The Safety Case

Structure of Safety Cases Safety Argument Notation

Budapest University of Technology and Economics Department of Measurement and Information Systems

The safety case

- Definition (core): The documented demonstration that the product complies with the safety requirements
- Role:
 - A safety case should communicate a comprehensive and defensible argument that a system is acceptably safe to operate in a particular context
 - Condition for safety acceptance and approval
- To be prepared by: Developers and/or operators
- To be accepted by: Safety authority and/or customer
- Principal elements:
 - Safety requirements (goals, objectives)
 - Arguments (relations)
 - o Evidences
 - Analysis results (e.g., FTA, FMEA)
 - Formal verification
 - Test results

2

Standard structure of a safety case

- Conditions for safety acceptance
 - Evidence of quality management
 - Evidence of safety management
 - Evidence of technical safety
- Structured presentation of evidence and arguments
- Example: EN50129 (railway)
 - Part 1: Definition of the system
 - Part 2: Quality management report
 - Part 3: Safety management report
 - Part 4: Technical safety report
 - Part 5: Related safety cases
 - Part 6: Conclusion

Quality related parts of the safety case

Part 2: Quality management report

 Minimize the incidence of human errors at each stages in the lifecycle: Reduce the risk of systematic faults

Part 3: Safety management report

- 1. Safety lifecycle: From requirements to validation
- 2. Safety organization: Roles and competence
- 3. Safety plan: Activities and approval milestones + review
- 4. Hazard log: Hazards + risks + risk control
- 5. Safety requirements
- 6. System design
- 7. Safety reviews
- 8. Safety verification and validation
- 9. Safety justification
- 10. System handover (to authority)
- 11. Operation and maintenance
- 12. Decommission and disposal

Technical parts of the safety case

Part 4: Technical safety report

- **1**. Introduction:
 - Summary of technical principles and standards
- 2. Assurance of correct functional operation
 - Architecture, interfaces, fulfillment of requirements, assurance of correct hardware and software behavior
- 3. Effects of faults
 - Random hardware faults: Quantified safety target
 - Detection, actions after detection, effects, independence, multiple faults
 - Systematic faults: Risk reduction
- 4. Operation with external influences
 - Demonstration of operability and safety
- 5. Safety-related application conditions
 - Rules, conditions, constraints
- 6. Safety qualification tests
 - Evidence to demonstrate completion

Safety argumentation

Communicating safety arguments

- Typical: Free text
 - Structured form (items, enumerations, references)
 - Complex arguments are difficult to describe
 - Review, management, tracking, coordination is difficult

- Graphical notation: Goal Structuring Notation
 - Elements of safety arguments
 - Relationships between the elements

Elements

- Goal: Objective, claim about the system
 - Compliance with requirements
 - Sufficient mitigation / avoidance of hazards
 - Without evidence it is unfounded!
- Strategy: Decomposition method
 - Derivation of sub-goals
- Evidence (solution)
 - Results of observation, analysis, test, simulation, ...
 - Fundamental information from which safety can be inferred
- Context
 - Context of demonstrating safety
- Assumption or Justification
 - Limits, conditions etc.
- Undeveloped goal
 - Further development is necessary

Relations

- "Is solved by"
 - Applied between goals, strategies, evidences
- "In context of"
 - Applied between contexts / assumptions / justifications and other elements

SolvedBy

InContextOf

Overview of safety argumentation

Source: T. Kelly

Evolution of the goal structure

Steps of safety case construction

Source: T. Kelly

Safety arguments for hardware

MÚEGYETEM 1782

Safety arguments for software

- Software SIL: Required techniques and measures form arguments and evidences
- Example: Guidelines followed for SIL4
 - Formal specification
 - Formal verification of functionality
 - Formal verification of timing

An example goal structure

Evidences: Test results, state machine analysis, fault tree analysis, directed testing

MÚEGYETEM 1782

Generic goal structure

MÚEGYETEM 1782

Safety case patterns

- Combines argumentation and patterning
 - Supports the re-use of successful argument approaches (best practice)
 - Focus on semantics rather than the syntax of the safety case
- GSN extensions to support capturing patterns
 - Multiplicity
 - Instantiation
 - Develop
 - Instantiation and develop
 - o Choice

Example of a GSN pattern

The Fault Tree pattern

How a fault tree analysis can be used as evidence

Fault Tree Evidence

The ALARP pattern

ALARP: As Low As Reasonably Practicable

- No intolerable risk
- All tolerable risks have reduced as low as reasonably practicable
- All remaining hazards have negligible risks

м Ú Е С У Е Т Е М

Modular safety cases

- Goal: Modular, compositional construction of safety cases (corresponding to system structure)
- Partitioning of modules
 - Vertical (hierarchical) partitioning
 - Claims of one argument are objectives of another
 - E.g., case split of system and software safety case
 - Horizontal partitioning
 - One argument providing the assumed context of another
 - E.g., "All system hazards have been identified" provides assumed context of an argument that "All identified system hazards have been sufficiently mitigated"
- Module interfaces
 - Dependency of objectives, evidence, context of other modules

Principle of safety case interface

8...8

Example of a modular safety case

8000084

м Ú Е С Ү Е Т Е М

Management of safety cases

м Ú Е С У Е Т Е М

Advantages and disadvantages of GSN

Advantages:

- Simple elements
 - Captures the elements most important to safety arguments
- Structured hierarchical breakdown
 - Method guidance exists
- Semantics well defined and understood (first order logic)
- Can be used at various stages of argument development
- Increasingly being adopted by companies
- Disadvantages:
 - Easy to read, harder to write ☺
 - Doesn't stop you writing bad arguments ☺

Other approaches

ASCAD: Adelard Safety Claims Arguments Data

o Claim: Claim Assertion to be proven • Argument: Claim Claim How evidence supports claim Argument Argument • Evidence: Required observation, **Evidence Evidence** analysis, test,

Generalization

Assurance cases

- Safety cases
- Security cases
- Dependability cases
- Definition
 - A documented body of evidence that provides a convincing and valid argument that a specified set of critical claims regarding a system's properties are adequately justified for a given application in a given environment
- Examples of using assurance cases
 - Security-critical applications: Based on Common Criteria
 - Medical devices: Based on ISO 14971

Supporting tools

- Adelard Safety Case Editor (ASCE)
 - Adelard, www.adelard.co.uk
 - Supports both GSN and ASCAD
- E-Safety Case
 - Praxis HIS, www.esafetycase.com
- GSN CaseMaker
 - ERA Technology, www.era.co.uk

- RCM2, www.iscade.co.uk
- ISIS
 - High Integrity Solutions, www.highintegritysolutions.com
- Freeware Visio Add-on
 - University of York, http://www.cs.york.ac.uk/~tpk/gsn/gsnaddoninstaller.zip

Summary

- Structure of safety cases
 - Evidence of quality management
 - Evidence of safety management
 - Evidence of technical safety
- Safety argumentation presented using the Goal Structuring Notation
 - Elements: Evidence, Strategy, Goal, Context
 - Patterns
 - Modular safety arguments
 - Maintenance of safety arguments
- Generalization: Assurance cases

