CASE STUDY: COST CALCULATOR FOR CLOUD APPLICATIONS

Background:

Salánki, Á., Kincses, G., Gönczy, L. and Kocsis, I., 2017. Data analysisbased capacity planning of VCL clouds. *International Journal of Cloud Computing*, 6(4), pp.370-383.

Motivation

Enterprise cloud Purchased CPU time zure

Lab

Private university cloud

Our VCL cloud

- Maintained by our research group
- 5 semesters
 - o 2 courses/semester
- 9 hosts
- ~20 000 reservations
 Only 22 rejected

Reservation Workflow in VCL

- Request
 - o VM type
 - Length
 - Immediately or later
- Hard reservation limit

Capacity Planning

Private

Capacity Planning

Private

The Available Dataset

Data Analysis Steps

8

Workflow

 Daily workload follows a Gaussian-like distribution

Model fitting

12

 Daily workload follows a Gaussian-like distribution

- Exponential increase in peak numbers
- maximum location between
 7 PM and 11 PM
- ~4 hours as standard deviation

Resource Utilization Prediction

Challenges

It is a cloud

○ Statistical multiplexing ☺

2012/2013/2

2013/2014/2

Challenges

- It is a cloud
- Hosts show different behavior
 - Warm spare
 - Different user behavior
 - o ???

Resource utilization analysis: memory

Linear model

 $\circ Mem(VM_1) + Mem(VM_2) + ... + Mem(mgmt)$

Weighted by the workload

Resource utilization analysis: memory

Linear model

\circ Mem(VM₁) + Mem(VM₂) + ... + Mem(mgmt) \circ Weighted by the workload

seq(from = 1, to = length(mem.usage.average))

20

Resource utilization analysis: CPU

Linear model

 $\circ CPU(VM_1) + CPU(VM_2) + \dots + CPU(mgmt)$

Weighted by the workload

CPU is much more sensitive than memory

Resource utilization analysis: CPU

Resource utilization analysis: CPU

- Linear model
 - $\circ CPU(VM_1, wl) + CPU(VM_2, wl) + \dots$
 - Weighted by the workload

Summary

- Data-driven static capacity planning
 - "user behavior" analysis
 - resource fingerprint estimation
- Conclusions:
 - student behavior can be modelled
 - resource allocation were sometimes (too) strict
- Dynamic capacity planning?
 Long loading time → failed reservations soon
 When to burst out to a public cloud?

