
Formal modelling
and verification

István Majzik

Budapest University of Technology and Economics

Dept. of Measurement and Information Systems

Example software lifecycle (V-model)

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val. design

Formal modelling and
verification are relevant in

these phases

Techniques and measures in standards

• IEC 61508:
Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

• Example:
Software
architecture
design

Goals of formal modeling and verification

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

Modeling with timed automata

Goals of formal modeling and verification

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

• Modeling with timed automata

• Mapping to timed automata from higher-level
 models (e.g., from UML state machines)

Automata and variables

• Goal: Modeling event driven, state based behaviour

• Basic formalism: Finite state machine (FSM)
– States (with state names)

– State transitions

• Extension: Using integer variables
– Range of potential values can be specified

– Constants can be defined

– Integer arithmetic can be used

• Extensions on state transitions:
– Guards: Predicates on the variables

• It shall be true in order to enable the state transition

– Actions: Assignments to the variables

Extensions using clock variables

• Goal: Modelling time dependent behaviour
– Time elapses in the states

– Behaviour depends on the time spent in the state

– To be verified: States that can be reached after/until a given time

• Modelling extension: Clock variables
– Concurrent clocks (timers) having the same rate

– Relative time measurements (e.g., time-out): Resetting and reading clock
variables

• Usage in state transitions:
– Actions: Resetting clock variables, independently

– Guards: Referring to clock variables and constants

• Usage in states:
– State invariants: The validity of the state is specified using predicates on

clock variables and constants

Timed automata (in the UPPAAL tool)

State name

Guard

Invariant

Action

clock x;

Role of state invariants and guards

Guard

Invariant

clock x;

The value of clock x is in the range [4, 8] when leaving the state open

4 8 t

Extensions for modeling distributed systems

• Goal: Modeling networks of interacting automata
– Synchronization among automata

– Synchronized state transitions (rendezvous): synchronous communication

• Sending and receiving of messages at the same time

• This primitive can be used also to model asynchronous communication

• Extension: Synchronized actions
– Channels are defined (synchronous channels)

– Message sending: ! operator on the channel
Message receiving: ? operator on the channel

• E.g., on the channel a the actions are a! and a?

• Parameterization
– Automata with parameters: Instantiation of templates

• E.g., Door(bool &id) with id as a parameter

– Channel arrays (indexed)

• E.g., a[id] is a channel indexed by the value of variable id

a! a?

chan a

Example: Using clock variables and synchronization

Declarations:

 clock t, u;

 chan press;

Switch:

User:

“Receiving a

message”

“Sending a

message”

Further extensions: Specific states

• Committed state: atomic state transitions
– Typical usage: Before executing the outgoing

transition, the interleaved execution of a state
transition of another automaton is not allowed:
the incoming and the outgoing transitions are
executed in an atomic operation

• Urgent state: without delay (if possible)
– There is no delay in the given state when an outgoing

transition is enabled

– Equivalent model:
• Definition of a clock variable: clock x;

• Resetting it on all incoming edges: x:=0

• Assigning state invariant to the state: x<=0

C

U

Further extensions: Urgent channel

• Urgent channel: delay is not allowed
– Synchronization shall be executed immediately, without delay

(but interleaving is possible)

– No time related guard is allowed on the state transition with an action
referring to an urgent channel

– No state invariant is allowed in a state where there is an outgoing
transition with an action referring to an urgent channel

a!

urgent chan a;

No state invariant
is allowed here

No time related
guard is allowed here

Further extensions: Broadcast channel

• Broadcast channel: 1->N communication
– „Sending” is performed without the need for synchronization

• The receiver should not be ready for the rendezvous

– All receivers ready for rendezvous are synchronized
• Receivers need the rendezvous to continue

– No guard is allowed on the state transition of the receiver
referring to a broadcast channel

a!

broadcast chan a;

a? a? a?

The UPPAAL tool set

• Development (1999-):
– Uppsala University, Sweden

– Aalborg University, Denmark

• Web page (information, downloading, examples):
http://www.uppaal.org/

• Related tools:
– UPPAAL CoVer: Test generation

– UPPAAL TRON: On-line testing

– UPPAAL PORT: Designing component based systems

– …

• Commercial version:
http://www.uppaal.com/

http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.com/

A
u

to
m

at
o

n
 m

o
d

el

Si
m

u
la

to
r

Formalizing requirements
with temporal logics

 -->

Goals of formal modeling and verification

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

• Precise formalization of properties
(requirements) to support automated
checking

What are the formalized properties?

An example to illustrate the properties to be formalized:

• The states of an air-conditioner:

– Switched-off, switched-on, faulty,
light cooling, strong cooling, heating, ventilating

• Requirements for the air-conditioner:

– After switched-on, it shall start ventilating

– Strong cooling is allowed only after light cooling

– Heating shall be followed by ventilating

– The faulty air-conditioner shall not perform heating

– ...

State based properties

• Local: Properties to be evaluated in a given state

– Evaluation is possible using the current values of the state
variables (and clock variables)

– Example: „In the initial state ventilating shall be provided”

• Reachability: Properties to be evaluated on a
sequence of states

– Evaluation is possible on the state space of the system

– Example: „Heating shall be followed by ventilating”

– It can be applied in continuously working systems

– Typical categories of reachability properties:
• „Safety” of the system

• „Liveness” of the system

Safety properties

• Typical use: Specification that each state shall be safe,
i.e., “something bad shall never happen”
– „In each state the pressure shall be lower than the critical

value.”

– „In each operating state the door shall be closed.”

• Invariant properties are specified:
– „In each reachable state it shall be true that …”

• Examples of software-related safety properties:
– Mutual exclusion: In each reachable state, only one process

shall stay in the critical section

– Security: In each reachable state only authorized
information access is possible

Liveness properties

• Typical use: Specification that a desired state is
eventually reachable: “something good shall happen”

– „After switch-on, the press shall eventually produce the plate.”

– „The process shall eventually reach its goal.”

• Existence (reachability) of given state(s) is specified:

– „A state is eventually reached, in which …”

• Examples of software-related liveness properties:

– After sending a request the reply shall eventually be received

– The message that is sent shall eventually be delivered

– The process shall compute the required result

Language to formalize reachability properties

• Reachability: Refers to states that occur each after the
other (following each other)

– The sequence of states in considered as logic time:
• The present: The current state

• The next time points: The subsequent states

– Temporal (ordering in logic time) operators can be defined to
express the reachability properties

• Temporal logic:

– Formal language to express propositions qualified in terms of
logic time

– Typical temporal operators: „always”, „eventually”, „before”,
„until”, „after”, …

Temporal logics

• Linear time:
The subsequent states form a linear sequence
(each state has only one successor)
→ logic time forms a linear timeline

• Branching time:
The subsequent states form
a tree structure
(each state may have
multiple successors)
 → logic time forms branching timelines

s 2 s1 s 3

{Green} {Yellow} {Red}

s4

 {Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3 s3

{Red}

The computational tree

Computational tree:
Structure of the
potential successor
states

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s4

{Red, Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red, Yellow}

s5

{Blinking}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3

{Red}

Automaton (FSM)
with labelled
states

Quantifying paths and characterizing states

• Operators that quantify the paths starting
from a given state:

– A: for all paths from the given state

– E: for an existing path from the given state

• Operators that characterize states along
a given path:

– F: for a state along the path (“future”)

– G: for all states along the path (“globally”)

– X: for the next state from the initial state of the path (“next”)

– U: for states until reaching a specified state (“until”)
• E.g., Yellow U Red means states labeled with Yellow until reaching a

state labeled with Red

The Computational Tree Logic (CTL)

• Composite operators are formed

– First quantifying paths using operators A, E; then
characterizing states along the path by operators F, G, X, U

– Composite operators:
• For all paths: AF, AG, AX, A(. U .) ,

• For an existing path: EF, EG, EX, E(. U .)

– Examples:
• EF Red: There shall exist a path where a state with Red is reached

• AG Green: For all paths, all states shall be labeled with Green

• E(Yellow U Red): There shall exist a path where states are labeled
with Yellow until a state with label Red is reached

• Restricted version of CTL is used in UPPAAL

– AF, AG, EF, EG operators are used

Summary of temporal operators in UPPAAL

UPPAAL: and are Boolean expressions on clocks, variables and state names

Operator Informal semantics UPPAAL notation

AG For all paths,
for all states

A[]

AF For all paths,
for a state eventually

A<>

EG For an existing path,
for all states

E[]

EF For an existing path,
for a state eventually

E<>

AG(=> AF) After always -->

There is no deadlock AG not deadlock

Composite operators for all paths

AG : For all paths,
for all states is true

AG AF

 AF : For all paths,
for a state eventually
becomes true

Composite operators for an existing path

• Is there a relation between AG and EF?

• Is there a relation between AF and EG?

EG EF

EG : There exists a path,
where for all states is true

EF : There exists a path,
where for a state eventually
 becomes true

Conditional reachability

• AG(=> AF) = -->
For all paths, for all states: if is true then it implies that on all
paths eventually a state occurs in which becomes true

• Reachability with a timing condition: --> (and x <= t)
where x is a clock variable that is reset when becomes true

 -->

Examples: formalizing properties using temporal logic

Let us consider an air-conditioner with states labelled by the following propositions:

{Switched-off, Switched-on, Faulty, LightCooling, StrongCooling, Heating, Ventilating}

• These atomic propositions can be used in the formalized properties

• The reachability properties refer to the initial state of the system

• The behaviour of the air-conditioner may not be known when the properties are
formalized (the behavioural model shall be verified using these properties)

Examples for formalized properties:

• If the air-conditioner is faulty then it shall be eventually repaired:

 AG(Faulty => AF (Faulty)) or Faulty --> (Faulty)

• If the air-conditioner is faulty then it shall not heat:

 AG ((Faulty Heating))

• It shall be possible to eventually switch off the air-conditioner:
AF (Switched-off)

• The air-conditioner will eventually become faulty (Murphy’s law) :

 AF (Faulty)

Model checking

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

Temporal logic properties Timed automata model

The UPPAAL model checker

• Properties can be formalized using temporal logic

• Verification of the properties is automated

• Verification is performed by an exhaustive exploration
of the state space of the model

– Breadth-first, or depth-first search can be configured

• Diagnostic trace can be generated

– Counter-example (for safety properties) or witness (for
liveness properties)

– Shortest, fastest, or some (any) diagnostic trace can be
configured

– The diagnostic trace can be loaded into the simulator to
investigate and debug the behaviour

The UPPAAL model checker

Counter-example in the simulator

A case study

A solution for the mutual exclusion problem

• 2 processes, 3 shared variables (H. Hyman, 1966)
– blocked0: The first process (P0) wants to enter the critical section

– blocked1: The second process (P1) wants to enter the critical section

– turn: Which process will enter (P0 in case of 0, P1 in case of 1)

while (true) {

 blocked0 = true;

 while (turn!=0) {

 while (blocked1==true) {

 skip;

 }

 turn=0;

 }

 // Critical section

 blocked0 = false;

 // Do other things

}

while (true) {

 blocked1 = true;

 while (turn!=1) {

 while (blocked0==true) {

 skip;

 }

 turn=1;

 }

 // Critical section

 blocked1 = false;

 // Do other things

}

Is this algorithm correct?

P0 P1

Properties to be verified

• Mutual exclusion:

– Only one process may enter the critical section at the same
time

• It is possible to enter the critical section:

– P0 is able to enter the critical section

– P1 is able to enter the critical section

• There is no starvation:

– P0 will eventually enter the critical section on all paths

– P1 will eventually enter the critical section in all paths

• Freedom from deadlock:

– The two processes shall not stop executing

How can these properties be verified?

• Testing, but
– Is it easy to test each (interleaved) execution of the two processes?

– The properties have to be checked by a test oracle on the test traces

– Errors can be detected after an executable prototype of the algorithm

• Modeling and simulation, but
– Is it easy to simulate each (interleaved) execution of the two processes?

– The violation of properties have to be detected in the simulator

– Errors can be detected and corrected in the model before implementation

• Modeling and model checking
– The state space of the algorithm (each interleaved execution) is explored

– The violation of the formalized properties is checked automatically by the
model checker

• If the properties can be formalized as temporal logic formula then it is a
general method for verifying these on the model

The model in UPPAAL (first version)

Declarations:
 bool blocked0;
 bool blocked1;
 int[0,1] turn=0;
 system P0, P1;

The P0 automata:

Modeling techniques used:
• Global declaration of shared variables
• Limiting the range of variables

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

The model in UPPAAL (second version)

Declarations:
 int[0,1] blocked[2];
 int[0,1] turn;
 P0 = P(0);
 P1 = P(1);
 system P0,P1;

The P template with pid parameter:

Modeling techniques used:
• Global declaration of shared variables
• Limiting the range of variables
• The processes are instantiated using the

same template
• Instantiation with parameters (here: pid)
• Using arrays for variables (here: blocked)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

Formalizing properties in UPPAAL

• Mutual exclusion:
– Only one process may enter the critical section at the same time:

A[] not (P0.cs and P1.cs)

• Freedom from deadlock:
– The two processes shall not stop executing: A[] not deadlock

• It is possible to enter the critical section:
– P0 is able to enter the critical section: E<>(P0.cs)

– P1 is able to enter the critical section: E<>(P1.cs)

• There is no starvation:
– P0 will eventually enter the critical section on all paths: A<>(P0.cs)

– P0 will eventually enter the critical section on all paths: A<>(P1.cs)

Verifying the properties in UPPAAL

• There is no deadlock

• It is possible to enter the critical section
– Each process is able to enter the critical section

• Starvation cannot be checked without modelling time-
dependent behaviour
– Trivial counter-examples include “stopping” in any state

(that is not urgent and does not have a state invariant)

• The mutual exclusion property is not satisfied!
– The model checker produces a diagnostic trace (counter-example):

There is a specific interleaved behaviour in which both processes are in
the crirical section at the same time

– The counter-example can be investigated in the simulator

Correction of the algorithm

New algorithm by Peterson

• For process P0
(for P1 it is similar):

Peterson:

while (true) {

 blocked0 = true;

 turn=1;

 while (blocked1==true &&
 turn!=0) {

 skip;

 }

 // Critical section

 blocked0 = false;

 // Do other things

}

Hyman:

while (true) {

 blocked0 = true;

 while (turn!=0) {

 while (blocked1==true) {

 skip;

 }

 turn=0;

 }

 // Critical section

 blocked0 = false;

 // Do other things

}

Summary: Model checking in the lifecycle

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val. design

Properties

Models

Model checking
on the basis of

the source code

Summary: Properties of model checking

• Advantages:
– It offers a complete exploration of the state space of the model

– It is possible to check huge state spaces (in specific cases)

• 1020, or even 10100 states can be checked automatically

– There are fully automated tools, there is no need to perform manual
adjustment, mathematical operations, or heuristics

– Diagnostic trace is generated, which supports debugging and correction

• Problems:
– Scalability is limited (state space must fit to memory)

– Effective for control-oriented models

• Complex data structures result in huge state space

– It is not easy to generalize the results

• If a protocol is correct for 2 processes, is it correct for N processes as well?

– The formalization of properties is difficult

• There are different „temporal logic languages”

Source code synthesis

on the basis of a formal model

Application domain and the applied formalism

Embedded controllers:

• Event-driven, state based
behaviour

• Simple actions

• Distributed systems

• Communication

• Real-time behaviour

Timed automata:

• Finite state machine model
(states, transitions)

• Actions on variables

• Network of automata

• Synchronous communication

• Clock variables in guards

Wireless comm.

The concept of source code synthesis

Timed Automaton (formalism)

Formal syntax
(metamodel)

Formal semantics
(meaning)

Concrete model
representation

Source code
fragments

Platform-level
services

Code generator

Reads and
explores

Assembles Refers to

The concept of source code synthesis

Timed Automaton (formalism)

Formal syntax
(metamodel)

Formal semantics
(meaning)

Concrete model
representation

Source code
fragments

Platform-level
services

Code generator

Reads and
explores

Assembles Refers to

Template
based

source code
generation

The concept of source code synthesis

Timed Automaton (formalism)

Formal syntax
(metamodel)

Formal semantics
(meaning)

Concrete model
representation

Source code
fragments

Platform-level
services

Code generator

Reads and
explores

Assembles Refers to

Parameterization
of the code
generation

Automated application code synthesis

Source code
fragments

• Template based

• Java Emitter Templates

• Configurable

Platform-level
services

• Abstract service definitions

• Implemented for each platform

• Semantics-related services
• Communication

• Clock variables (timers)

• Extensions
• Logging

• Assertions

Mapping the model semantics to source code

Initialization

Entering function

Automaton-level State-level

Exit function

System loop

Waiting function

Mapping the model semantics to source code

Initialization

Entering function

Automaton-level State-level

Exit function

System loop

Waiting function

Continuous

operation

Updating state
variables

Setting state
functions

Waiting for
synchronization
Waiting for true

guards

Terminating of
the waiting
functions

Model representation

• Concrete model representation:
Eclipse Modelling Framework metamodel and model

Implementation of the code synthesis

• Template based source code synthesis:
Java Emitter Templates (JET)

– Java statements: Traversing the model

– Source code patterns: C

<% Executing Java statement %> <%= Writing the output of a Java statement %>

<%for (Location loc : template.getLocations()) { %>
 void enterToLocation<%= loc.getID() %> () {
 stateReg = <%= loc.getID() %>;
 waitFunc = &waitInLocation<%= loc.getID() %>;
 exitFunc = &exitFromLocation<%= loc.getID() %>;
 <%if (settings.getLoggingMode() == SettingsHandler.LoggingModes.OFFLINE) { %>
 offlineLogFunction(<%=loc.getID()%>, locationLog);
…

Source code generation in the Eclipse environment

Run-time monitoring and verification

• Verification after the development phase

• Formally specified system properties
allow automated construction of monitors

Application

Instrumentation

Monitor
Run-time

information

Formal model
System requirements

Automated
construction

Control flow checking

• Motivation: The majority of transient faults cause control flow
errors

Monitor synthesis

• Checking the run-time
sequence of states and
transitions

• Local monitor stores timed
automaton model as a
reference

• Monitor source code
generated automatically
from timed automaton model

Application instrumentation

• Each state and transition is
instrumented to send
information to the monitor

• State ID (signature)

• Transition ID

• Extensions:
• Checking timed invariants
• Detecting deadlock with

heartbeat messages

Instrumentation for control flow monitoring

Initialization

Automaton-level State-level

System loop

Waiting function

Instrumentation

Entering function

Instrumentation

Exit function

Sending
signature to the

monitor

Sending
signature

to the monitor

Hierarchical monitoring of temporal properties

Design-time verification Run-time verification

System-level
monitors

System
requirements

Model checking

Timed automaton
formal model

Local control flow
monitors

Instrumented
application

Code
generation

Instrumentation

Local monitor
synthesis

CTL monitor
synthesis

Time overhead of monitoring

Less than 12% overhead

Time overhead on mbed platform

Larger overhead on fast control
functions

(50.000 state changes)
(500.000 state changes)

0 s

10 s

20 s

30 s

40 s

50 s

60 s

Code skeleton only

No
instrumentation

Local monitoring

CTL monitoring

LSC monitoring

All0 s

10 s

20 s

30 s

40 s

50 s

60 s

With communication and
control functions

Code size overhead of monitoring

Code size overhead on mbed platform

 Less than 5% code overhead

99%

99%

100%

100%

101%

101%

102%

102%

103%

Code skeleton only With communication and
control functions

No instrumentation

Local monitoring

CTL monitoring

LSC monitoring

All

Summary of model based design and verification

• Formal modeling:

– Timed automata models

• Formalization of properties:

– Temporal logic

• Formal verification:

– Model checking

• Source code synthesis:

– Template based code generation from timed automata

• Monitor code synthesis:

– Runtime verification of the control flow

