
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Design of the architecture
of safety-critical systems

István Majzik, PhD

Dept. of Measurement and Information Systems

Objectives

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Detecting errors is a
 critical task

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Architectural solutions (overview)

Safety in case of single random hardware faults

Fault handling

Composite fail-safety Reactive fail-safety

• Each function is
 implemented by
 at least 2 independent
 components
• Agreement between
 the independent
 components is needed
 to continue the operation

• Each function is
 equipped with an
 independent
 error detection
• The effects of
 detected errors
 can be handled
 (compensated)

Inherent fail-safety

• All failure modes
 are safe
• „Inherent safe”
 system

Objectives for fault tolerant behaviour

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Detecting errors is a
 critical task

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fail-stop operation

1. Single channel architecture with built-in self-test

 Single processing flow

 Scheduled hardware self-tests
o After switch-on: Detailed self-test to detect

permanent faults

o In run-time: On-line tests to detect latent
permanent faults

 Scheduled software self-tests
o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

 Disadvantages:
o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the same channel

Implementation of on-line error detection

 Application dependent (ad-hoc) techniques
o Acceptance checking (e.g., for ranges of values)

o Timing related checking (e.g., too early, too late)

o Cross-checking (e.g., using inverse function)

o Structure checking (e.g., in linked list structure)

 Application independent (platform) mechanisms
o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MMU level: Protection of memory ranges

o OS level checking
• Invalid parameters of system calls

• OS level protection of resources

Example: Testing memory cells (hw)

States of a correct cell: State transitions to check stuck faults:

Stuck-at 0/1 faults:

Transition fault: „March” algorithms:

Example: Checking execution flow (sw)

 Checking the correctness of execution paths

o On the basis of the program control flow graph

o Actual run: Checked on the basis of assigned signatures

a: S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

 } else {

d: S(d); m=m-i;

 }

e: S(e); printf(“%d\n”,n);

 }

f: S(f); printf(“Ready.”)

Instrumented source code: Control flow graph (reference):

b

c

d

e

a

f

2. Two-channels architecture with comparison

 Two or more processing
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

 High error detection coverage

 The comparator is a critical
component (but simple)

 Special way of comparison:
o Performed by the operator

 Disadvantages:
o Common mode faults

o Long detection latency

=

stop n

Example: TI Hercules Safety Microcontrollers

3. Two-channels architecture with safety checking

 Independent second
channel
o „Safety bag”: only

safety checking
o Diverse implementation
o Checking the output of

the primary channel

 Example:
o Elektra railway

interlocking system
o Rules are implemented

to check the primary
channel

stop n

Example: Thales Elektra

Two channels:
 Logic channel:

CHILL (CCITT High
Level Language)
procedure-oriented
programming
language

 Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based language

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fault-tolerant systems

Objectives for fault tolerant behaviour

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Detecting errors is a
 critical task

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Fault tolerant systems

 Fault tolerance: Providing (safe) service in case of faults
o Autonomous error handling during operation (instead of stopping)

o Intervening into the fault failure chain

 Basic condition: Redundancy
Extra resources to replace faulty components
o Hardware

o Software

o Information

o Time

 Types of redundancy
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component has reduced load in fault-free case

o Hot: The redundant component is active in fault-free case

redundancy (sometimes together)

Forms of redundancy

1. Hardware redundancy
o Extra hardware components

• Inherent in the system or planned for fault tolerance

2. Software redundancy
o Extra software modules

3. Information redundancy
o Extra information

• Example: Error correcting codes (ECC)

4. Time redundancy
o Repeated execution (to handle transient faults)

How to use the redundancy?

 Hardware design faults: (< 1%)

o Hardware redundancy, with design diversity

o Often are neglected (wide-spread components are used)

 Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g., redundant processor)

 Hardware transient operational faults: (~ 70-80%)

o Time redundancy (e.g., instruction retry)

o Information redundancy (e.g., error correcting codes)

o Software redundancy (e.g., checkpointing and recovery)

 Software design faults: (~ 10%)

o Software redundancy, with design diversity

1. Fault tolerance for hardware permanent faults

Replication:

 Duplication with diagnostics:
o With comparison:

Error detection only!

o With diagnostic support:
Fault tolerance by switch-over

 TMR: Triple Modular Redundancy
o Masking the failure

by majority voting

o Voter is a critical component
(but simple)

 NMR: N-modular redundancy
o Masking the failure by majority voting

o Goal: Surviving a mission time with high probability (airborne systems)

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

 Output

Majority

Implementation of the replication

 Equipment/server level:

o Servers: High availability server clusters

• E.g., Linux HA Clustering, Windows Server Failover Clustering

o Software support: Failover and failback

 Board level:

o Run-time reconfiguration: “Hot-swap”

• E.g., CompactPCI, HDD, power supply

o Software support: monitoring, reconfiguration

 Component level:

o Replication of components: TMR

o Self-checking circuits (processing encoded information)

2. Fault tolerance for transient hardware faults

 Basic approach: Software supported fault tolerance

o Repeated execution will avoid transient faults

o The handling of fault effects is important

o Transient faults are handled by setting a fault-free state
and continuing the execution from that state (potentially
with repeated execution)

 Four phases of operation:

 1) Error detection

 2) Damage assessment

 3) Recovery

 4) Fault treatment and continuing service

The four phases of operation 1/4

1) Error detection:

 Application independent mechanisms:
o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

 Application dependent techniques:
o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o …

The four phases of operation 2/4

2) Damage assessment:
 Motivation: Errors can propagate among the components

between the occurrence and detection of errors

 Limiting error propagation: Checking interactions
o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

o Checking and logging resource accesses and communication

 Estimation of components affected by a detected error
o Analysis of interactions (during the latency of error detection)

! Fault Error detection
Interactions

The four phases of operation 3/4

3) Recovery from an erroneous state

 Forward recovery:

o Setting an error-free state by selective correction

o Dependent on the detected error and estimated damage

o Used in case of anticipated faults

 Backward recovery:

o Restoring a prior error-free state (saved earlier)

o Independent of the detected error and estimated damage

o State shall be saved and restored for each component

 Compensation:

o The error can be handled by using redundant information

Types of recovery

 State space of the system: Error detection

v2

v1 state variable

s(t)

! Error detection
Fault occurrence

Types of recovery

 State space of the system: Forward recovery

v2

v1 state variable

s(t)

!

Forward recovery

e1

e2

e3

Types of recovery

 State space of the system: Backward recovery

v2

v1 state variable

s(t)

!

Backward recovery

Saved state

Types of recovery

 State space of the system: Compensation

v2

v1 state variable

s(t)

!

Compensation

Types of recovery

 State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

e1

e2

e3

Compensation

Backward recovery

 Based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
• Saving the state: periodically, after messages; into stable storage

• Recovery: restoring the state from the stable storage to memory

• Discarding: after having more recent saved state(s)

o Analogy: “autosave”

 Based on operation logs
o Error to be handled: unintended operation

o Recovery is performed by the withdrawal of operations

o Analogy: ”undo”

 It is possible to combine the two mechanisms

Scenarios of backward recovery

t

!
t

!
t

!

t

The four phases of operation 4/4

4) Fault treatment and continuing service

 Transient faults:

o Handled by the forward or backward recovery

 Permanent faults:
Recovery becomes unsuccessful (the error is detected again)
The faulty component shall be localized and handled:

o Diagnostic checks to localize the fault

o Reconfiguration

• Fault tolerance: Replacing the faulty component using redundancy

• Degraded operation: Continuing only the safety related services

o Repair and substitution

4. Fault tolerance for software faults

 Repeated execution is not effective for design faults

 Redundancy with design diversity is required!

Variants: redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common failures

 Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

 Active redundancy:
Each variant is executed (in parallel)

o The same inputs are used

o Majority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a single point of failure

Variant 1

Variant 2

Variant 3

Voter
Output

Error
signal

Input

Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there
a variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Comparison of the techniques

Property/Type N-version prog. Recovery blocks

Error detection Majority voting,
relative

Acceptance
checking, absolute

Execution of variants Parallel Serial

Execution time Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always (active) Only in case of
fault (passive)

Tolerated faults [(N-1)/2] N-1

Fault handling Masking Recovery

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Summary

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components are used

2. Hardware permanent operational faults
o Replicated components are used: TMR, NMR

3. Hardware transient operational faults
o Software techniques for fault tolerance

1. Error detection

2. Damage assessment

3. Recovery: Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

Redundancy in resources and time
 Extra resources (%)

Extra time (s)
0.001 0.1 10 1000

TMR

100

10

N-version
programming

Error correcting
codes

Retry Reload Restart

Backward
recovery

Recovery
blocks

Backward
recovery in
distributed

Forward
recovery

systems

