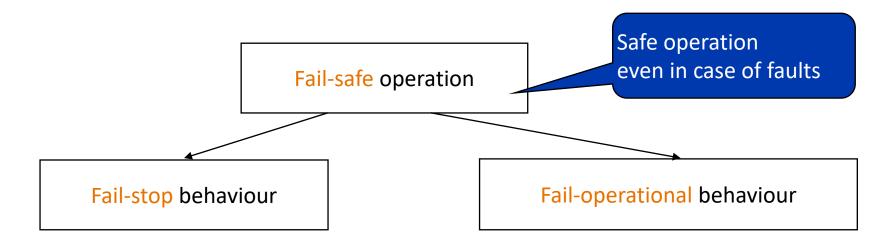

Design of the architecture of safety-critical systems

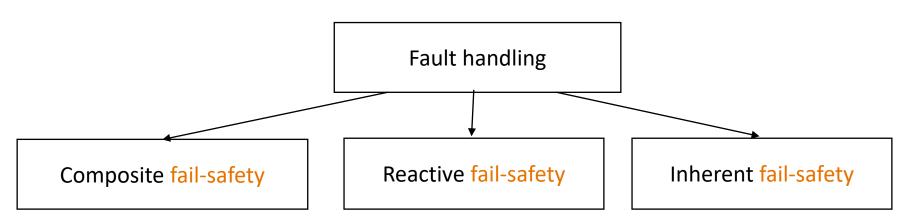
Ákos Horváth, PhD


Based on István Majzik's slides Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Objectives

- Stopping (switch-off) is a safe state
- In case of a detected error the system has to be stopped
- Detecting errors is a critical task


- Stopping (switch-off) is not a safe state
- Service is needed even in case of a detected error
 - full service
 - degraded (but safe) service
- Fault tolerance is required

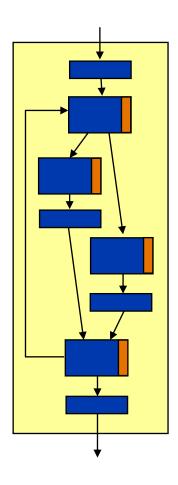
Architectural solutions (overview)

Safety in case of single random hardware faults

- Each function is implemented by at least 2 independent components
- Agreement between the independent components is needed to continue the operation
- Each function is equipped with an independent error detection
- The effects of detected errors can be handled (compensated)

- All failure modes are safe
- "Inherent safe" system

Typical architectures for fail-stop operation



Budapest University of Technology and Economics Department of Measurement and Information Systems

1. Single channel architecture with built-in self-test

- Single processing flow
- Scheduled hardware self-tests
 - After switch-on: Detailed self-test to detect permanent faults
 - In run-time: On-line tests to detect latent permanent faults
- Scheduled software self-tests
 - Typically application dependent techniques
 - Checking the control flow, data acceptance rules, timeliness properties
- Disadvantages:
 - Fault coverage of the self-tests is limited
 - Fault handling (e.g., switch-off) shall be performed by the same channel

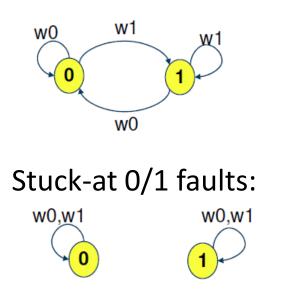
Implementation of on-line error detection

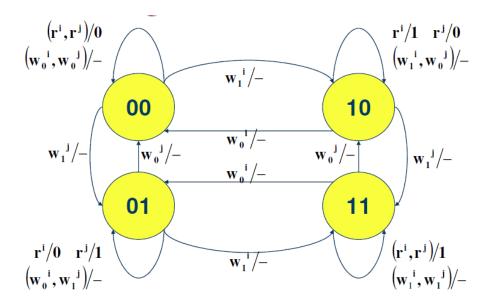
Application dependent (ad-hoc) techniques

- Acceptance checking
- Timing related checking
- Cross-checking
- Structure checking

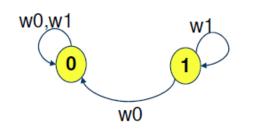
- (e.g., for ranges of values)
- (e.g., too early, too late)
- (e.g., using inverse function)
- (e.g., in linked list structure)

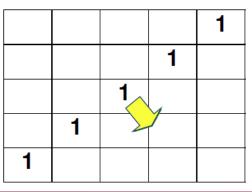
Application independent mechanisms


- Hardware supported on-line checking
 - CPU level: Invalid instruction, user/supervisor modes etc.
 - MMU level: Protection of memory ranges
- Generic architectural solutions
 - Two-channel execution with comparison
 - Two-channel execution with safety bag



Example: Testing memory cells


States of a correct cell:


State transitions to check stuck faults:

Transition fault:

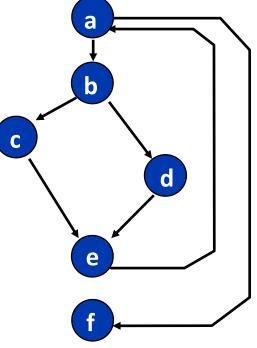
"March" algorithms:

Example: Software self-test

Checking the correctness of execution paths On the basis of the program control flow graph

Source code: for (i=0; i<MAX; i++) { if (i==a) { b n=n-i; } else { С m=m-i; d printf("%d\n",n); e } f: printf("Ready.")

a:

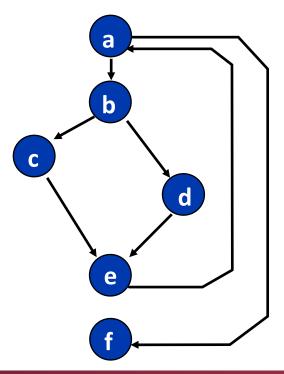

b:

C:

d:

e:

Example: Software self-test

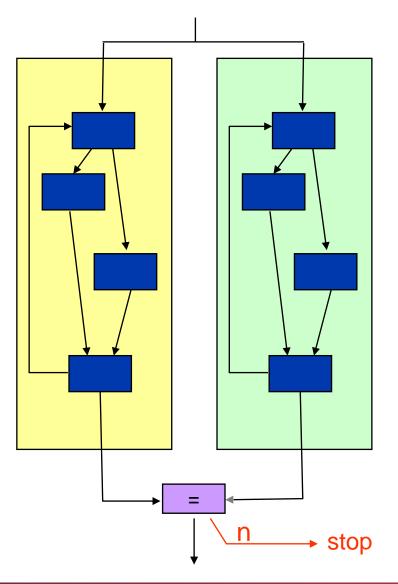

Checking the correctness of execution paths

 On the basis of the program control flow graph
 Actual run: Checked on the basis of assigned signatures

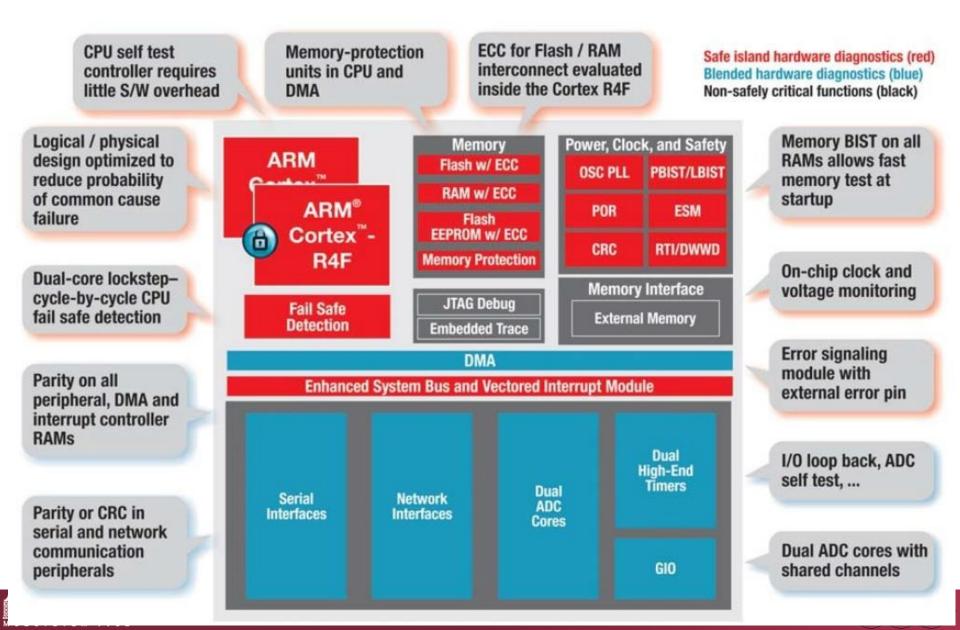
Instrumented source code:

- **a**: S(a); for (i=0; i<MAX; i++) {
- **b**: S(b); if (i==a) {
- **c**: S(c); n=n-i; } else {
- **d**: S(d); m=m-i;
- **e**: **S(e)**; printf("%d\n",n);
- f: S(f); printf("Ready.")

}



Control flow graph (reference):

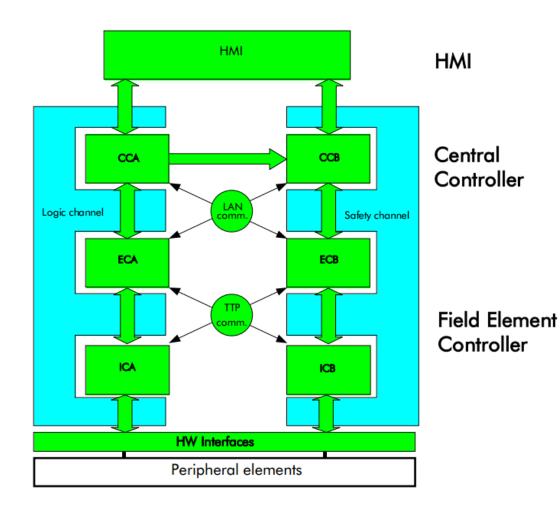

2. Two-channels architecture with comparison

- Two or more processing channels
 - Shared input
 - Comparison of outputs
 - Stopping in case of deviation
- High error detection coverage
- The comparator is a critical component (but simple)
- Special way of comparison:
 - Performed by the operator
- Disadvantages:
 - Common mode faults
 - Long detection latency



Example: TI Hercules Safety Microcontrollers

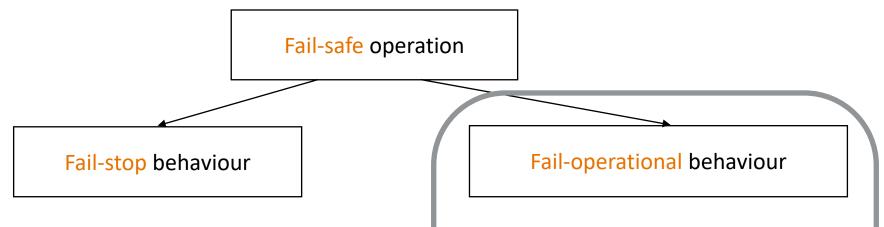
3. Two-channels architecture with safety bag


- Independent second channel
 - "Safety bag": only safety checking
 - Diverse implementation
 - Checking the output of the primary channel
- Example:
 - Elektra railway interlocking system
 - Rules are implemented to check the primary channel

Example: Alcatel (Thales) Elektra

Two channels:

- Logic channel: CHILL (CCITT High Level Language) procedure-oriented programming language
- Safety channel: PAMELA (Pattern Matching Expert System Language) rule-based language



Typical architectures for fault-tolerant systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Objectives for fault tolerant behaviour

- Stopping (switch-off) is a safe state
- In case of a detected error the system has to be stopped
- Detecting errors is a critical task

- Stopping (switch-off) is not a safe state
- Service is needed even in case of a detected error
 - full service
 - degraded (but safe) service
- Fault tolerance is required

Fault tolerant systems

- Fault tolerance: Providing (safe) service in case of faults
 - Autonomous error handling during operation (instead of stopping)
 - $\circ~$ Intervening into the fault \rightarrow failure chain
- Basic condition: Redundancy Extra resources to replace (the service of) faulty components
 - Hardware
 - Software
 - Information
 - o Time →
- redundancy (sometimes joint appearance)
- Types of redundancy
 - Cold: The redundant component is inactive in fault-free case
 - Warm: The redundant component has reduced load in fault-free case
 - Hot: The redundant component is active in fault-free case

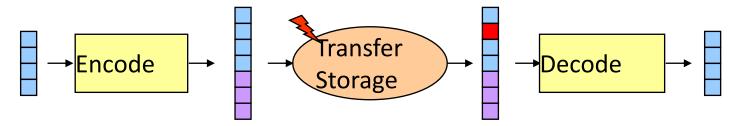
Forms of redundancy

1. Hardware redundancy

- Extra hardware components
 - Inherent in distributed systems
 - Planned for fault tolerance
- 2. Software redundancy

Extra software modules

- 3. Information redundancy
 - Extra information
 - Example: Error correcting codes (ECC)


4. Time redundancy

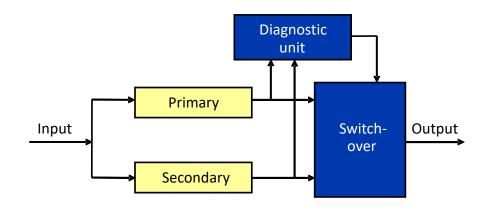
Repeated execution (to handle transient faults)

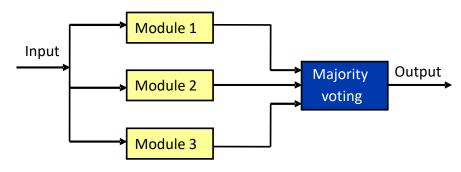
Example: Error detecting and correcting codes

- Error detecting codes (EDC): Only detection of errors
 - Parity bit: Increasing the Hamming-distance, 1 bit error can be detected
 - Checksum: Using in case of files, messages
- Error correcting codes (ECC): Identifying and correcting errors
- 4 data bits, 3 redundant bits
- Higher Hamming distance: Errors can be corrected
 - E.g.: (7,4) bit Hamming code: 1 bit error corrected, 1 or 2 bit errors detected
- Information blocks: More difficult codes are used
 - E.g.: (255, 223) byte Reed-Solomon code: 16 byte errors can be corrected
- Limited error correction capability
 - Information storage: In long time, more errors can occur than the number of errors that can be corrected by the applied codes
 - Basic idea: Periodic reading, correcting and writing back the information

How to use the redundancy?

- Hardware design faults: (< 1%)
 Hardware redundancy, with design diversity
 Often are neglected (wide-spread components are used)
- Hardware permanent operational faults: (~ 20%)
 Hardware redundancy (e.g., redundant processor)
- Hardware transient operational faults: (~ 70-80%)
 Time redundancy (e.g., instruction retry)
 Information redundancy (e.g., error correcting codes)
 Software redundancy (e.g., checkpointing and recovery)
- Software design faults: (~ 10%)
 Software redundancy, with design diversity


1. Fault tolerance for hardware permanent faults


Replication:

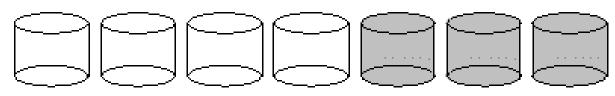
- Duplication:
 - With comparison:
 Error detection only!
 - With diagnostic support: Fault tolerance by switch-over

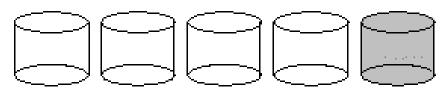
TMR: Triple Modular Redundancy

- Masking the failure by majority voting
- Voter is a critical component (but simple)
- NMR: N-modular redundancy
 - Masking the failure by majority voting
 - Goal: Surviving a mission time with high probability
 - Airborne and space systems: 4MR, 5MR

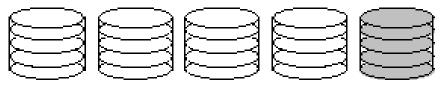
Implementation of the replication

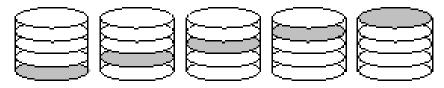
Equipment/server level:


- Servers: High availability server clusters
 - E.g., Linux HA Clustering, Windows Server Failover Clustering
- Software support: Failover and failback
- Board level:
 - Run-time reconfiguration: "Hot-swap"
 - E.g., CompactPCI, HDD, power supply
 - Software support: monitoring, reconfiguration
- Component level:
 - Replication of components: TMR
 - Self-checking circuits (processing encoded information)



Example: RAID disk configurations


RAID-1: Mirroring (duplicated disks)


(Redundant Array of Independent Disks) RAID-2: Bit-level ECC (error correcting codes)

RAID-3: Bit-level parity (assumption: faulty disk is identified)

RAID-4: Block-level parity (to improve performance)

RAID-5: Block-level parity (to avoid bottleneck of the parity disk)

2. Fault tolerance for transient hardware faults

- Basic approach: Software supported fault tolerance
 - Repeated execution will avoid transient faults
 - The handling of fault effects is important
 - Transient faults are handled by setting a fault-free state and continuing the execution from that state (potentially with repeated execution)
- Four phases of operation:
 - 1) Error detection
 - 2) Damage assessment
 - 3) Recovery
 - 4) Fault treatment and continuing service

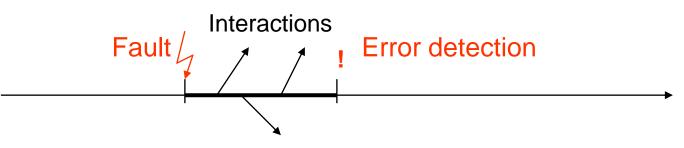
The four phases of operation 1/4

1) Error detection:

Application independent mechanisms:

- E.g., detecting illegal instructions at CPU level
- E.g., detecting violation of memory access restrictions
- Application dependent techniques:
 - Acceptance checking
 - Timing related checking
 - Cross-checking
 - Structure checking
 - Diagnostic checking

0...



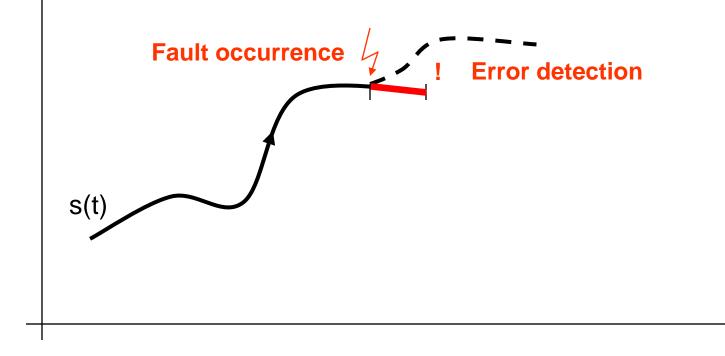
The four phases of operation 2/4

2) Damage assessment:

 Motivation: Errors can propagate among the components between the occurrence and detection of errors

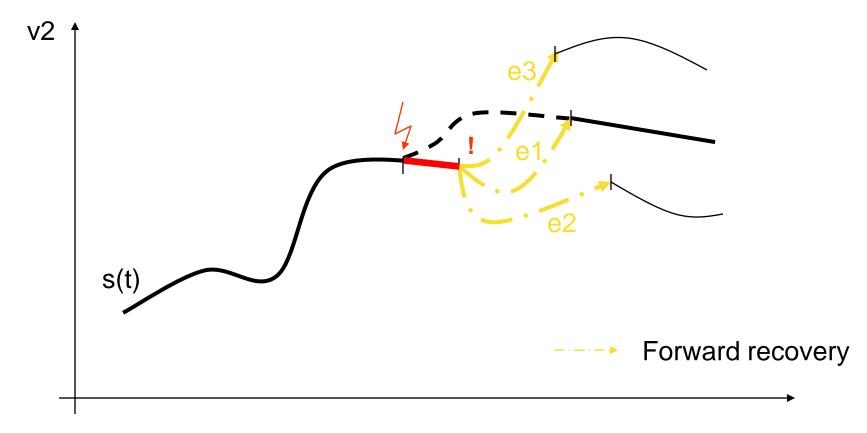
- Limiting error propagation: Checking interactions
 - Input acceptance checking (to detect external errors)
 - Output credibility checking (to provide "fail-silent" operation)
 - Checking and logging resource accesses and communication
- Estimation of components affected by a detected error
 - Analysis of interactions (during the latency of error detection)

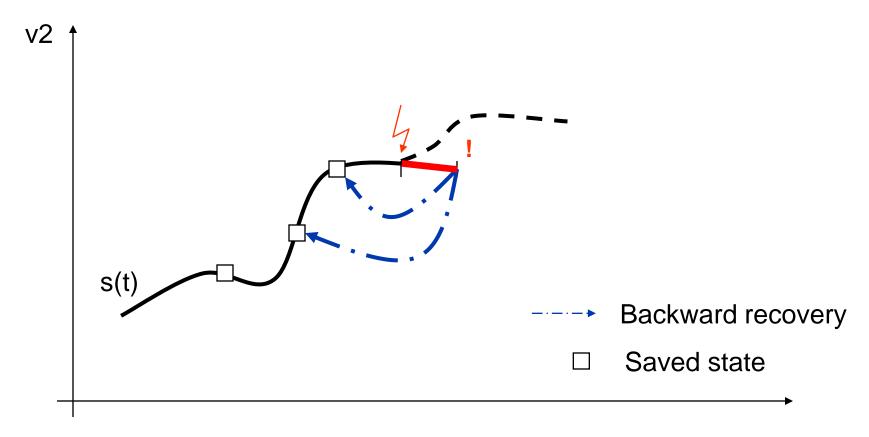
The four phases of operation 3/4


- 3) Recovery from an erroneous state
- Forward recovery:
 - Setting an error-free state by selective correction
 - Dependent on the detected error and estimated damage
 - Used in case of anticipated faults
- Backward recovery:
 - Restoring a prior error-free state (saved earlier)
 - Independent of the detected error and estimated damage
 - State shall be saved and restored for each component

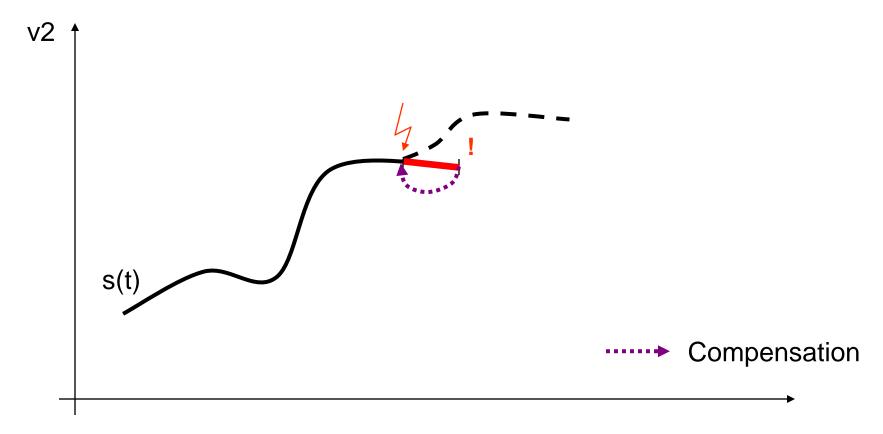
Compensation:

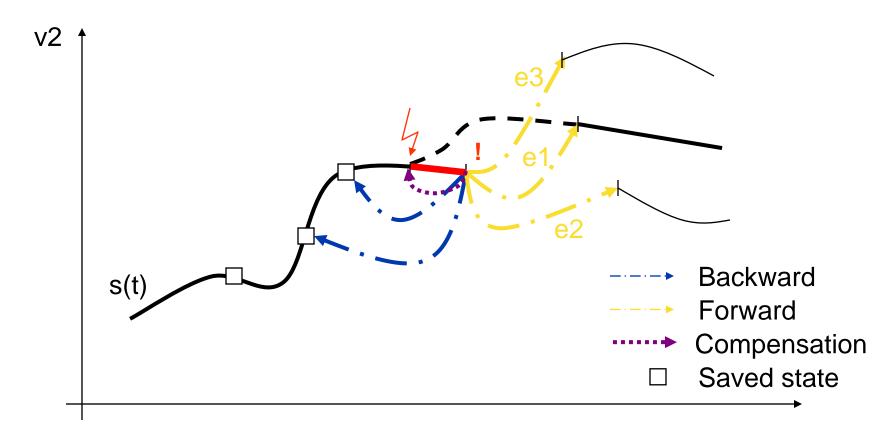
The error can be handled by using redundant information


 State space of the system (example): Error detection
 v2 t

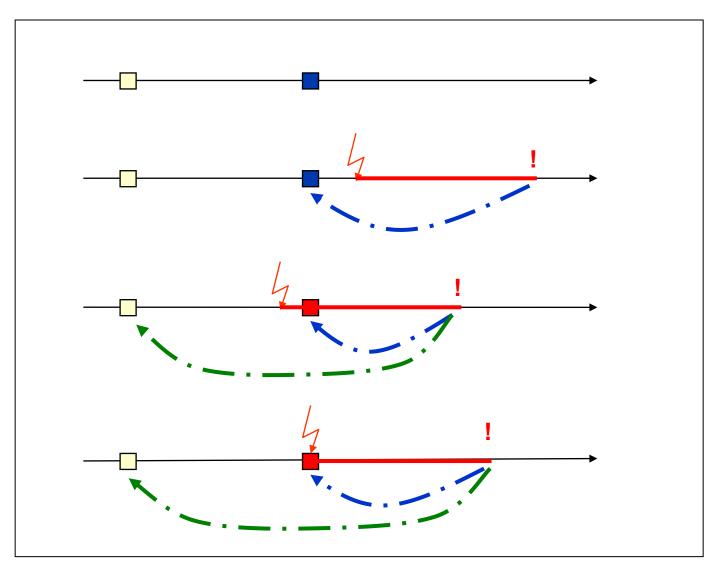


State space of the system: Forward recovery

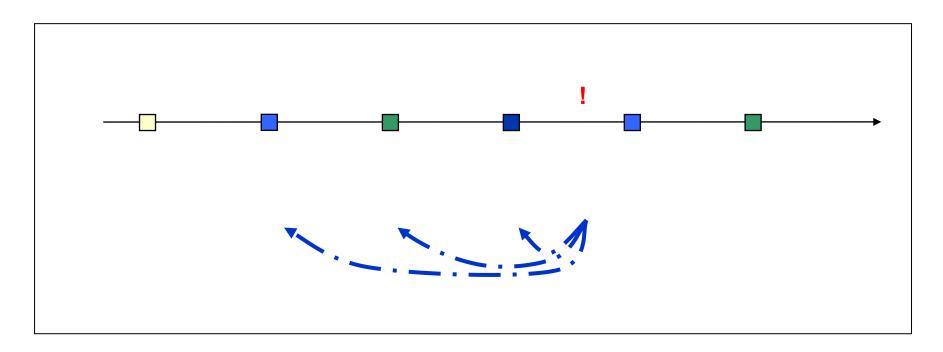

State space of the system: Backward recovery


State space of the system: Compensation

State space of the system: Types of recovery


Backward recovery

- Based on saved state
 - Checkpoint: The saved state
 - Checkpoint operations:
 - Saving the state: periodically, after messages; into stable storage
 - Recovery: restoring the state from the stable storage to memory
 - Discarding: after having more recent saved state(s)
 - Analogy: "autosave"
- Based on operation logs
 - Error to be handled: unintended operation
 - Recovery is performed by the withdrawal of operations
 - Analogy: "undo"
- It is possible to combine the two mechanisms


Scenarios of backward recovery

Checkpoint intervals

Aspects of optimizing checkpoint intervals:

- Stable storage is slow (-> overhead) and has limited capacity
- Computation is lost after the last checkpoint
- Long error detection latency increases the chance of damaged checkpoints

The four phases of operation 4/4

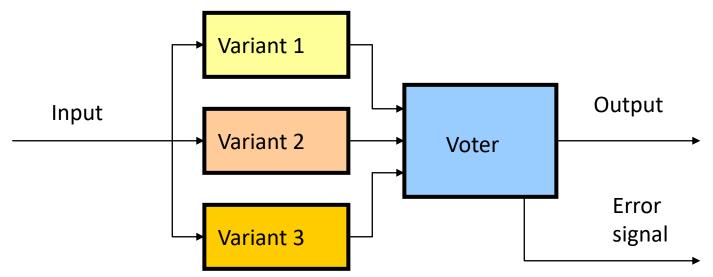
- 4) Fault treatment and continuing service
- Transient faults:
 - Handled by the forward or backward recovery

Permanent faults:

Recovery becomes unsuccessful (the error is detected again) The faulty component shall be localized and handled:

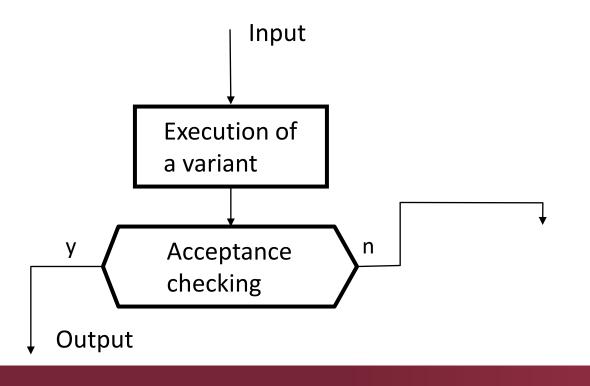
- Diagnostic checks to localize the fault
- Reconfiguration
 - Fault tolerance: Replacing the faulty component using redundancy
 - Degraded operation: Continuing only the safety related services
- Repair and substitution

4. Fault tolerance for software faults

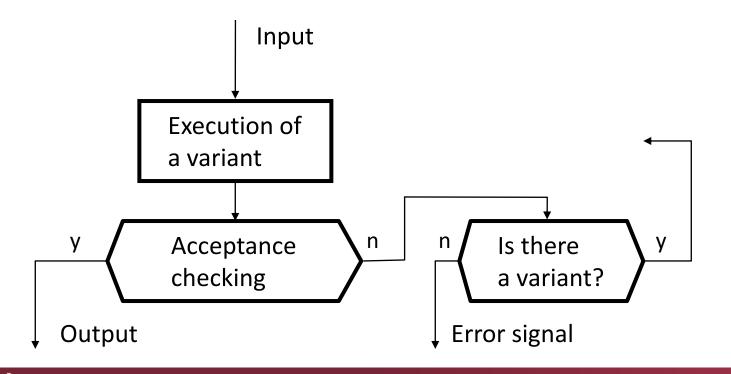

- Repeated execution is not effective for design faults
- Redundancy with design diversity is required!
 Variants: redundant software modules with
 - diverse algorithms and data structures,
 - different programming languages and development tools,
 - separated development teams
 - in order to reduce the probability of common failures
- Execution of variants:
 - N-version programming
 - Recovery blocks

N-version programming

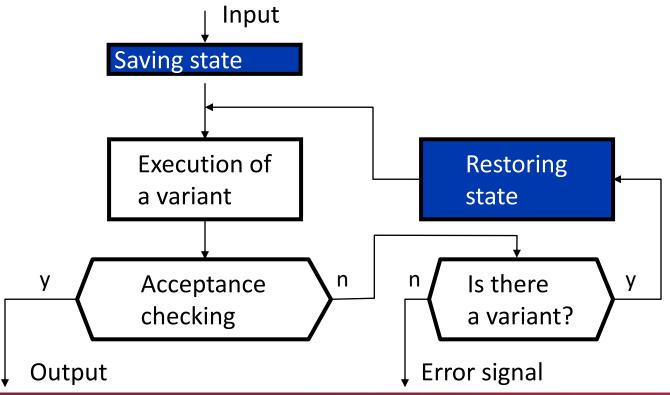
- Active redundancy:
 - Each variant is executed (in parallel)
 - The same inputs are used
 - Majority voting is performed on the output
 - Acceptable range of difference shall be specified
 - The voter is a single point of failure



Recovery blocks


- Passive redundancy: Activation only in case of faults
 - The primary variant is executed first
 - Acceptance checking performed on the output of the variants
 - In case of a detected error another variant is executed

Recovery blocks


- Passive redundancy: Activation only in case of faults
 - The primary variant is executed first
 - Acceptance checking performed on the output of the variants
 - In case of a detected error another variant is executed

Recovery blocks

- Passive redundancy: Activation only in case of faults
 - \odot The primary variant is executed first
 - Acceptance checking performed on the output of the variants
 - In case of a detected error another variant is executed

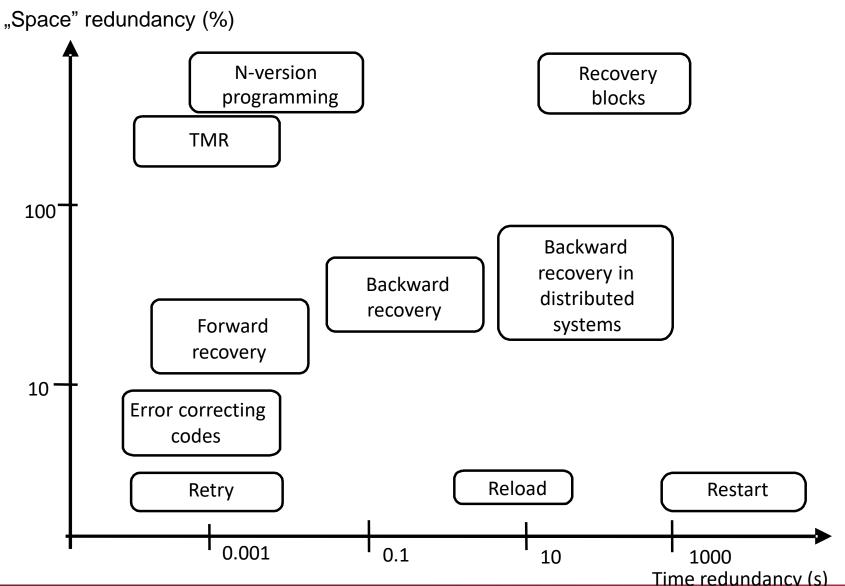
Comparison of the techniques

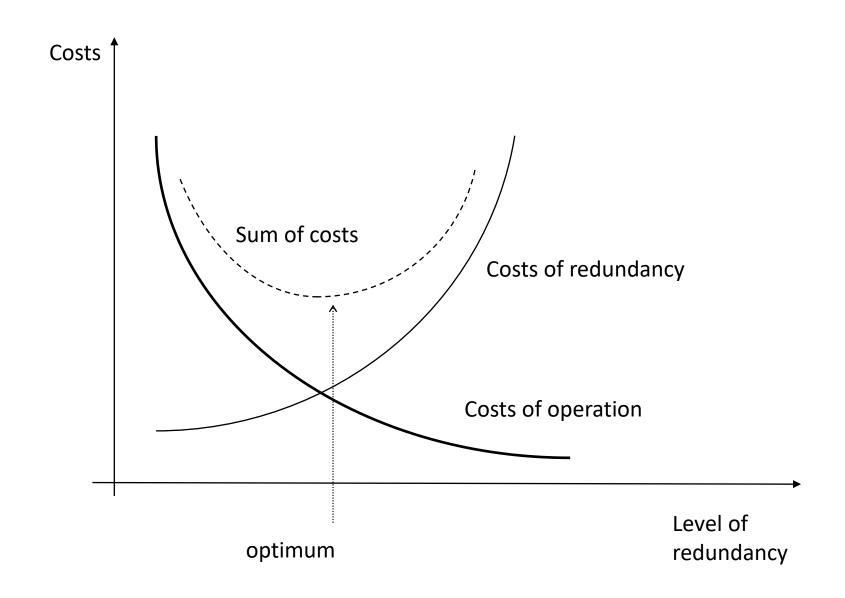
Property/Type	N-version prog.	Recovery blocks	
Error detection	Majority voting,	Acceptance	
	relative	checking, absolute	
Execution of variants	Parallel	Serial	
Execution time	Slowest variant	Depending on the	
	(or time-out)	number of faults	
Activation of	Always (active)	Only in case of	
redundancy		fault (passive)	
Tolerated faults	[(N-1)/2]	N-1	
Fault handling	Masking	Recovery	

Example: Airbus A-320, self-checking blocks

- Pair-wise self-checking execution
- Primary pair is active, switch-over in case of a fault
- Permanent hardware fault:

The pair with repeatedly detected fault will switch off


Summary


Budapest University of Technology and Economics Department of Measurement and Information Systems

Redundancy in space (resources) and time

Costs of redundancy and operation (faults)

Summary: Types of redundancy

1. Hardware redundancy

Replicas are used to tolerate permanent faults

- 2. Software redundancy
 - Variants (NVP, RB) are used to tolerate design faults
 - Software is used to tolerate transient hardware faults:
 - Forward recovery
 - Backward recovery
- 3. Information redundancy
 - Faults in information storage and transfer are corrected by error correcting codes
- 4. Time redundancy
 - Repeated execution is used in case of transient faults

Summary: Techniques of fault tolerance

1. Hardware design faults

- Diverse redundant components are used
- 2. Hardware permanent operational faults
 - Replicated components are used
- 3. Hardware transient operational faults
 - Software techniques for fault tolerance
 - 1. Error detection
 - 2. Damage assessment
 - 3. Forward or backward recovery (or compensation)
 - 4. Fault treatment
 - Information redundancy: Error correcting codes
 - Time redundancy: Repeated execution
- 4. Software design faults
 - Variants as diverse redundant components (NVP, RB)

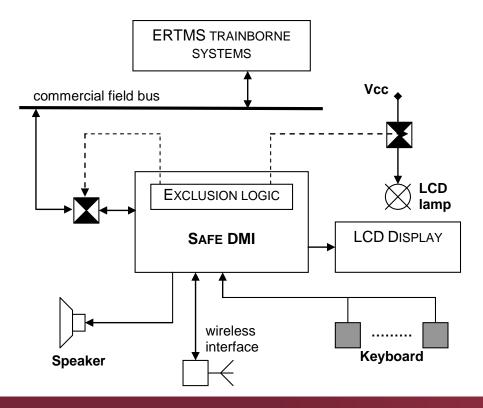
Example: The SAFEDMI Safe Driver-Machine Interface

Train driver

DMI

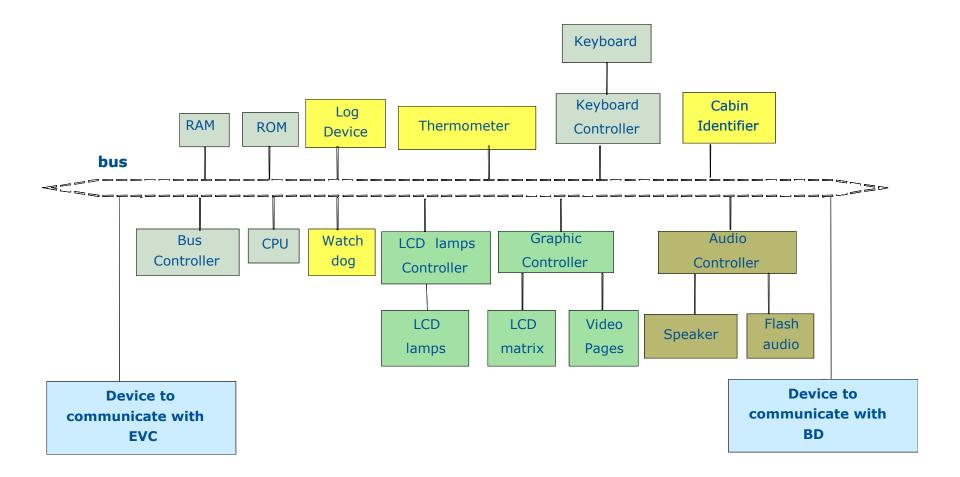
Maintenance Centre

Distinguishing features of the DMI:


- Safety Integrity Level 2
 - Visualization of information
 - Processing driver's commands
 - Data transfer to EVC
- Safe wireless communication
 - Configuration
 - Diagnostics
 - Software uploading

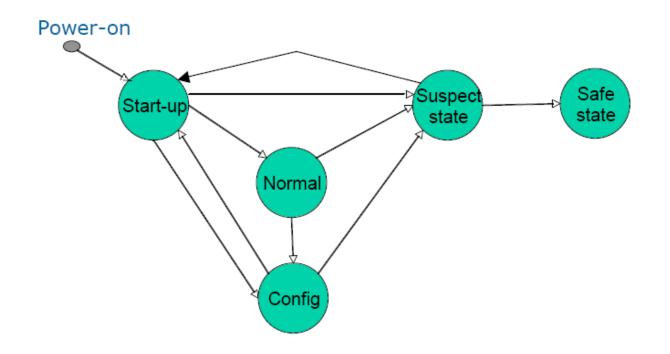
Example: The SAFEDMI hardware architecture

- Single electronic structure based on reactive fail-safety
- Generic (off-the-shelf) hardware components are used
- Most of the safety mechanisms are based on software (error detection and error handling)



Example: The SAFEDMI hardware architecture

Hardware components:



Example: The SAFEDMI fault handling

- Operational modes:
 - Startup, Normal, Configuration and Safe modes
 - Suspect state to implement controlled restart/stop after an error

Example: The SAFEDMI error detection techniques

Startup: Detection of permanent hardware faults

- CPU testing with external watchdog circuit
- Memory testing with marching algorithms
- EPROM integrity checking with error detection codes
- Device (peripherals) testing with the help of the drives
- Normal/Configuration: Periodic and on-line checking
 - Scheduled self-tests for hardware
 - Communication and configuration functions:
 Data acceptance / credibility checks, error detection codes
 - Control related functions:
 Control flow monitoring, time-out checking, acknowledgements
 - Data related functions:

Duplicated computation and comparison

Software architecture design in standards

equivalent techniques/measures has to be satisfied.

IEC 61508: Functional safety in electrical / electronic / programmable electronic safety-related systems

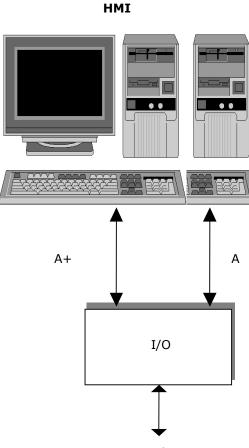
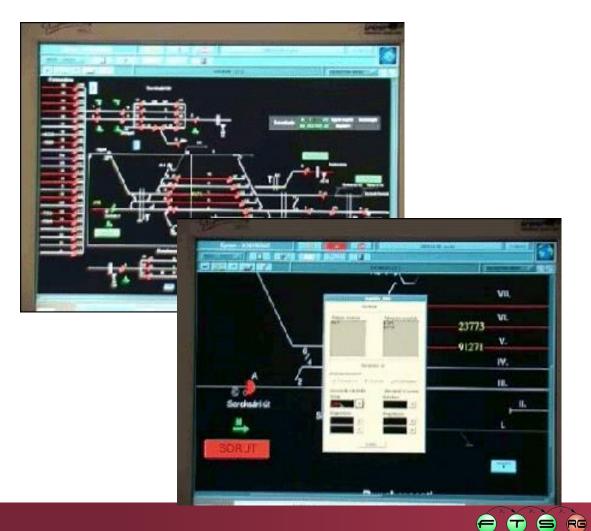
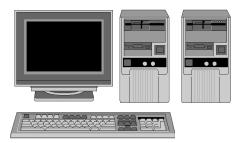

Software architecture design

Table A.2 – Software design and development: software architecture design (see 7.4.3)

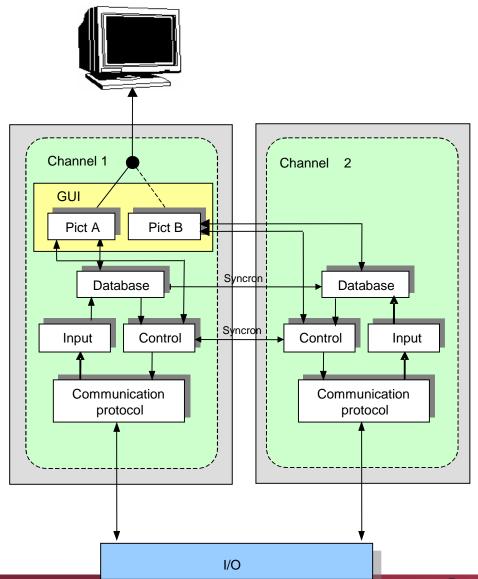

	Technique/Measure*	Ref	SIL1	SIL2	SIL3	SIL4
L.	Fault detection and diagnosis	C.3.1		R	HR	HR
2	Error detecting and correcting codes	C.3.2	R	R	R	HR
3a	Failure assertion programming	C.3.3	R	R	R	HR
3b	Safety bag techniques	C.3.4		R	R	R
Зс	Diverse programming	C.3.5	R	R	R	HR
3d	Recovery block	C.3.6	R	R	R	R
3e	Backward recovery	C.3.7	R	R	R	R
3f	Forward recovery	C.3.8	R	R	R	R
3g	Re-try fault recovery mechanisms	C.3.9	R	R	R	HR
Зh	Memorising executed cases	C.3.10		R	R	HR
4	Graceful degradation	C.3.11	R	R	HR	HR
5	Artificial intelligence - fault correction	C.3.12	() -	NR	NR	NR
6	Dynamic reconfiguration	C.3.13		NR	NR	NR
7a	Structured methods including for example, JSD, MASCOT, SADT and Yourdon.	C.2.1	HR	HR	HR	HR
7b	Semi-formal methods	Table B.7	R	R	HR	ня
7c	Formal methods including for example, CCS, CSP, HOL, LOTOS, OBJ, temporal logic, VDM and Z	C.2.4		R	R	HP
8	Computer-aided specification tools	B.2.4	R	R	HR	HF
NO req	Computer-aided specification tools TE - The measures in this table concerning fault tolerance puirements for architecture and control of failures for th C 61508-2.	(control of	f failures) s	should be d	C. M. C. L. L.	considered

Example: SCADA system

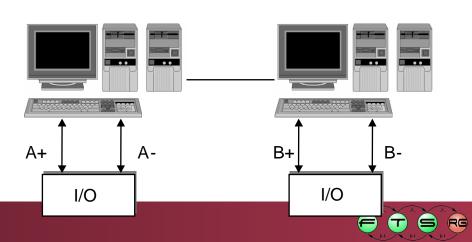
Supervisory Control and Data Acquisition



Sensors and actuators



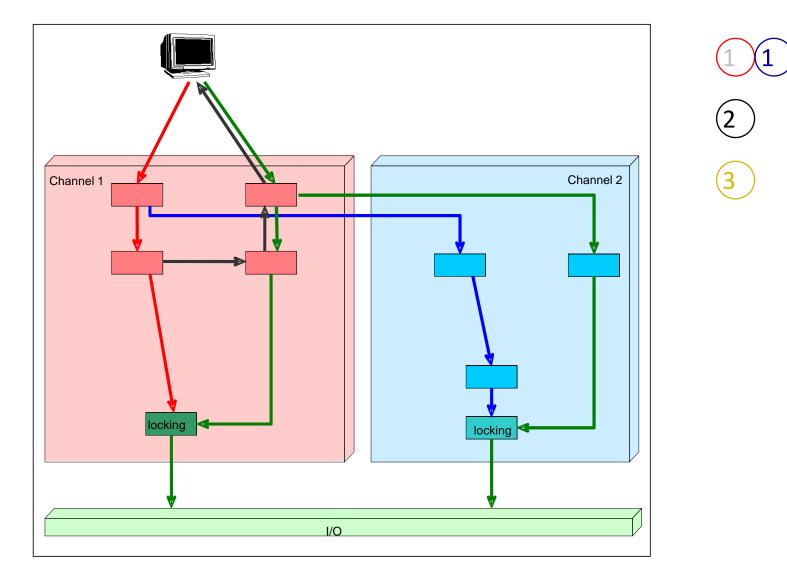
Example: SCADA system architecture


- Two channels
- Alternating bitmap visualization from the two channels: Comparison by the operator
- Synchronization: Detection of internal errors before the effects reach the outputs

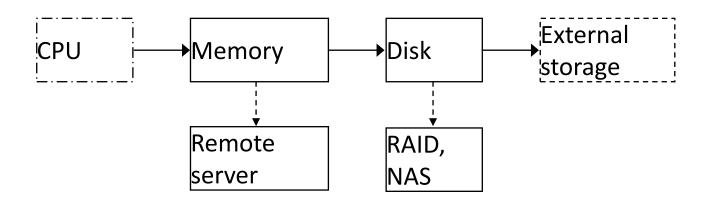
Example: SCADA deployment options

- Two channels on the same server
 - Statically linked software modules
 - Independent execution in memory, disk and time
 - Diverse data representation
 - Binary data (signals): Inverse representation (original/negated)
 - Diverse indexing in the technology database
- Two channels on two servers
 - Synchronization on dedicated network
- Increasing availability by redundancy:
 - Restarting
 - Two "2-out-of-2" scheme

Example: SCADA error detection techniques


For random hardware faults during operation:

- Comparison of channels: Operator and I/O circuits
 - Heartbeat: Blinking RGB-BGR symbols indicate the regular update of the bitmap on the screen
- Watchdog process
 - Checking the availability of the other processes
- Regular comparison of the content of the technology database
 - Detecting latent errors
- For unintended control by the operator:
- Three-phased control of outputs:
 - Preparation (but locking the outputs using diverse software modules)
 - Read-back using independent software modules
 - Acknowledgement by the operator (diverse GUI operations)



Example: SCADA three phases of control

Challenges

- Storing checkpoints
- Saving and restoring the state of components
 - E.g., how to save/restore CPU state?
- Optimizing performance
 - Reliability and small overhead <-> costs of checkpointing
 - Parameters: Length of checkpoint intervals, number of checkpoints, reliability of the checkpoint storage

Declaration of a checkpoint vector: struct Cpt_vec { char *base; int len; } cpt_vec[MAX_VARS]; int cpt cnt;

Declaration of a checkpoint file: static FILE *cpt fd;

Program data to be saved (example):

```
int i;
int results[DIM][DIM];
```

Initialization of the checkpoint vector: cpt_cnt = 2; cpt_vec[0].base = (char *)results; cpt_vec[0].len = sizeof(int [DIM][DIM]); cpt_vec[1].base = (char *)&i; cpt_vec[1].len = sizeof(int);


```
Saving the checkpoint:
     fwrite((char *)&cpt cnt,
          sizeof(int),
          1, cpt fd);
     fwrite((char *)cpt vec,
          cpt cnt*sizeof(struct Cpt vec),
          1, cpt fd);
     for (i=0; i<cpt cnt; i++) {</pre>
     fwrite(cpt vec[i].base,
             cpt vec[i].len,
            1, cpt fd);
```

Restoring the heckpoint:

Similarly, using the **fread()** system call

Example: Saving the state of the CPU

- The setjmp() and longjmp() system calls can be used
 Generic "go to" by saving and restoring CPU state
- After longjmp() the execution is continued in the same way as if after the return from the last corresponding setjmp() system call
 - The return value is the second parameter of the longjmp () system call
 - Saving and restoring checkpoints can be distinguished:
 - Successful saving of checkpoint: 0 return value
 - Restoring checkpoint: the second parameter as the return value
- Similar system calls with saving the signal mask:

o sigsetjmp(), siglongjmp()

Example: Saving the state of the CPU

- Recording the CPU state: jmp_buf st; setjmp(st);
- Saving the recorded CPU state:

fwrite((char *)st, sizeof(jmp_buf), 1, cpt_fd);

- Reading the saved CPU state: fread((char *)st, sizeof(jmp_buf), 1, cpt_fd);
- Restoring the saved state: longjmp(st, 2);

