Critical Embedded Systems

Horváth Ákos, Majzik István, Bartha Tamás, Farkas Rebeka <u>ahorvath@mit.bme.hu</u> <u>bartha@mail.bme.hu</u>

Budapest University of Technology and Economics Department of Measurement and Information Systems

Fault Tolerant Systems Research Group

- Department of Measurement and Information Systems
 - Approx. 70 employees, 35 PhD students
 - Embedded Systems
 - Intelligent Systems
 - Fault Tolerant Systems (FTSRG) 24 person
- Software engineer, electrical engineer, medical engineer
- Basic courses (software engineering)
 - Digital systems
 - Operating systems
 - Artificial intelligence
 - Embedded systems
 - Formal methods
 - Measurement laboratory
- Specialization (software engineering)
 - Integrated intelligent systems (BSc)
 - Systems design (BSc)

Fault Tolerant Systems Research Group

- Lectures
 - Ákos Horváth
 - o Tamás Bartha
 - Rebeka Farkas
 - + invited speaker
 - (István Majzik)
- Labs:
 - Rebeka Farkas

Course structure

- Basics of Safety
 - Definitions
 - Requirements
- Techniques for verification and validation of safety
 - Formal methods
 - Hazard analysis
- Nuclear I&C safety and its requirements
 - Techniques, requirements and architectures
- Case studies
 - \circ Avionics
 - o Railway
 - o Nuclear

Planned course schedule

Semester week	Lecture date	Торіс
1	2020.09.09.	Course requirements, schedule, short overview
2	2020.09.16.	Safety-critical systems: introduction, basics
3	2020.09.23.	Sports day
4	2020.09.30.	
5	2020.10.07.	Safety-critical systems: 1st consultation
6	2020.10.14.	Reliability analysis (fault-tree analysis) practice
7	2020.10.21.	
8	2020.10.28.	Safety-critical systems: 2nd consultation
9	2020.11.04.	Nuclear I&C safety: introduction, basic terms, overview
10	2020.11.11.	Formal methods (UPPAAL) practice
11	2020.11.18.	
12	2020.11.25.	
13	2020.12.02.	Nuclear I&C safety: consultation
14	2020.12.09.	Student presentations (homework final step)

Requirements

"Self-processing of a relevant topic"

- Reading, understanding, and summarizing a scientific paper on safety
 - Presentation in 12+3 minutes
- Guidelines
 - Relevant to the course
 - You can provide your own selected publications or select from our list
 - (handout ~8. week, submission: 11. week)
- Homework
 - Application of formal methods for safety critical design
 - Handout: ~6th week, submission: 11 week.
- Oral exam
 - HW has a significant impact on the final grade (50%)
 - Extra assignments can be done during the semester for extra points
 - Materials: mainly the slides

Contact

Homepage

- Course material
- o <u>https://inf.mit.bme.hu/edu/courses/kbr</u>
 - May try out the Teams group for sharing the materials

Class:

- We will have consultation sessions related to the hand-out topics
 - Wednesday, I.L. 405, 10:15-12:00
 - Check the Teams Calendar

First group of topics: Safety in Design

- Safety Basics, Architectures and Hazard Analysis
 - Safety-critical systems: Basic definitions
 - Hazard, risk and safety
 - Safety integrity, Safety requirements
 - Dependability attributes, Threats to dependability
 - Means to improve dependability
 - Design of the architecture of safety-critical systems
 - Typical architectures for fault-tolerant systems
 - Hazard Analysis
 - Evaluation and estimation of reliability attributes

Second group of topics: Nuclear I&C Safety

- Nuclear Safety Basics
 - Introduction to Nuclear Safety
 - Nuclear power generation, inherent security, feedback
 - Comparison of Functional Safety (61508) and Nuclear Safety
 - Postulated initial events (PIE), design basis
 - Nuclear incidents, accidents INES scale
- Nuclear Power Plant Safety Basics
 - Construction Principles and Safety Features NPPs
 - Characteristics of nuclear power plants
 - Security objectives and basic defense strategies

Nuclear I&C Safety (cont.)

- Nuclear I&C Systems Basics
 - The role and characteristics of ICS in NPPs
 - Essential functions of the control systems of NPPs
 - Protection systems (in the Paks nuclear power plant)
 - Unit power control strategies, their characteristics
 - Typical architecture of the I&C systems of NPPs
- Nuclear I&C Systems Safety
 - The Principles of Nuclear Safety for I&C
 - Legal and regulatory background
 - Security categorization, security classification
 - Main principles of nuclear I&C design
 - Design for reliability of I&C systems important to safety

