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Example software lifecycle (V-model) 
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Formal modelling and 
verification are relevant in 

these phases 



Techniques and measures in standards 

• IEC 61508: 
Functional  
safety in  
electrical /  
electronic /  
programmable  
electronic  
safety-related  
systems 

• Example:  
Software 
architecture 
design 



Goals of formal modeling and verification 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
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correct faulty 



Modeling with timed automata 



Goals of formal modeling and verification 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
example 

correct faulty 

•  Modeling with timed automata 

•  Mapping to timed automata from higher-level 
   models (e.g., from UML state machines) 



Automata and variables 

• Goal: Modeling event driven, state based behaviour 

• Basic formalism: Finite state machine (FSM) 
– States (with state names) 

– State transitions 

• Extension: Using integer variables 
– Range of potential values can be specified 

– Constants can be defined 

– Integer arithmetic can be used 

• Extensions on state transitions: 
– Guards: Predicates on the variables 

• It shall be true in order to enable the state transition 

– Actions: Assignments to the variables 



Extensions using clock variables 

• Goal: Modelling time dependent behaviour 
– Time elapses in the states 

– Behaviour depends on the time spent in the state 

– To be verified: States that can be reached after/until a given time 

• Modelling extension: Clock variables 
– Concurrent clocks (timers) having the same rate 

– Relative time measurements (e.g., time-out): Resetting and reading clock 
variables 

• Usage in state transitions: 
– Actions: Resetting clock variables, independently 

– Guards: Referring to clock variables and constants 

• Usage in states: 
– State invariants: The validity of the state is specified using predicates on 

clock variables and constants 



Timed automata (in the UPPAAL tool) 

State name 

Guard 

Invariant 

Action 

clock x; 



Role of state invariants and guards 

Guard 

Invariant 

clock x; 

The value of clock x is in the range [4, 8] when leaving the state open 

4 8 t 



Extensions for modeling distributed systems 

• Goal: Modeling networks of interacting automata 
– Synchronization among automata 

– Synchronized state transitions (rendezvous): synchronous communication 

• Sending and receiving of messages at the same time 

• This primitive can be used also to model asynchronous communication 

• Extension: Synchronized actions 
– Channels are defined (synchronous channels) 

– Message sending:       ! operator on the channel 
Message receiving:    ? operator on the channel 

• E.g., on the channel a the actions are a! and a? 

• Parameterization 
– Automata with parameters: Instantiation of templates 

• E.g., Door(bool &id) with id as a parameter 

– Channel arrays (indexed) 

• E.g., a[id] is a channel indexed by the value of variable id 

a! a? 

chan a 



Example: Using clock variables and synchronization 

Declarations: 

 clock t, u; 

 chan press; 

Switch: 

 

 

 

 

 

User: 

“Receiving a 

message” 

“Sending a 

message” 



Further extensions: Specific states 

• Committed state: atomic state transitions 
– Typical usage: Before executing the outgoing 

transition, the interleaved execution of a state 
transition of another automaton is not allowed: 
the incoming and the outgoing transitions are 
executed in an atomic operation 

 

• Urgent state: without delay (if possible) 
– There is no delay in the given state when an outgoing 

transition is enabled 

– Equivalent model: 
• Definition of a clock variable:   clock x; 

• Resetting it on all incoming edges:   x:=0 

• Assigning state invariant to the state:  x<=0 

 

C 

U 



Further extensions: Urgent channel 

• Urgent channel: delay is not allowed 
– Synchronization shall be executed immediately, without delay 

(but interleaving is possible) 

– No time related guard is allowed on the state transition with an action  
referring to an urgent channel 

– No state invariant is allowed in a state where there is an outgoing 
transition with an action referring to an urgent channel 

a! 

urgent chan a; 

No state invariant  
is allowed here 

No time related 
guard is allowed here 



Further extensions: Broadcast channel 

• Broadcast channel: 1->N communication 
– „Sending” is performed without the need for synchronization 

• The receiver should not be ready for the rendezvous 

– All receivers ready for rendezvous are synchronized 
• Receivers need the rendezvous to continue 

– No guard is allowed on the state transition of the receiver 
referring to a broadcast channel 

a! 

broadcast chan a; 

a? a? a? 



The UPPAAL tool set 

• Development (1999-): 
– Uppsala University, Sweden 

– Aalborg University, Denmark 

• Web page (information, downloading, examples): 
http://www.uppaal.org/  

• Related tools: 
– UPPAAL CoVer:  Test generation 

– UPPAAL TRON:  On-line testing 

– UPPAAL PORT:  Designing component based systems 

– … 

• Commercial version: 
http://www.uppaal.com/  

http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.com/
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Formalizing requirements 
with temporal logics 

 -->  



Goals of formal modeling and verification 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
example 

correct faulty 

• Precise formalization of properties 
(requirements) to support automated 
checking 



What are the formalized properties? 

An example to illustrate the properties to be formalized: 
 

• The states of an air-conditioner: 

– Switched-off, switched-on, faulty, 
light cooling, strong cooling, heating, ventilating 

 

• Requirements for the air-conditioner: 

– After switched-on, it shall start ventilating 

– Strong cooling is allowed only after light cooling 

– Heating shall be followed by ventilating 

– The faulty air-conditioner shall not perform heating 

– ... 



State based properties 

• Local: Properties to be evaluated in a given state 

– Evaluation is possible using the current values of the state 
variables (and clock variables) 

– Example: „In the initial state ventilating shall be provided” 
 

• Reachability: Properties to be evaluated on a 
sequence of states 

– Evaluation is possible on the state space of the system 

– Example: „Heating shall be followed by ventilating” 

– It can be applied in continuously working systems 

– Typical categories of reachability properties: 
• „Safety” of the system 

• „Liveness” of the system 



Safety properties 

• Typical use: Specification that each state shall be safe, 
i.e., “something bad shall never happen” 
– „In each state the pressure shall be lower than the critical 

value.” 

– „In each operating state the door shall be closed.” 

• Invariant properties are specified: 
– „In each reachable state it shall be true that …” 

• Examples of software-related safety properties: 
– Mutual exclusion: In each reachable state, only one process 

shall stay in the critical section 

– Security: In each reachable state only authorized 
information access is possible 



Liveness properties 

• Typical use: Specification that a desired state is 
eventually reachable: “something good shall happen” 

– „After switch-on, the press shall eventually produce the plate.” 

– „The process shall eventually reach its goal.” 

• Existence (reachability) of given state(s) is specified: 

– „A state is eventually reached, in which …” 

• Examples of software-related liveness properties: 

– After sending a request the reply shall eventually be received 

– The message that is sent shall eventually be delivered 

– The process shall compute the required result 



Language to formalize reachability properties 

• Reachability: Refers to states that occur each after the 
other (following each other) 

– The sequence of states in considered as logic time: 
• The present: The current state 

• The next time points: The subsequent states 

– Temporal (ordering in logic time) operators can be defined to 
express the reachability properties 

• Temporal logic: 

– Formal language to express propositions qualified in terms of 
logic time 

– Typical temporal operators: „always”, „eventually”, „before”, 
„until”, „after”, … 

  
    



Temporal logics 

• Linear time:  
The subsequent states form a linear sequence 
(each state has only one successor) 
→ logic time forms a linear timeline 
 
 

• Branching time:  
The subsequent states form 
a tree structure  
(each state may have  
multiple successors) 
 → logic time forms branching timelines 

  

s 2   s1 s 3   

{Green}   {Yellow}   {Red} 

s4   

  {Red, Yellow}     

s1 

{Green} 

s5 

{Blinking} 

s2 

{Yellow} 

s3 

{Red} 

s5 

{Blinking} 

s3 s3 

{Red} 



The computational tree 

Computational tree: 
Structure of the  
potential successor  
states 

s5   

  

s 2   s1   s 3   s4   

{Green}   {Yellow}   {Red}   {Red, Yellow}   

{Blinking}   

s4 

{Red, Yellow} 

s5 

{Blinking} 

s3 

{Red} 

s4 

{Red, Yellow} 

s5 

{Blinking} 

s1 

{Green} 

s5 

{Blinking} 

s2 

{Yellow} 

s3 

{Red} 

s5 

{Blinking} 

s3 

{Red} 

Automaton (FSM) 
with labelled 
states  



Quantifying paths and characterizing states 

• Operators that quantify the paths starting  
from a given state: 

– A: for all paths from the given state 

– E: for an existing path from the given state 

• Operators that characterize states along  
a given path: 

– F: for a state along the path (“future”) 

– G: for all states along the path (“globally”) 

– X: for the next state from the initial state of the path (“next”) 

– U: for states until reaching a specified state (“until”) 
• E.g., Yellow U Red means states labeled with Yellow until reaching a 

state labeled with Red 

 



The Computational Tree Logic (CTL) 

• Composite operators are formed 

– First quantifying paths using operators A, E; then 
characterizing states along the path by operators F, G, X, U 

– Composite operators: 
• For all paths: AF, AG, AX, A(. U .) , 

• For an existing path: EF, EG, EX, E(. U .) 

– Examples: 
• EF Red: There shall exist a path where a state with Red is reached  

• AG Green: For all paths, all states shall be labeled with Green 

• E(Yellow U Red): There shall exist a path where states are labeled 
with Yellow until a state with label Red is reached  

• Restricted version of CTL is used in UPPAAL 

– AF, AG, EF, EG operators are used 

 



Summary of temporal operators in UPPAAL 

UPPAAL:  and  are Boolean expressions on clocks, variables and state names 

Operator Informal semantics UPPAAL notation 

AG  For all paths, 
for all states  

A[]  

AF  For all paths, 
for a state eventually  

A<>  

EG  For an existing path, 
for all states  

E[]  

EF  For an existing path, 
for a state eventually  

E<>  

AG( => AF ) After  always   -->  

There is no deadlock AG not deadlock 



Composite operators for all paths 

AG : For all paths, 
for all states  is true 

AG  AF  

 AF : For all paths, 
for a state eventually  
becomes true 



Composite operators for an existing path 

• Is there a relation between AG and EF? 

• Is there a relation between AF and EG? 

EG  EF  

EG : There exists a path, 
where for all states  is true 

EF : There exists a path, 
where for a state eventually 
 becomes true 



Conditional reachability 

• AG( => AF ) =  -->   
For all paths, for all states: if  is true then it implies that on all 
paths eventually a state occurs in which  becomes true 

• Reachability with a timing condition:  --> ( and x <= t)  
where x is a clock variable that is reset when  becomes true 

 -->  



Examples: formalizing properties using temporal logic 

Let us consider an air-conditioner with states labelled by the following propositions: 

{Switched-off, Switched-on, Faulty, LightCooling, StrongCooling, Heating, Ventilating} 
 

• These atomic propositions can be used in the formalized properties 

• The reachability properties refer to the initial state of the system 

• The behaviour of the air-conditioner may not be known when the properties are 
formalized (the behavioural model shall be verified using these properties) 

 

Examples for formalized properties: 

• If the air-conditioner is faulty then it shall be eventually repaired: 

 AG(Faulty => AF (Faulty)) or Faulty --> (Faulty) 

• If the air-conditioner is faulty then it shall not heat: 

 AG ((Faulty  Heating)) 

• It shall be possible to eventually switch off the air-conditioner: 
AF (Switched-off)  

• The air-conditioner will eventually become faulty (Murphy’s law) : 

 AF (Faulty) 

 



Model checking 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
example 

correct faulty 

Temporal logic properties Timed automata model 



The UPPAAL model checker 

• Properties can be formalized using temporal logic 

• Verification of the properties is automated 

• Verification is performed by an exhaustive exploration 
of the state space of the model 

– Breadth-first, or depth-first search can be configured 

• Diagnostic trace can be generated 

– Counter-example (for safety properties) or witness (for 
liveness properties) 

– Shortest, fastest, or some (any) diagnostic trace can be 
configured 

– The diagnostic trace can be loaded into the simulator to 
investigate and debug the behaviour 



The UPPAAL model checker 



Counter-example in the simulator 



A case study 



A solution for the mutual exclusion problem  

• 2 processes, 3 shared variables (H. Hyman, 1966) 
– blocked0: The first process (P0) wants to enter the critical section 

– blocked1: The second process (P1) wants to enter the critical section 

– turn:   Which process will enter (P0 in case of 0, P1 in case of 1) 

while (true) { 

 blocked0 = true; 

 while (turn!=0) { 

  while (blocked1==true) { 

   skip; 

  } 

  turn=0; 

 } 

 // Critical section 

 blocked0 = false; 

 // Do other things 

}  

while (true) { 

 blocked1 = true; 

 while (turn!=1) { 

  while (blocked0==true) { 

   skip; 

  } 

  turn=1; 

 } 

 // Critical section 

 blocked1 = false; 

 // Do other things 

}  

Is this algorithm correct? 

P0 P1 



Properties to be verified 

• Mutual exclusion: 

– Only one process may enter the critical section at the same 
time 

• It is possible to enter the critical section: 

– P0 is able to enter the critical section 

– P1 is able to enter the critical section 

• There is no starvation: 

– P0 will eventually enter the critical section on all paths 

– P1 will eventually enter the critical section in all paths 

• Freedom from deadlock: 

– The two processes shall not stop executing 



How can these properties be verified? 

• Testing, but 
– Is it easy to test each (interleaved) execution of the two processes? 

– The properties have to be checked by a test oracle on the test traces 

– Errors can be detected after an executable prototype of the algorithm 

• Modeling and simulation, but 
– Is it easy to simulate each (interleaved) execution of the two processes? 

– The violation of properties have to be detected in the simulator 

– Errors can be detected and corrected in the model before implementation 

• Modeling and model checking 
– The state space of the algorithm (each interleaved execution) is explored 

– The violation of the formalized properties is checked automatically by the 
model checker 

• If the properties can be formalized as temporal logic formula then it is a 
general method for verifying these on the model 



The model in UPPAAL (first version) 

Declarations: 
 bool blocked0; 
 bool blocked1; 
 int[0,1] turn=0; 
 system P0, P1; 
 

The P0 automata: 

Modeling techniques used: 
• Global declaration of shared variables 
• Limiting the range of variables 

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0 



The model in UPPAAL (second version) 

Declarations: 
 int[0,1] blocked[2]; 
 int[0,1] turn; 
 P0 = P(0); 
 P1 = P(1); 
 system P0,P1; 
 

The P template with pid parameter: 

Modeling techniques used: 
• Global declaration of shared variables 
• Limiting the range of variables 
• The processes are instantiated using the 

same template 
• Instantiation with parameters (here: pid) 
• Using arrays for variables (here: blocked) 

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0 



Formalizing properties in UPPAAL 

• Mutual exclusion: 
– Only one process may enter the critical section at the same time:  

A[] not (P0.cs and P1.cs) 

• Freedom from deadlock: 
– The two processes shall not stop executing: A[] not deadlock  

• It is possible to enter the critical section: 
– P0 is able to enter the critical section: E<>(P0.cs) 

– P1 is able to enter the critical section: E<>(P1.cs) 

• There is no starvation: 
– P0 will eventually enter the critical section on all paths: A<>(P0.cs) 

– P0 will eventually enter the critical section on all paths: A<>(P1.cs) 



Verifying the properties in UPPAAL 

• There is no deadlock 

• It is possible to enter the critical section 
– Each process is able to enter the critical section 

• Starvation cannot be checked without modelling time-
dependent behaviour 
– Trivial counter-examples include “stopping” in any state  

(that is not urgent and does not have a state invariant) 

• The mutual exclusion property is not satisfied! 
– The model checker produces a diagnostic trace (counter-example): 

There is a specific interleaved behaviour in which both processes are in 
the crirical section at the same time 

– The counter-example can be investigated in the simulator 



Correction of the algorithm 

New algorithm by Peterson 

• For process P0 
(for P1 it is similar): 

Peterson: 

 

while (true) { 

 blocked0 = true; 

 turn=1; 

 while (blocked1==true &&  
    turn!=0) { 

   skip; 

 } 

  

 // Critical section 

 blocked0 = false; 

 // Do other things 

}  

Hyman: 

 

while (true) { 

 blocked0 = true; 

 while (turn!=0) { 

  while (blocked1==true) { 

   skip; 

  } 

  turn=0; 

 } 

 // Critical section 

 blocked0 = false; 

 // Do other things 

}  



Summary: Model checking in the lifecycle 

Requirement 
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System 
specification 
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design 
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System test 
design 

System val. design 

Properties 
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Model checking  
on the basis of 

the source code 



Summary: Properties of model checking 

• Advantages: 
– It offers a complete exploration of the state space of the model 

– It is possible to check huge state spaces (in specific cases) 

• 1020, or even 10100 states can be checked automatically 

– There are fully automated tools, there is no need to perform manual 
adjustment, mathematical operations, or heuristics 

– Diagnostic trace is generated, which supports debugging and correction 

• Problems: 
– Scalability is limited (state space must fit to memory) 

– Effective for control-oriented models 

• Complex data structures result in huge state space 

– It is not easy to generalize the results 

• If a protocol is correct for 2 processes, is it correct for N processes as well? 

– The formalization of properties is difficult 

• There are different „temporal logic languages” 



Source code synthesis  

on the basis of a formal model 



Application domain and the applied formalism 

Embedded controllers:  

• Event-driven, state based 
behaviour 

• Simple actions 

• Distributed systems 

• Communication 

• Real-time behaviour 

Timed automata: 

• Finite state machine model 
(states, transitions) 

• Actions on variables 

• Network of automata 

• Synchronous communication 

• Clock variables in guards 

Wireless comm.  



The concept of source code synthesis 

Timed Automaton (formalism) 

Formal syntax 
(metamodel) 

Formal semantics 
(meaning) 

Concrete model 
representation 

Source code 
fragments 

Platform-level 
services 

Code generator 

Reads and 
explores 

Assembles Refers to 



The concept of source code synthesis 

Timed Automaton (formalism) 

Formal syntax 
(metamodel) 

Formal semantics 
(meaning) 

Concrete model 
representation 

Source code 
fragments 

Platform-level 
services 

Code generator 

Reads and 
explores 

Assembles Refers to 

Template  
based 

source code 
generation 



The concept of source code synthesis 

Timed Automaton (formalism) 

Formal syntax 
(metamodel) 

Formal semantics 
(meaning) 

Concrete model 
representation 

Source code 
fragments 

Platform-level 
services 

Code generator 

Reads and 
explores 

Assembles Refers to 

Parameterization 
of the code 
generation 



Automated application code synthesis 

Source code 
fragments 

• Template based 

• Java Emitter Templates 

• Configurable 

Platform-level 
services 

• Abstract service definitions 

• Implemented for each platform 

• Semantics-related services 
• Communication 

• Clock variables (timers) 

• Extensions 
• Logging 

• Assertions 



Mapping the model semantics to source code 

Initialization 

Entering function 

Automaton-level State-level 

Exit function 

System loop  

Waiting function 



Mapping the model semantics to source code 

Initialization 

Entering function 

Automaton-level State-level 

Exit function 

System loop  

Waiting function 

Continuous 

operation 

Updating state 
variables 

Setting state 
functions 

Waiting for 
synchronization 
Waiting for true 

guards 

Terminating of 
the waiting 
functions 



Model representation 

• Concrete model representation:  
Eclipse Modelling Framework metamodel and model 



Implementation of the code synthesis 

• Template based source code synthesis:  
Java Emitter Templates (JET) 

– Java statements: Traversing the model 

– Source code patterns: C 

<% Executing Java statement %> <%= Writing the output of a Java statement %> 

<%for (Location loc : template.getLocations()) { %> 
  void enterToLocation<%= loc.getID() %> ( ) { 
  stateReg = <%= loc.getID() %>; 
  waitFunc = &waitInLocation<%= loc.getID() %>; 
  exitFunc = &exitFromLocation<%= loc.getID() %>; 
  <%if (settings.getLoggingMode() == SettingsHandler.LoggingModes.OFFLINE) { %> 
      offlineLogFunction(<%=loc.getID()%>, locationLog); 
… 



Source code generation in the Eclipse environment 



Run-time monitoring and verification 

• Verification after the development phase 

• Formally specified system properties 
allow automated construction of monitors 

Application 

Instrumentation 

Monitor 
Run-time 

information 

Formal model  
System requirements 

Automated 
construction 



Control flow checking 

• Motivation: The majority of transient faults cause control flow 
errors 

Monitor synthesis 
 

• Checking the run-time 
sequence of states and 
transitions 

• Local monitor stores timed 
automaton model as a 
reference 

• Monitor source code 
generated automatically  
from timed automaton model 

Application instrumentation 
 

• Each state and transition is 
instrumented to send 
information to the monitor 

• State ID (signature) 

• Transition ID 

• Extensions: 
• Checking timed invariants 
• Detecting deadlock with 

heartbeat messages 



Instrumentation for control flow monitoring 

Initialization 

Automaton-level State-level 

System loop  

Waiting function 

Instrumentation 

Entering function 

Instrumentation 

Exit function 

Sending 
signature to the 

monitor 

Sending 
signature  

to the monitor 



Hierarchical monitoring of temporal properties 

Design-time verification Run-time verification 

System-level 
monitors 

System 
requirements 

Model checking 

Timed automaton 
formal model 

Local control flow 
monitors 

Instrumented 
application 

Code 
generation 

Instrumentation 

Local monitor 
synthesis 

CTL monitor 
synthesis 



Time overhead of monitoring 

Less than 12% overhead 

Time overhead on mbed platform 

Larger overhead on fast control 
functions 

(50.000 state changes) 
(500.000 state changes) 

0 s

10 s

20 s

30 s

40 s

50 s

60 s

Code skeleton only

No
instrumentation

Local monitoring

CTL monitoring

LSC monitoring

All0 s

10 s

20 s

30 s

40 s

50 s

60 s

With communication and
control functions



Code size overhead of monitoring 

Code size overhead on mbed platform 

 

 

 

 

 

 

 

 

 Less than 5% code overhead 

99%

99%

100%

100%

101%

101%

102%

102%

103%

Code skeleton only With communication and
control functions

No instrumentation

Local monitoring

CTL monitoring

LSC monitoring

All



Summary of model based design and verification 

• Formal modeling:  

– Timed automata models 

• Formalization of properties:  

– Temporal logic 

• Formal verification: 

– Model checking 

• Source code synthesis: 

– Template based code generation from timed automata 

• Monitor code synthesis: 

– Runtime verification of the control flow 


