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Objectives

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be 
stopped

• Detecting errors is a 
critical task

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation 
even in case of faults



Architectural solutions (overview)

▪ Safety in case of single random hardware faults

Fault handling

Composite fail-safety Reactive fail-safety

• Each function is 
implemented by 
at least 2 independent 
components

• Agreement between 
the independent 
components is needed 
to continue the operation

• Each function is
equipped with an 
independent 
error detection

• The effects of 
detected errors
can be handled
(compensated)

Inherent fail-safety

• All failure modes
are safe

• „Inherent safe”
system
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Typical architectures
for fail-stop operation



1. Single channel architecture 
with built-in self-test

▪ Single processing flow

▪ Scheduled hardware self-tests
o After switch-on: Detailed self-test to detect 

permanent faults

o In run-time: On-line tests to detect latent
permanent faults

▪ Scheduled software self-tests
o Typically application dependent techniques

o Checking the control flow, data acceptance 
rules, timeliness properties

▪ Disadvantages:
o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be 
performed by the same channel



Implementation of on-line error detection

▪ Application dependent (ad-hoc) techniques
o Acceptance checking (e.g., for ranges of values)

o Timing related checking (e.g., too early, too late)

o Cross-checking (e.g., using inverse function)

o Structure checking (e.g., in linked list structure)

▪ Application independent mechanisms
o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MMU level: Protection of memory ranges

o Generic architectural solutions
• Two-channel execution with comparison

• Two-channel execution with safety bag



Example: Testing memory cells

States of a correct cell: State transitions to check stuck faults:

Stuck-at 0/1 faults:

Transition fault: „March” algorithms:



Example: Software self-test

▪ Checking the correctness of execution paths

o On the basis of the program control flow graph

a:   for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

} else {

d: m=m-i;

}

e:        printf(“%d\n”,n);

}

f:   printf(“Ready.”)

Source code: Control flow graph:
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Example: Software self-test

▪ Checking the correctness of execution paths

o On the basis of the program control flow graph

o Actual run: Checked on the basis of assigned signatures

a:   S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

} else {

d: S(d); m=m-i;

}

e:        S(e); printf(“%d\n”,n);

}

f:   S(f); printf(“Ready.”)

Instrumented source code: Control flow graph (reference):
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2. Two-channels architecture with comparison

▪ Two or more processing 
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

▪ High error detection coverage

▪ The comparator is a critical 
component (but simple)

▪ Special way of comparison:
o Performed by the operator

▪ Disadvantages:
o Common mode faults

o Long detection latency

=

stopn



Example: TI Hercules Safety Microcontrollers



3. Two-channels architecture with safety bag

▪ Independent second 
channel
o „Safety bag”: only 

safety checking
o Diverse implementation
o Checking the output of 

the primary channel 

▪ Example: 
o Elektra railway 

interlocking system
o Rules are implemented 

to check the primary 
channel 

stopn



Example: Alcatel (Thales) Elektra

Two channels:
▪ Logic channel: 

CHILL (CCITT High 
Level Language) 
procedure-oriented 
programming 
language

▪ Safety channel: 
PAMELA (Pattern 
Matching Expert 
System Language) 
rule-based language
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Typical architectures
for fault-tolerant systems



Objectives for fault tolerant behaviour

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be 
stopped

• Detecting errors is a 
critical task

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required



Fault tolerant systems

▪ Fault tolerance: Providing (safe) service in case of faults
o Autonomous error handling during operation (instead of stopping)

o Intervening into the fault→ failure chain

▪ Basic condition: Redundancy
Extra resources to replace (the service of) faulty components
o Hardware

o Software

o Information

o Time

▪ Types of redundancy
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component has reduced load in fault-free case

o Hot: The redundant component is active in fault-free case

redundancy (sometimes joint appearance)



Forms of redundancy

1. Hardware redundancy
o Extra hardware components

• Inherent in distributed systems

• Planned for fault tolerance

2. Software redundancy
o Extra software modules

3. Information redundancy
o Extra information

• Example: Error correcting codes (ECC)

4. Time redundancy
o Repeated execution (to handle transient faults)



Example: Error detecting and correcting codes

▪ Error detecting codes (EDC): Only detection of errors

o Parity bit: Increasing the Hamming-distance, 1 bit error can be detected

o Checksum: Using in case of files, messages

▪ Error correcting codes (ECC): Identifying and correcting errors

o Higher Hamming distance: Errors can be corrected

• E.g.: (7,4) bit Hamming code: 1 bit error corrected, 1 or 2 bit errors detected

o Information blocks: More difficult codes are used

• E.g.: (255, 223) byte Reed-Solomon code: 16 byte errors can be corrected

▪ Limited error correction capability

o Information storage: In long time, more errors can occur than the number of 

errors that can be corrected by the applied codes

o Basic idea: Periodic reading, correcting and writing back the information

Encode
Transfer
Storage

Decode

4 data bits, 
3 redundant 
bits



How to use the redundancy?

▪ Hardware design faults: (< 1%)

o Hardware redundancy, with design diversity

o Often are neglected (wide-spread components are used)

▪ Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g., redundant processor)

▪ Hardware transient operational faults: (~ 70-80%)

o Time redundancy (e.g., instruction retry)

o Information redundancy (e.g., error correcting codes)

o Software redundancy (e.g., checkpointing and recovery)

▪ Software design faults: (~ 10%)

o Software redundancy, with design diversity



1. Fault tolerance for hardware permanent faults

Replication:

▪ Duplication:
o With comparison: 

Error detection only!

o With diagnostic support: 
Fault tolerance by switch-over

▪ TMR: Triple Modular Redundancy
o Masking the failure

by majority voting

o Voter is a critical component
(but simple)

▪ NMR: N-modular redundancy
o Masking the failure by majority voting

o Goal: Surviving a mission time with high probability

o Airborne and space systems: 4MR, 5MR

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

OutputMajority



Implementation of the replication

▪ Equipment/server level:

o Servers: High availability server clusters

• E.g., Linux HA Clustering, Windows Server Failover Clustering

o Software support: Failover and failback

▪ Board level:

o Run-time reconfiguration: “Hot-swap”

• E.g., CompactPCI, HDD, power supply

o Software support: monitoring, reconfiguration

▪ Component level:

o Replication of components: TMR

o Self-checking circuits (processing encoded information)



Example:
RAID disk 
configura-
tions

(Redundant
Array of
Independent
Disks)

RAID-1: Mirroring (duplicated disks)

RAID-2: Bit-level ECC (error correcting codes)

RAID-3: Bit-level parity (assumption: faulty disk is identified)

RAID-4: Block-level parity (to improve performance)

RAID-5: Block-level parity (to avoid bottleneck of the parity disk)



2. Fault tolerance for transient hardware faults

▪ Basic approach: Software supported fault tolerance

o Repeated execution will avoid transient faults

o The handling of fault effects is important

o Transient faults are handled by setting a fault-free state 
and continuing the execution from that state (potentially 
with repeated execution)

▪ Four phases of operation:

1)  Error detection

2)  Damage assessment

3)  Recovery

4)  Fault treatment and continuing service



The four phases of operation 1/4

1)  Error detection:

▪ Application independent mechanisms:
o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

▪ Application dependent techniques:
o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o …



The four phases of operation 2/4

2) Damage assessment:
▪ Motivation: Errors can propagate among the components 

between the occurrence and detection of errors

▪ Limiting error propagation: Checking interactions
o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

o Checking and logging resource accesses and communication

▪ Estimation of components affected by a detected error
o Analysis of interactions (during the latency of error detection)

!Fault Error detection
Interactions



The four phases of operation 3/4

3)  Recovery from an erroneous state

▪ Forward recovery:

o Setting an error-free state by selective correction

o Dependent on the detected error and estimated damage

o Used in case of anticipated faults

▪ Backward recovery:

o Restoring a prior error-free state (saved earlier)

o Independent of the detected error and estimated damage

o State shall be saved and restored for each component

▪ Compensation: 

o The error can be handled by using redundant information



Types of recovery

▪ State space of the system (example): Error 
detection

v2

v1 state variable

s(t)

! Error detection
Fault occurrence



Types of recovery

▪ State space of the system: Forward recovery

v2

v1 state variable

s(t)

!

Forward recovery

e1

e2

e3



Types of recovery

▪ State space of the system: Backward recovery

v2

v1 state variable

s(t)

!

Backward recovery

Saved state



Types of recovery

▪ State space of the system: Compensation

v2

v1 state variable

s(t)

!

Compensation



Types of recovery

▪ State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

e1

e2

e3

Compensation



Backward recovery

▪ Based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
• Saving the state: periodically, after messages; into stable storage

• Recovery: restoring the state from the stable storage to memory

• Discarding: after having more recent saved state(s)

o Analogy: “autosave”

▪ Based on operation logs
o Error to be handled: unintended operation

o Recovery is performed by the withdrawal of operations

o Analogy: ”undo”

▪ It is possible to combine the two mechanisms



Scenarios of backward recovery

t

!
t

!
t

!

t



Checkpoint intervals

Aspects of optimizing checkpoint intervals:

▪ Stable storage is slow (-> overhead) and has limited capacity

▪ Computation is lost after the last checkpoint

▪ Long error detection latency increases the chance of damaged 
checkpoints

t

a1 b1 c1 a2 b2 c2! …



The four phases of operation 4/4

4)  Fault treatment and continuing service

▪ Transient faults:

o Handled by the forward or backward recovery

▪ Permanent faults:
Recovery becomes unsuccessful (the error is detected again)
The faulty component shall be localized and handled:

o Diagnostic checks to localize the fault

o Reconfiguration

• Fault tolerance: Replacing the faulty component using redundancy

• Degraded operation: Continuing only the safety related services

o Repair and substitution



4. Fault tolerance for software faults

▪ Repeated execution is not effective for design faults

▪ Redundancy with design diversity is required!

Variants: redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common failures

▪ Execution of variants:

o N-version programming

o Recovery blocks



N-version programming

▪ Active redundancy: 
Each variant is executed (in parallel)

o The same inputs are used

oMajority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a single point of failure

Variant 1

Variant 2

Variant 3

Voter

Output

Error
signal

Input



Recovery blocks
▪ Passive redundancy: Activation only in case of faults

o The primary variant is executed first
o Acceptance checking performed on the output of the 

variants
o In case of a detected error another variant is executed

Execution of
a variant

Acceptance
checking

y n

Output

Input



Recovery blocks

Execution of
a variant

Acceptance
checking

Is there 
a variant?

y n n y

Output Error signal

Input

▪ Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking performed on the output of the 

variants
o In case of a detected error another variant is executed



Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there 
a variant?

y n n y

Output Error signal

Input

▪ Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking performed on the output of the 

variants
o In case of a detected error another variant is executed



Comparison of the techniques

Property/Type N-version prog. Recovery blocks

Error detection Majority voting,
relative

Acceptance 
checking, absolute

Execution of variants Parallel Serial

Execution time Slowest variant
(or time-out)

Depending on the 
number of faults

Activation of 
redundancy

Always (active) Only in case of 
fault (passive)

Tolerated faults [(N-1)/2] N-1

Fault handling Masking Recovery



Example: Airbus A-320, self-checking blocks

▪ Pair-wise self-checking execution

▪ Primary pair is active, switch-over in case of a fault

▪ Permanent hardware fault: 
The pair with repeatedly detected fault will switch off

V1 V2

H H

V3 V4

H H
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Redundancy in space (resources) and time
„Space” redundancy (%)

Time redundancy (s)
0.001 0.1 10 1000

TMR

100

10

N-version
programming

Error correcting
codes

Retry Reload Restart

Backward
recovery

Recovery
blocks

Backward
recovery in
distributed

Forward
recovery

systems



Costs of redundancy and operation (faults)

Costs of operation

Costs of redundancy

Sum of costs

Level of 
redundancy

Costs

optimum



Summary: Types of redundancy

1. Hardware redundancy
o Replicas are used to tolerate permanent faults

2. Software redundancy
o Variants (NVP, RB) are used to tolerate design faults
o Software is used to tolerate transient hardware faults:

• Forward recovery
• Backward recovery

3. Information redundancy
o Faults in information storage and transfer are 

corrected by error correcting codes

4. Time redundancy
o Repeated execution is used in case of transient faults



Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components are used

2. Hardware permanent operational faults
o Replicated components are used

3. Hardware transient operational faults
o Software techniques for fault tolerance

1. Error detection

2. Damage assessment

3. Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution

4. Software design faults
o Variants as diverse redundant components (NVP, RB)



Example: The SAFEDMI Safe Driver-Machine Interface

EVC
European
Vital
Computer
on board 

Train driver 

Maintenance Centre 

DMI

Distinguishing features of the DMI:

▪ Safety Integrity Level 2
o Visualization of information

o Processing driver’s commands

o Data transfer to EVC

▪ Safe wireless communication
o Configuration

o Diagnostics

o Software uploading



Example: The SAFEDMI hardware architecture

▪ Single electronic structure based on reactive fail-safety

▪ Generic (off-the-shelf) hardware components are used

▪ Most of the safety mechanisms are based on software 
(error detection and error handling)

 

LCD DISPLAY 

 

 

SAFE DMI 

EXCLUSION LOGIC 
LCD  
lamp 

Vcc 

……… 

Keyboard 

 

Speaker 

ERTMS TRAINBORNE 

SYSTEMS 

commercial field bus 

wireless  
interface 



Example: The SAFEDMI hardware architecture

Hardware components:

LCD

matrix

CPU

ROMRAM

Audio

Controller

Graphic

Controller

Keyboard

Controller

Keyboard

Speaker
Video

Pages

Thermometer

Cabin

Identifier

bus

Bus

Controller

Log

Device

Device to

communicate with

EVC

Device to

communicate with

BD

LCD

lamps

Flash

audio

LCD lamps

Controller

Watch

dog
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Example: The SAFEDMI fault handling

▪ Operational modes:
o Startup, Normal, Configuration and Safe modes

o Suspect state to implement controlled 
restart/stop after an error



Example: The SAFEDMI error detection techniques

▪ Startup: Detection of permanent hardware faults
o CPU testing with external watchdog circuit

o Memory testing with marching algorithms

o EPROM integrity checking with error detection codes

o Device (peripherals) testing with the help of the drives

▪ Normal/Configuration: Periodic and on-line 
checking
o Scheduled self-tests for hardware

o Communication and configuration functions: 
Data acceptance / credibility checks, error detection codes

o Control related functions: 
Control flow monitoring, time-out checking, acknowledgements

o Data related functions: 
Duplicated computation and comparison



Software architecture design in standards

▪ IEC 61508:
Functional 
safety in 
electrical / 
electronic / 
programmable 
electronic 
safety-related 
systems

▪ Software 
architecture 
design



Example: SCADA system

▪ Supervisory Control and Data Acquisition

A+

I/O

HMI

A -

Sensors and actuators



Example: SCADA system architecture

▪ Two channels

▪ Alternating bitmap 
visualization from the 
two channels: 
Comparison by the 
operator

▪ Synchronization: 
Detection of internal 
errors before the effects 
reach the outputs

Syncron

Communication 

protocol

Input

Database

Control

GUI

Channel 1 Channel 2

Communication 

protocol

Control

Database

Input
Syncron

Pict BPict A

I/O



Example: SCADA deployment options

▪ Two channels on the same server
o Statically linked software modules
o Independent execution in memory, disk and time
o Diverse data representation

• Binary data (signals): Inverse representation (original/negated)
• Diverse indexing in the technology database

▪ Two channels on two servers
o Synchronization on 

dedicated network

▪ Increasing availability
by redundancy:
o Restarting
o Two „2-out-of-2” scheme

A+

I/O

A- B+

I/O

B-



Example: SCADA error detection techniques

For random hardware faults during operation:

▪ Comparison of channels: Operator and I/O circuits
o Heartbeat: Blinking RGB-BGR symbols indicate the regular update of the 

bitmap on the screen

▪ Watchdog process
o Checking the availability of the other processes

▪ Regular comparison of the content of the technology database 
o Detecting latent errors

For unintended control by the operator:

▪ Three-phased control of outputs:
o Preparation (but locking the outputs using diverse software modules) 

o Read-back using independent software modules

o Acknowledgement by the operator (diverse GUI operations)



Example: SCADA three phases of control

Channel 1

I/O

locking locking

Channel 2

1

2

3

1
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Example: User configured checkpointing

Challenges

▪ Storing checkpoints

▪ Saving and restoring the state of components
o E.g., how to save/restore CPU state?

▪ Optimizing performance
o Reliability and small overhead <-> costs of checkpointing

o Parameters: Length of checkpoint intervals, number of checkpoints, 
reliability of the checkpoint storage

CPU Memory Disk
External
storage

Remote
server

RAID,
NAS



Example: User configured checkpointing

▪ Declaration of a checkpoint vector:
struct Cpt_vec {

char *base;

int len;

} cpt_vec[MAX_VARS];

int cpt_cnt;

▪ Declaration of a checkpoint file:
static FILE *cpt_fd; 



Example: User configured checkpointing

▪ Program data to be saved (example):
int i; 

int results[DIM][DIM];

▪ Initialization of the checkpoint vector:
cpt_cnt = 2;

cpt_vec[0].base = (char *)results;

cpt_vec[0].len = sizeof(int [DIM][DIM]);

cpt_vec[1].base = (char *)&i;

cpt_vec[1].len  = sizeof(int);



Example: User configured checkpointing

▪ Saving the checkpoint:
fwrite((char *)&cpt_cnt,

sizeof(int),

1, cpt_fd);

fwrite((char *)cpt_vec,

cpt_cnt*sizeof(struct Cpt_vec),

1, cpt_fd);

for (i=0; i<cpt_cnt; i++) {

fwrite(cpt_vec[i].base,

cpt_vec[i].len,

1, cpt_fd);

}

▪ Restoring the heckpoint:
o Similarly, using the fread() system call



Example: Saving the state of the CPU

▪ The setjmp() and longjmp() system calls can be used
o Generic „go to” by saving and restoring CPU state

▪ After longjmp() the execution is continued in the 
same way as if after the return from the last 
corresponding setjmp() system call
o The return value is the second parameter of the 
longjmp() system call

o Saving and restoring checkpoints can be distinguished:
• Successful saving of checkpoint: 0 return value

• Restoring checkpoint: the second parameter as the return value

▪ Similar system calls with saving the signal mask:
o sigsetjmp(), siglongjmp()



Example: Saving the state of the CPU

▪ Recording the CPU state:
jmp_buf st;

setjmp(st);

▪ Saving the recorded CPU state:
fwrite((char *)st, 

sizeof(jmp_buf), 1, cpt_fd);

▪ Reading the saved CPU state:
fread((char *)st, 

sizeof(jmp_buf), 1, cpt_fd);

▪ Restoring the saved state:
longjmp(st, 2);


