
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Fault Tolerant Systems Research Group
Critical Embedded Systems

Formal modelling and verification in UPPAAL

Laboratory

András Vörös
Based on the document written by Dániel Darvas and Gergő Horányi

15. October 2013

BUTE DMIS FTSRG
Formal modeling and verification

2

1 Introduction

In this laboratory we are going to model a mutual exclusion protocol and verify the correctness.

1.1 Mutual exclusion protocol

We are going to model a mutual exclusion protocol, originally published in “Comments on a
problem in concurrent programming control, Communications of the ACM, v.9 n.1, p.45, Jan. 1966”.
Figure 1. depicts the original publication.

Figure 1. Original publication of the mutual exclusion algorithm

Mutual exclusion refers to the requirement of ensuring that no two processes or threads
(henceforth referred to only as processes) are in their critical section at the same time. Here, a
critical section refers to a period of time when the process accesses a shared resource.

What do You think, which are the important properties of a mutual exclusion protocol? Can You
verify them by inspecting the code above?

BUTE DMIS FTSRG
Formal modeling and verification

3

In the following let us use a more structured description (which is closer to recent programming
languages and easier to read and understand) of the protocol.

This is the working (code) of a participant:

turn=0, flag[0]=flag[1]=false;

Protocol (int id) {
 do {
 flag[id] = true ;
 while (turn != id) {
 while (flag[1-id]) /* do nothing */ ;
 turn = id;
 }
 CriticalSection(id);
 flag[id] = false;
 } while (true);
}

We are going to analyse a system containing 2 participants with id = 0 and id = 1.

In order to be able to analyse our system, we have to define the properties. What are the
requirements (failures) regarding a mutual exclusion protocol?

We are analysing the following properties:

 Race conditions: Is it possible that they access the shared resource incorrectly? Is it
possible that more than one process access the shared resource simultaneously
(more processes enter the critical section simultaneously)?

 Starvation: Is it possible that because the incorrect behaviour of the system, a
process will not get the resources?

 Deadlock: Is it possible that the system gets stuck in a state, and cannot continue its
working?

 Livelock: Is it possible that the system is working but do not proceed with its tasks?
(for example when two processes are calculating who can go to the critical section
but none of them enters)

What do You think: do these properties hold for our mutual exclusion protocol?

1.2 Creating the UPPAAL model

Read the UPPAAL introduction on the homepage of the course!

Design the UPPAAL model of the mutual exclusion protocol! What are the locations in your
protocol model? What are the transitions? Can you find a correspondence between the lines of
the source code and the locations/edges in the model?

BUTE DMIS FTSRG
Formal modeling and verification

4

1.2.1 Hint

The following figure (Figure 2.) depicts a possible skeleton of a process. The skeleton can be
completed in a way that You associate commands (line of code) to the edges of the skeleton.

The skeleton is parameterized: the parameter of the template (“Parameters”) is the pid (the
process id).

Figure 2. Skeleton of the mutual exclusion protocol

After finishing your model, examine the correctness of your model by inspection! Use the
simulator of the UPPAAL tool! Does your model behave as it is defined in the code?

2 Verification in UPPAAL

In order to verify our model of the mutual exclusion protocol, we have to overview the
verification process. In UPPAAL we can model, simulate and verify our systems. Verification
answers the questions we formalize about our system.

UPPAAL supports the so called CTL (Computation Tree Logic) temporal logic as a specification
language. With the help of CTL we can express properties and their evolution during the
behaviour of the system.

The structure of CTL expressions in UPPAAL is the following: «temporal operator» «logical
expression». Logical expressions are conditions of variables or clock variables, for example
money==10000, cl>0, and also expressions of locations like p1.CriticalSection. Temporal
operators are the following: A[], A<>, E[], E<>. In order to understand the semantics of
these operators we have to be familiar with the concept of computation tree.

The nodes of computation tree represent states (of the state space) and the edges represent the
possible state changes (transitions). The construction of the tree starts from the initial state of
the system, let be this the initial node . The next step is to search for the next states reachable
from the initial state in one step, these nodes are labelled by . After it, add all edges to
the graph, and continue this process for every . Note that if a state is reachable both from
states and , then there will be two nodes assigned to , the edges from and will not point
to the same node! It is also important to note that the depth of this tree is potentially infinite; it
is only finite if every branch reaches a deadlock state.

BUTE DMIS FTSRG
Formal modeling and verification

5

Let now consider a simple traffic signalling system and its states. the initial state is red, when
traffic is prohibited. From this state the system goes to red-yellow state, than it lets the traffic
pass as it becomes green. Yellow signal follows the green and finally we go into the red state. In
addition, from every state the signalling system can go to blinking yellow state. From this
blinking yellow state the signalling system can only go to red state: this way it has a safe
behaviour. First part of the computation tree of this signalling system is depicted on Figure 3.

Figure 3. Part of the computation tree of traffic signalling system

We are able to define the semantics (meaning) of the different temporal operators of UPPAAL:

 A[] « logical expression »: true, if the expression is true for every node in the
computation tree.

 A<> « logical expression »: true, if there is a state in every branch from initial state,
where the expression is true.

 E[] « logical expression »: true, if the expression is true in the whole trace starting from a
branch from the initial state.

 E<> « logical expression »: true, if at least one sequence from at least one branch which
contains a state where the expression is true.

The intuitive meaning of the different temporal operators is depicted on Figure 4. The states
coloured black are those which satisfy expression. Each computation tree satisfies the CTL
expression (above the tree).

A[] «expression» A<> «expression» E[] «expression» E<> «expression»

Figure 4. The intuitive meaning of the UPPAAL CTL operators

There are also two special operators:

 A[] not deadlock: true, if there is no deadlock in the system.
 «logical expression1» --> « logical expression2»: true, if after satisfying logical

expression1 the system goes eventually to a state (in every branch), where logical
expression2 is satisfied.

BUTE DMIS FTSRG
Formal modeling and verification

6

For example, the following specification requirement is a valid expression: A[] d1.money>=1000.
This property is true only if the system contains an instance d1 where the value of variable
money will never be less than 1000.

It is important to note that the expressions are not independent from each other, according the
rule of duality:

 ¬(A[]«logical expression ») = E<> ¬« logical expression »
 ¬(A<>« logical expression ») = E[] ¬« logical expression »

We can check the CTL specification expressions in UPPAAL in the Verifier module (tab). It can be
seen on Figure 5. We can define the temporal logic expressions in the Query textbox, which can
be checked by choosing the Check button. If the model satisfies the requirement, the circle next
to the expression (in the “Overview”) becomes green; if the specification does not hold, this circle
becomes red (and grey if the expression has not been evaluated yet).

Figure 5. UPPAAL Verifier

We can set at the menu at the tab of Options the Diagnostic trace from None to something else
(see Figure 6.) (for example Shortest), then the tool produces an example or a counterexample
for our specification, which can be seen in the Simulator view. It helps finding the problems with
our model, useful for debugging.

Figure 6. Setting the diagnostic trace

For the precise definition of the syntax of the expressions and for more examples we refer the
reader to [3].

BUTE DMIS FTSRG
Formal modeling and verification

7

Now, you can express your specification in UPPAAL! You can check whether the (system) model
contains the following problems: Race conditions, Starvation, Deadlock, Livelock. Design the
specification in the CTL language of UPPAAL and verify it!

References

[1] Gerd Behrmann, Alexandre David, and Kim G. Larse: A Tutorial on Uppaal 4.0
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

[2] UPPAAL2k: Small Tutorial
http://www.it.uu.se/research/group/darts/uppaal/tutorial.pdf

[3] Gerd Behrmann: Introduction to UPPAAL
http://people.cs.aau.dk/~srba/courses/SV-05/slides/l11.pdf

http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/uppaal/tutorial.pdf
http://people.cs.aau.dk/~srba/courses/SV-05/slides/l11.pdf

