
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Design of the architecture
of safety-critical systems

Ákos Horváth, PhD

Based on István Majzik’s slides
Dept. of Measurement and Information Systems

Objectives

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Detecting errors is a
critical task

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Architectural solutions (overview)

▪ Safety in case of single random hardware faults

Fault handling

Composite fail-safety Reactive fail-safety

• Each function is
implemented by
at least 2 independent
components

• Agreement between
the independent
components is needed
to continue the operation

• Each function is
equipped with an
independent
error detection

• The effects of
detected errors
can be handled
(compensated)

Inherent fail-safety

• All failure modes
are safe

• „Inherent safe”
system

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fail-stop operation

1. Single channel architecture
with built-in self-test

▪ Single processing flow

▪ Scheduled hardware self-tests
o After switch-on: Detailed self-test to detect

permanent faults

o In run-time: On-line tests to detect latent
permanent faults

▪ Scheduled software self-tests
o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

▪ Disadvantages:
o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the same channel

Implementation of on-line error detection

▪ Application dependent (ad-hoc) techniques
o Acceptance checking (e.g., for ranges of values)

o Timing related checking (e.g., too early, too late)

o Cross-checking (e.g., using inverse function)

o Structure checking (e.g., in linked list structure)

▪ Application independent mechanisms
o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MMU level: Protection of memory ranges

o Generic architectural solutions
• Two-channel execution with comparison

• Two-channel execution with safety bag

Example: Testing memory cells

States of a correct cell: State transitions to check stuck faults:

Stuck-at 0/1 faults:

Transition fault: „March” algorithms:

Example: Software self-test

▪ Checking the correctness of execution paths

o On the basis of the program control flow graph

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

} else {

d: m=m-i;

}

e: printf(“%d\n”,n);

}

f: printf(“Ready.”)

Source code: Control flow graph:

b

c

d

e

a

f

Example: Software self-test

▪ Checking the correctness of execution paths

o On the basis of the program control flow graph

o Actual run: Checked on the basis of assigned signatures

a: S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

} else {

d: S(d); m=m-i;

}

e: S(e); printf(“%d\n”,n);

}

f: S(f); printf(“Ready.”)

Instrumented source code: Control flow graph (reference):

b

c

d

e

a

f

2. Two-channels architecture with comparison

▪ Two or more processing
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

▪ High error detection coverage

▪ The comparator is a critical
component (but simple)

▪ Special way of comparison:
o Performed by the operator

▪ Disadvantages:
o Common mode faults

o Long detection latency

=

stopn

Example: TI Hercules Safety Microcontrollers

3. Two-channels architecture with safety bag

▪ Independent second
channel
o „Safety bag”: only

safety checking
o Diverse implementation
o Checking the output of

the primary channel

▪ Example:
o Elektra railway

interlocking system
o Rules are implemented

to check the primary
channel

stopn

Example: Alcatel (Thales) Elektra

Two channels:
▪ Logic channel:

CHILL (CCITT High
Level Language)
procedure-oriented
programming
language

▪ Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based language

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fault-tolerant systems

Objectives for fault tolerant behaviour

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Detecting errors is a
critical task

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Fault tolerant systems

▪ Fault tolerance: Providing (safe) service in case of faults
o Autonomous error handling during operation (instead of stopping)

o Intervening into the fault→ failure chain

▪ Basic condition: Redundancy
Extra resources to replace (the service of) faulty components
o Hardware

o Software

o Information

o Time

▪ Types of redundancy
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component has reduced load in fault-free case

o Hot: The redundant component is active in fault-free case

redundancy (sometimes joint appearance)

Forms of redundancy

1. Hardware redundancy
o Extra hardware components

• Inherent in distributed systems

• Planned for fault tolerance

2. Software redundancy
o Extra software modules

3. Information redundancy
o Extra information

• Example: Error correcting codes (ECC)

4. Time redundancy
o Repeated execution (to handle transient faults)

Example: Error detecting and correcting codes

▪ Error detecting codes (EDC): Only detection of errors

o Parity bit: Increasing the Hamming-distance, 1 bit error can be detected

o Checksum: Using in case of files, messages

▪ Error correcting codes (ECC): Identifying and correcting errors

o Higher Hamming distance: Errors can be corrected

• E.g.: (7,4) bit Hamming code: 1 bit error corrected, 1 or 2 bit errors detected

o Information blocks: More difficult codes are used

• E.g.: (255, 223) byte Reed-Solomon code: 16 byte errors can be corrected

▪ Limited error correction capability

o Information storage: In long time, more errors can occur than the number of

errors that can be corrected by the applied codes

o Basic idea: Periodic reading, correcting and writing back the information

Encode
Transfer
Storage

Decode

4 data bits,
3 redundant
bits

How to use the redundancy?

▪ Hardware design faults: (< 1%)

o Hardware redundancy, with design diversity

o Often are neglected (wide-spread components are used)

▪ Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g., redundant processor)

▪ Hardware transient operational faults: (~ 70-80%)

o Time redundancy (e.g., instruction retry)

o Information redundancy (e.g., error correcting codes)

o Software redundancy (e.g., checkpointing and recovery)

▪ Software design faults: (~ 10%)

o Software redundancy, with design diversity

1. Fault tolerance for hardware permanent faults

Replication:

▪ Duplication:
o With comparison:

Error detection only!

o With diagnostic support:
Fault tolerance by switch-over

▪ TMR: Triple Modular Redundancy
o Masking the failure

by majority voting

o Voter is a critical component
(but simple)

▪ NMR: N-modular redundancy
o Masking the failure by majority voting

o Goal: Surviving a mission time with high probability

o Airborne and space systems: 4MR, 5MR

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

OutputMajority

Implementation of the replication

▪ Equipment/server level:

o Servers: High availability server clusters

• E.g., Linux HA Clustering, Windows Server Failover Clustering

o Software support: Failover and failback

▪ Board level:

o Run-time reconfiguration: “Hot-swap”

• E.g., CompactPCI, HDD, power supply

o Software support: monitoring, reconfiguration

▪ Component level:

o Replication of components: TMR

o Self-checking circuits (processing encoded information)

Example:
RAID disk
configura-
tions

(Redundant
Array of
Independent
Disks)

RAID-1: Mirroring (duplicated disks)

RAID-2: Bit-level ECC (error correcting codes)

RAID-3: Bit-level parity (assumption: faulty disk is identified)

RAID-4: Block-level parity (to improve performance)

RAID-5: Block-level parity (to avoid bottleneck of the parity disk)

2. Fault tolerance for transient hardware faults

▪ Basic approach: Software supported fault tolerance

o Repeated execution will avoid transient faults

o The handling of fault effects is important

o Transient faults are handled by setting a fault-free state
and continuing the execution from that state (potentially
with repeated execution)

▪ Four phases of operation:

1) Error detection

2) Damage assessment

3) Recovery

4) Fault treatment and continuing service

The four phases of operation 1/4

1) Error detection:

▪ Application independent mechanisms:
o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

▪ Application dependent techniques:
o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o …

The four phases of operation 2/4

2) Damage assessment:
▪ Motivation: Errors can propagate among the components

between the occurrence and detection of errors

▪ Limiting error propagation: Checking interactions
o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

o Checking and logging resource accesses and communication

▪ Estimation of components affected by a detected error
o Analysis of interactions (during the latency of error detection)

!Fault Error detection
Interactions

The four phases of operation 3/4

3) Recovery from an erroneous state

▪ Forward recovery:

o Setting an error-free state by selective correction

o Dependent on the detected error and estimated damage

o Used in case of anticipated faults

▪ Backward recovery:

o Restoring a prior error-free state (saved earlier)

o Independent of the detected error and estimated damage

o State shall be saved and restored for each component

▪ Compensation:

o The error can be handled by using redundant information

Types of recovery

▪ State space of the system (example): Error
detection

v2

v1 state variable

s(t)

! Error detection
Fault occurrence

Types of recovery

▪ State space of the system: Forward recovery

v2

v1 state variable

s(t)

!

Forward recovery

e1

e2

e3

Types of recovery

▪ State space of the system: Backward recovery

v2

v1 state variable

s(t)

!

Backward recovery

Saved state

Types of recovery

▪ State space of the system: Compensation

v2

v1 state variable

s(t)

!

Compensation

Types of recovery

▪ State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

e1

e2

e3

Compensation

Backward recovery

▪ Based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
• Saving the state: periodically, after messages; into stable storage

• Recovery: restoring the state from the stable storage to memory

• Discarding: after having more recent saved state(s)

o Analogy: “autosave”

▪ Based on operation logs
o Error to be handled: unintended operation

o Recovery is performed by the withdrawal of operations

o Analogy: ”undo”

▪ It is possible to combine the two mechanisms

Scenarios of backward recovery

t

!
t

!
t

!

t

Checkpoint intervals

Aspects of optimizing checkpoint intervals:

▪ Stable storage is slow (-> overhead) and has limited capacity

▪ Computation is lost after the last checkpoint

▪ Long error detection latency increases the chance of damaged
checkpoints

t

a1 b1 c1 a2 b2 c2! …

The four phases of operation 4/4

4) Fault treatment and continuing service

▪ Transient faults:

o Handled by the forward or backward recovery

▪ Permanent faults:
Recovery becomes unsuccessful (the error is detected again)
The faulty component shall be localized and handled:

o Diagnostic checks to localize the fault

o Reconfiguration

• Fault tolerance: Replacing the faulty component using redundancy

• Degraded operation: Continuing only the safety related services

o Repair and substitution

4. Fault tolerance for software faults

▪ Repeated execution is not effective for design faults

▪ Redundancy with design diversity is required!

Variants: redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common failures

▪ Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

▪ Active redundancy:
Each variant is executed (in parallel)

o The same inputs are used

oMajority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a single point of failure

Variant 1

Variant 2

Variant 3

Voter

Output

Error
signal

Input

Recovery blocks
▪ Passive redundancy: Activation only in case of faults

o The primary variant is executed first
o Acceptance checking performed on the output of the

variants
o In case of a detected error another variant is executed

Execution of
a variant

Acceptance
checking

y n

Output

Input

Recovery blocks

Execution of
a variant

Acceptance
checking

Is there
a variant?

y n n y

Output Error signal

Input

▪ Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking performed on the output of the

variants
o In case of a detected error another variant is executed

Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there
a variant?

y n n y

Output Error signal

Input

▪ Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking performed on the output of the

variants
o In case of a detected error another variant is executed

Comparison of the techniques

Property/Type N-version prog. Recovery blocks

Error detection Majority voting,
relative

Acceptance
checking, absolute

Execution of variants Parallel Serial

Execution time Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always (active) Only in case of
fault (passive)

Tolerated faults [(N-1)/2] N-1

Fault handling Masking Recovery

Example: Airbus A-320, self-checking blocks

▪ Pair-wise self-checking execution

▪ Primary pair is active, switch-over in case of a fault

▪ Permanent hardware fault:
The pair with repeatedly detected fault will switch off

V1 V2

H H

V3 V4

H H

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Summary

Redundancy in space (resources) and time
„Space” redundancy (%)

Time redundancy (s)
0.001 0.1 10 1000

TMR

100

10

N-version
programming

Error correcting
codes

Retry Reload Restart

Backward
recovery

Recovery
blocks

Backward
recovery in
distributed

Forward
recovery

systems

Costs of redundancy and operation (faults)

Costs of operation

Costs of redundancy

Sum of costs

Level of
redundancy

Costs

optimum

Summary: Types of redundancy

1. Hardware redundancy
o Replicas are used to tolerate permanent faults

2. Software redundancy
o Variants (NVP, RB) are used to tolerate design faults
o Software is used to tolerate transient hardware faults:

• Forward recovery
• Backward recovery

3. Information redundancy
o Faults in information storage and transfer are

corrected by error correcting codes

4. Time redundancy
o Repeated execution is used in case of transient faults

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components are used

2. Hardware permanent operational faults
o Replicated components are used

3. Hardware transient operational faults
o Software techniques for fault tolerance

1. Error detection

2. Damage assessment

3. Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

Example: The SAFEDMI Safe Driver-Machine Interface

EVC
European
Vital
Computer
on board

Train driver

Maintenance Centre

DMI

Distinguishing features of the DMI:

▪ Safety Integrity Level 2
o Visualization of information

o Processing driver’s commands

o Data transfer to EVC

▪ Safe wireless communication
o Configuration

o Diagnostics

o Software uploading

Example: The SAFEDMI hardware architecture

▪ Single electronic structure based on reactive fail-safety

▪ Generic (off-the-shelf) hardware components are used

▪ Most of the safety mechanisms are based on software
(error detection and error handling)

LCD DISPLAY

SAFE DMI

EXCLUSION LOGIC
LCD
lamp

Vcc

………

Keyboard

Speaker

ERTMS TRAINBORNE

SYSTEMS

commercial field bus

wireless
interface

Example: The SAFEDMI hardware architecture

Hardware components:

LCD

matrix

CPU

ROMRAM

Audio

Controller

Graphic

Controller

Keyboard

Controller

Keyboard

Speaker
Video

Pages

Thermometer

Cabin

Identifier

bus

Bus

Controller

Log

Device

Device to

communicate with

EVC

Device to

communicate with

BD

LCD

lamps

Flash

audio

LCD lamps

Controller

Watch

dog

LCD

matrix

CPU

ROMRAM

Audio

Controller

Graphic

Controller

Keyboard

Controller

Keyboard

Speaker
Video

Pages

Thermometer

Cabin

Identifier

Cabin

Identifier

bus

Bus

Controller

Log

Device

Device to

communicate with

EVC

Device to

communicate with

BD

LCD

lamps

Flash

audio

LCD lamps

Controller

Watch

dog

Example: The SAFEDMI fault handling

▪ Operational modes:
o Startup, Normal, Configuration and Safe modes

o Suspect state to implement controlled
restart/stop after an error

Example: The SAFEDMI error detection techniques

▪ Startup: Detection of permanent hardware faults
o CPU testing with external watchdog circuit

o Memory testing with marching algorithms

o EPROM integrity checking with error detection codes

o Device (peripherals) testing with the help of the drives

▪ Normal/Configuration: Periodic and on-line
checking
o Scheduled self-tests for hardware

o Communication and configuration functions:
Data acceptance / credibility checks, error detection codes

o Control related functions:
Control flow monitoring, time-out checking, acknowledgements

o Data related functions:
Duplicated computation and comparison

Software architecture design in standards

▪ IEC 61508:
Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

▪ Software
architecture
design

Example: SCADA system

▪ Supervisory Control and Data Acquisition

A+

I/O

HMI

A -

Sensors and actuators

Example: SCADA system architecture

▪ Two channels

▪ Alternating bitmap
visualization from the
two channels:
Comparison by the
operator

▪ Synchronization:
Detection of internal
errors before the effects
reach the outputs

Syncron

Communication

protocol

Input

Database

Control

GUI

Channel 1 Channel 2

Communication

protocol

Control

Database

Input
Syncron

Pict BPict A

I/O

Example: SCADA deployment options

▪ Two channels on the same server
o Statically linked software modules
o Independent execution in memory, disk and time
o Diverse data representation

• Binary data (signals): Inverse representation (original/negated)
• Diverse indexing in the technology database

▪ Two channels on two servers
o Synchronization on

dedicated network

▪ Increasing availability
by redundancy:
o Restarting
o Two „2-out-of-2” scheme

A+

I/O

A- B+

I/O

B-

Example: SCADA error detection techniques

For random hardware faults during operation:

▪ Comparison of channels: Operator and I/O circuits
o Heartbeat: Blinking RGB-BGR symbols indicate the regular update of the

bitmap on the screen

▪ Watchdog process
o Checking the availability of the other processes

▪ Regular comparison of the content of the technology database
o Detecting latent errors

For unintended control by the operator:

▪ Three-phased control of outputs:
o Preparation (but locking the outputs using diverse software modules)

o Read-back using independent software modules

o Acknowledgement by the operator (diverse GUI operations)

Example: SCADA three phases of control

Channel 1

I/O

locking locking

Channel 2

1

2

3

1

59

Example: User configured checkpointing

Challenges

▪ Storing checkpoints

▪ Saving and restoring the state of components
o E.g., how to save/restore CPU state?

▪ Optimizing performance
o Reliability and small overhead <-> costs of checkpointing

o Parameters: Length of checkpoint intervals, number of checkpoints,
reliability of the checkpoint storage

CPU Memory Disk
External
storage

Remote
server

RAID,
NAS

Example: User configured checkpointing

▪ Declaration of a checkpoint vector:
struct Cpt_vec {

char *base;

int len;

} cpt_vec[MAX_VARS];

int cpt_cnt;

▪ Declaration of a checkpoint file:
static FILE *cpt_fd;

Example: User configured checkpointing

▪ Program data to be saved (example):
int i;

int results[DIM][DIM];

▪ Initialization of the checkpoint vector:
cpt_cnt = 2;

cpt_vec[0].base = (char *)results;

cpt_vec[0].len = sizeof(int [DIM][DIM]);

cpt_vec[1].base = (char *)&i;

cpt_vec[1].len = sizeof(int);

Example: User configured checkpointing

▪ Saving the checkpoint:
fwrite((char *)&cpt_cnt,

sizeof(int),

1, cpt_fd);

fwrite((char *)cpt_vec,

cpt_cnt*sizeof(struct Cpt_vec),

1, cpt_fd);

for (i=0; i<cpt_cnt; i++) {

fwrite(cpt_vec[i].base,

cpt_vec[i].len,

1, cpt_fd);

}

▪ Restoring the heckpoint:
o Similarly, using the fread() system call

Example: Saving the state of the CPU

▪ The setjmp() and longjmp() system calls can be used
o Generic „go to” by saving and restoring CPU state

▪ After longjmp() the execution is continued in the
same way as if after the return from the last
corresponding setjmp() system call
o The return value is the second parameter of the
longjmp() system call

o Saving and restoring checkpoints can be distinguished:
• Successful saving of checkpoint: 0 return value

• Restoring checkpoint: the second parameter as the return value

▪ Similar system calls with saving the signal mask:
o sigsetjmp(), siglongjmp()

Example: Saving the state of the CPU

▪ Recording the CPU state:
jmp_buf st;

setjmp(st);

▪ Saving the recorded CPU state:
fwrite((char *)st,

sizeof(jmp_buf), 1, cpt_fd);

▪ Reading the saved CPU state:
fread((char *)st,

sizeof(jmp_buf), 1, cpt_fd);

▪ Restoring the saved state:
longjmp(st, 2);

