JUnit Parameterized Tests 6/6

= Execute tests
o The testComplexCalculation() test executes four times
o Executes with all values from step 2.

4 c o~ B
% Package Explorer (U JUnit E@\ : P A | Q@ X o7 5.
Finished after 0,016 seconds

Runs: 3/3 B Errors: 0 B Failures: 0

= E?_] org.optxware.example.calculator.ParametricTest [Runner: JUnit 4] {0,000 s)
E-te] [0] (0,000 5)
#'—_] testComplexCalculation[0] (0,000 s)
-8t [1](0,000 5)
:E testComplexCalculation[1] (0,000 s)
=gt [2](0,000 s)
- E testComplexCalculation[2] (0,000 s)

= Further categorization, e.g.
o Execution time
o Resource requirements

= Categories defined as interfaces
public interface FastTests {}
public interface SlowTests {}

" Inheritance supported

interface PerformanceTests extends
SlowTests{}

Categories /2

= Use case 1: annotate test classes
@Category (FastTests.class)
public class CalculatorTest {}
= Use case 2: annotate test cases
@Category (SlowTests.class)
public void complexCalc (int a, 1nt

D) 1}

= Execution

O @RunWith (Categories.class)
0 @IncludeCategory (SlowTests.class)
O @SuiteClasses (
{ CalculatorTest.class,
ParametricTest.class })
o public static class SlowTestSuite ({}

Categories /3

@IncludeCategory (FastTests.class)
Finished after 0,047 seconds

Runs: 7/7 (1 ignored) B Errors: 0 B Failures: 0

] org optxware.example.calculator, CalculatorTestSuite2 [Funner: Jnit 4] (0,015 s)
-'-lj org.optxware.example.calculator, CalculatorTest (0,000 s)

---] org.opkxware.example.calculator, CalculatorTest2 (0,000 s)
Et

7t org.opkxware.example.calculator . NewCalculatorTest (0,015 s)

dExcludeCategory (SlowTests.class)

Finished after 0,031 seconds

Runs: 6/6 (1 ignored)

B Errors: 0 B Failures: 0

=] org optxware.example.calculator, Calculator TestSuite2 [Runner: JUnit 4] (0,000 s)
- lt] org.opkxware,example.calculator, CalculatorTest (0,000 s)
-] org.opkxware,example.calculator, CalculatorTest2 (0,000 s)

Rules

= JUnit extension points

= Base extensions

o TemporaryFolder
* For storing temporary files and folders
* Will be removed after the test execution

@Rule
public TemporaryFolder tempFolder = new TemporaryFolder () ;

File newFile = tempFolder.newFile ("myfile.txt");

o ExternalResource
* External resource that needs to be reset after testing

Rules /2

o ErrorCollector
* In case of exception don’t stop but continue
* All exceptions will be shown in the end

o ExpectedException
» Specifies expected exceptions inside test cases

@Rule
public ExpectedException exception = ExpectedException.none() ;

exception.expect (IllegalArgumentException.class)

o Timeout

* Class-level timeout setting
@Rule
public MethodRule globalTimeout = new Timeout (20) ;

= Generalizes connection between input and output
= Simpler structure than parameterized tests
= Class annotated with cRunwith (Theories.class)
= Required

o Data generation method - @DataPoints

o Generated data will be used by test cases as input
@DataPoints
public static Integer[] data () {
return new Integer|[] {
new Integer (10),

)
new Integer (17)
16

)

new Integer (-

Theories /2

o Theory
* Test is annotated with @Theory
* Must contain (at least) one assertion

@Theory
public void addTheory (Integer a, Integer Db) {
assumeTrue (a > 0);

assumeTrue (b > 0);

assertkEquals ((atb), calc.complexAddMethod(a, b))

= Describes preconditions for test case
= |f Assumption fails, test case still ok

assumeTrue (a>0) ;

assumeTrue (b>0) ;

= Useful for Theories

o Filters invalid input for test case

PDE JUnit Tests

JUnit Plug-in Tests

= PDE JUnit

o Test execution for
* Eclipse plug-ins
* OSGi bundles
o Part of Plug-in Development Environment 3.x/4.x

= Behaves like plain JUnit

= Differences:
o Custom test runner: starts a new Eclipse instance
o Similar to runtime workbench

o Every test is executed in this workbench
* Full Eclipse API available
e OSGi classloading in action!

PDE JUnit

Steps:

O

©)
©)
O

Starting runtime workbench
JUnit TestRunner gets control
Tests executed in runtime
Runtime workbench stopped

Java VM

PDE JUnit Test
Runner
Plug-in Test

Plug-in Project

Plug-in Test
Project

JUnit Plug-in Test Settings

= Test
o What test to run

= Main

o Run an application — Headless mode
= Plug-ins

o What plug-ins to load
= Configuration

o Clear the configuration area before launch

JUnit Plug-in Test Settings

= Test
o What test to run T

Create, manage. and run configurations

Create a configuration that will launch a JUnit plug-in test.

. L]
Maln CEx ek~

type filter text

Name: org.optxware.example.plugin.calculator.test

4+ © Eclipse Application [E] Test E] Main | (9= Arguments | <& Plug-ins | Configuration| £ Tracing| >,

O Run an application -_— H © Eclipse Application ‘Z‘lenasingletest

Java Applet Project: org.optxware.example.plugin.calculator.test Browse...
Java Application
4 Ju JUnit est class Search...

Ju AllTests

[
. P | | l - I n S Ju ListTest ©) Run all tests in the selected project, package or source folder:
4 J{i JUnit Plug-in Test
5.2 org.opbware.examp org.optxware.example.plugin.calculator.test

Operational QVT Interpr
4 0SGi Framework

o What plug-ins to load | & = = 4

[] Keep JUnit running after a test run when debugging

Run in Ul thread

= Configuration R

Filter matched 12 of 12 items

o Clear the configuration| @

ECYETEM 1782

Plug-in testing

= Unit tests

o Can be problematic because of many dependencies
o Can be mocked if required

" |[ntegration testing

o More common for PDE JUnit

Test Case Placement Options

Test Case Placement Options

= Separate source folder
o As Java projects
o BUT: JUnit dependency for plug-in!

" Plug-in fragment
o Sees the inside of the host

= Separate plug-in
o Only public APl is available

Test Case Placement Options

= Separate source folder
o As Java projects
o BUT: JUnit dependency for plug-in!

" Plug-in fragment
o Sees the inside of the host

= Separate plug-in
o Only public APl is available

Test Case Placement Options

= Separate source folder
o As Java projects
o BUT: JUnit dependency for plug-in!

" Plug-in fragment
o Sees the inside of the host

= Separate plug-in
o Only public APl is available

Test Case Placement Options

= Separate source folder
o As Java projects
o BUT: JUnit dependency for plug-in!

" Plug-in fragment
o Sees the inside of the host

= Separate plug-in
o Only public APl is available

Headless mode

= Testing without GUI
o Much faster
o For Ul-independent plug-ins

o Requires planning in advance

Related Eclipse Projects

= GUI testing

o SWTBot
* Supports even GEF-based editors!

o Jubula
* Model-based test specification

o WindowTester Pro
* Capture-and-playback

* Previously developed by Instantiations
— As WindowBuilder Pro

Further Reading

= JUnit, http://www.junit.org/

= Lars Vogel, JUnit — Tutorial,
http://www.vogella.de/articles/JUnit/article.html

= Andrew Glover, Jump into JUnit 4,

http://www.ibm.com/developerworks/java/tutorials/j-junit4/index.html

= Application

o Slow, or

o Requires a lot of memory
" How to fix it?

Profiling

= (Performance) information collection for
application
o Dynamic, runtime techniques

= Tipical information collected:
o Method execution count (both start and return)
o Execution times
o Memory usage
o Call stack
o Thread states

Profiling implementation

= |nstrumentation
o Flagging, logging instructions added
o Manual / automatic
o Code / binary / runtime level

= Framework support
o E.g. Java (Java Virtual Machine Tool Interface), .NET
o Events, callback methods

= Sampling
o Periodically looks at state
o Less intrusive, but less precise
o HW support possible

Profiling implementation

= |nstrumentation
o Flagging, logging instructions added
o Manual / automatic
o Code / binary / runtime level

= Framework support
o E.g. Java (Java Virtual Machine Tool Interface), .NET
o Events, callback methods

= Sampling
o Periodically looks at state
o Less intrusive, but less precise
o HW support possible

Profiling implementation

= |nstrumentation
o Flagging, logging instructions added
o Manual / automatic
o Code / binary / runtime level

= Framework support
o E.g. Java (Java Virtual Machine Tool Interface), .NET
o Events, callback methods

= Sampling
o Periodically looks at state
o Less intrusive, but less precise
o HW support possible

Java Profiler tools

= Multiple profilers available, see
o http://java-source.net/open-source/profilers

= jvisualvm
o Based on JDK features

= YourKit Java Profiler

= Quest JProbe

= JIP — Java Interactive Profiler
= Netbeans Profiler

= Eclipse:
o Memory Analyzer (MAT) — heap analyzer
o Test & Performance Tools Platform (TPTP)

Memory Analyzer (MAT)

= Heap dump file analysis
o Can be created by JVM tools
o Basically, memory map

= Available as RCP application or Eclipse plug-
In

Memory Analyzer (MAT)

e

Memory Analysis - /home/meres/java_pi hprof - Eclipse

File Edit Navigate Search Project Run Window Help

refERE | oo e

J

v Silv % Gv Dv

[& Inspector &2 & =08

@ 0x74ddf2b0

[Profile

£ org.eclipse.equinox.intemnal.p2.engine

class org.eclipse.equinox.internal.p2.engine.Pi
@, org.eclipse.equinox.intemal.p2.metadata.inde
[8) org.eclipse.osgi.internal.baseadaptor.DefaultC
0 72 (shallow size)

11 4,480,144 (retained size)

o o GC root

Statics | Attributes | Class Hierarchy‘ »
Type |Name |Va|ue A

ref surrogatePt null

long timestamp 1288598661620

boolea changed false

ref iuPropertie! java.util.HashMap @ 0x7
ref ius org.eclipse.equinox.intern
ref storage org.eclipse.equinox.intern
ref subProfilelc null

ref translation¢ null

ref capabilitylr null

ref propertieslt null

ref idindex null

ref parentProfil null

B

|| @ java_pid20049.hprof > =8
iom % o Ey & Q
i Overview £ |@@default_report org.eclipse.mat.api:suspects]
~ Details =
Size: 63 MB Classes: 12.1k Objects: 1.4m Class Loader: 177 Unreachable Objects Histogram
~ Biggest Objects by Retained Size %
43MB
6.1MB
’ 7.6 MB
45 MB /
Total: 63 MB -
& Notes 52 &= Navigation History" =8|
A
v
< >

Test & Performance Tools Platform

= Top-level eclipse.org project

= Provides profiling tools
o Be careful, project is close to dead

