Operációs rendszer szintű virtualizáció – Gyakorlat

Indítsuk el a CentOS-5.4-OpenVZ virtuális gépet! A gépre belépni a *meres* felhasználóval lehetséges, jelszava a szokásos. *Root* felhasználóként végzendő műveletekhez használhatjuk a *sudo*-t, ilyenkor a *meres* felhasználó rendes jelszavát kell megismételni.

A mérés során virtuális gépeket használunk, amiken belül a virtuális konténereket futtatjuk. Figyeljünk, hogy a mérési feladatok során, ha "hoszt" gépként hivatkozunk valamit, akkor az a méréshez kiadott virtuális gépet jelenti, nem pedig a fizikai labor PC-t.

OpenVZ konténerek kezelése webes felületen

- 1. Böngészőben nyissuk meg a http://localhost:8001 oldalt (nyitó oldalnak ez van felvéve). Ha a későbbiekben majd csak vár az oldal a betöltésre, akkor lejárt a session, frissíteni kell az oldalt, és újra be kell lépni.
- 2. Belépéshez a felhasználónév *admin*, a jelszava a *meres* felhasználóéval azonos.
- 3. Először nézzünk rá az erőforrás konfigurációkra (a webes felületen *plan* néven szerepel), ezzel adhatóak meg a Virtual Environment (VE) konténerek erőforráskorlátai. *Plans* majd *Edit Plan Easy Wizard* ikont válasszuk, nézzük meg pl. a *light* plan korlátait!
- 4. Hozzunk létre egy VE-t (a webes felület ezt node-nak nevezi), ubuntu-9.04 operációs rendszerrel, és az imént megnézett light erőforrás-konfigurációval! Fontos: a host nevet csak domain névvel együtt fogadja el, pl.: test.local. Az IP cím lehet bármi, ami a hoszt IP tartományában helyezkedik el és nem ütközik (ezt vizsgáljuk meg az ifconfig eth0 illetve PING hívással!). Jegyezzük meg, hogy a VE a 101-es azonosítót kapta.
- 5. Indítsuk el VE-t!

VE környezetének felderítése

1. Nyissunk egy terminálablakot, és nézzük meg milyen VE-k futnak:

vzlist –a

2. Nézzük meg mire alkalmas az OpenVZ svájci bicska:

vzctl --help

- 3. Pingeljük meg az imént indított VE-t. SSH-val belépni még nem fogunk tudni, mert nincs beállított jelszava a root felhasználónak a VE-ben...
- 4. ...nem is kell, menjünk be a VE-be "művészbejárón" keresztül:

vzctl enter 101

5. Nézzük meg, hogy ez tényleg nem a CentOS:

```
cat /etc/debian_release
```

Ilyen fájl a host gépen nincs (illetve van, csak nem ott :)).

6. Nézzük meg, hogy honnan milyen erőforrás látszik! Nyissunk még egy terminálablakot vagy új tabot a terminálon, és a nézzük meg mindkét helyről a következőket.

6.1. Szabad memória:

free -m

(Igen, ha még nem tudatosult volna bennünk: most 30MB RAM-mal fut az Ubuntu – próbálja ezt meg valaki fizikai gépen ennyiből megoldani :))

6.2. Szabad hely a fájlrendszeren:

df -h

6.3. Futó folyamatok listája:

(Ne hagyjuk magunkat félrevezetni, a PID nem lesz azonos a host és a VE folyamatlistájában, de a host felől látszanak a VE folyamatai, fordítva viszont nem.)

6.4. Jéé fut apache httpd, vajon hol hallgatózik:

netstat -lnp

Ennek is kicsit félrevezető lesz az eredménye a hostról nézve, úgy néz ki, mintha a localhoston hallgatózna az apache 80-as porton, de próbáljuk ki böngészőből! És a VE IP címét beírva? 6.5. Hozzunk létre egy fájlt a hoszt gépen (rootként):

touch /vz/private/101/root/EZ_EGY_TESZT_FILE

Nézzük meg a /root könyvtár tartalmát a VE-n belül! Fordítva is ki lehet próbálni.

6.6. CPU típusa és tulajdonságai:

cat /proc/cpuinfo

6.7. Futó kernel verziója, architektúrája:

uname -a

6.8. Kernelbe betöltött modulok:

lsmod

6.9. Hálózati interfészek és beállításai, beleértve az inaktívakat is:

ifconfig -a

Erőforrás-korlátok vizsgálata

Változtassuk meg futás közben a VE erőforráskorlátait, ellenőrizzük az állapotot előtte és utána! A változtatás a *Node Management* menüpont alatt végezhető el, akár az egyes erőforrások módosításával, akár a VE-hez hozzárendelt plan váltásával.

- 1. A *Server/Plans/Edit Plan Advanced Wizard*dal nézzük meg a *light plan* részletes beállításait! Az egyes pontok mellett jobb oldalt lévő ?-re húzva az egeret bal oldalt leírást kapunk az egyes pontokról.
- 2. Vizsgáljuk meg a parancssori lehetőségeket is:

```
cat /proc/user_beancounters
```

LXC technológia vizsgálata

Az OpenVZ gépet hagyjuk még futni, szükség lehet rá.

- 1. Indítsuk el az Ubuntu 12.04 virtuális gépet! A gépre belépés *meres* felhasználóval lehetséges, jelszava a szokásos. *Root* felhasználóként végzendő műveletekhez használhatjuk a *sudo*-t, ilyenkor a *meres* felhasználó rendes jelszavát kell megismételni.
- 2. Indítsunk egy terminált, váljunk root felhasználóvá és vizsgáljuk meg az lxc-hez kapcsolódó parancsokat (lxc TAB TAB)
- 3. Nézzük meg milyen konténerek léteznek:

lxc-list

4. Hozzunk létre egy új konténert

```
lxc-create -n myfirstcontainer -t debian
lxc-start -n myfirstcontainer -d
lxc-console -n myfirstcontainer
```

5. Bizonyosodjunk meg róla, hogy valóban nem az Ubuntuban vagyunk:

cat /etc/apt/sources.list

6. Vizsgáljuk meg a hálózati beállításokat a hoszt, majd a virtuális gépen:

ifconfig -a

7. Vizsgáljuk meg a hálózati topológiát:

brctl show

Haladóbb feladatok

(Ha marad rá idő, némi Linux és hálózat adminisztrálási gyakorlatot igényel.)

LXC hálózati beállítások

Jelenleg az LXC konténer NAT mögött helyezkedik el egy virtuális belső hálózaton. Ezt a hálózatot az lxcbr0 hálózati híd fogja össze. Készítsünk egy olyan topológiát, ami kiengedi a külső hálózatra a virtuális konténert. Az ubuntu virtuális gépen a hálózati híd használatához szükséges csomag (bridge-utils) már előre telepítve van.

1. Vegyük le a hoston az eth0-ról az IP címet:

ifconfig eth0 0.0.0.0

2. Hozzuk létre a hidat és adjuk hozzá az interfészeket:

brctl addbr br0 brctl addif br0 eth0 ifconfig br0 up brctl showstp br0 #várjunk egy kicsit, amíg a port state *learning*ből *forwarding*ba vált, nézzük újra dhclient br0

3. Állítsuk le a konténert és a konfigurációjában (/var/lib/lxc/name/config) módosítsuk a használt hálózati híd beállítását, majd indítsuk el a gépet!

lxc.network.link=br0

4. Vizsgáljuk meg a konténer IP címét, ha szükséges, akkor kérjünk IP-t a külső hálózatról:

dhclient eth0

(Megjegyzés: ez Windows VMware hoston remélhetőleg működni fog alapból, Linux hostnál külön engedélyezni kell, hogy a vendég gép Ethernet vezérlője MAC cím válogatás nélküli üzemmódba váltson. Az ethernet bridge helyes működéséhez erre szükség van. A labor gépeken ez engedélyezve van már.)

5. Próbáljuk a konténer új IP címét pingelni, akár kívülről is!

OpenZV hálózati beállítások

Az OpenVZ VE most egy *venet* típusú hálózati csatolóval rendelkezik. Ez több megkötéssel rendelkezik, cseréljük ki egy Ethernet típusú interfészre, amit a hoszton hídba kapcsolhatunk a külső hálózati interfésszel.

Kis magyarázat hozzá: az OpenVZ kétféle hálózati interfészt tud adni a VE-nek, az egyik a *venet*, ami IP rétegbeli kapcsolat, a másik a *veth*, ami Ethernet rétegbeli. Bridge-elni érelemszerűen csak az *veth*-t lehet. Mindkettő pont-pont kapcsolat a host és a VE között, párban jönnek létre az interfészek a hoston és a VE-n. (http://wiki.openvz.org/Differences_between_venet_and_veth)

1. Vegyük el a jelenlegi interfészt:

vzctl set 101 --ipdel all

2. Adjunk hozzá egy veth interfészt:

vzctl set 101 --netif_add eth0

A netif_add paraméterénél a VE-n belüli nevét adjuk meg, a host felőli végén a neve *veth101.0* lesz. Vegyük észre, hogy a hoston is van *eth0* és a VE-n belül is van egy ettől teljesen független másik *eth0*, de ez nem okoz problémát.

3. A hoston telepítsük fel a bridge-utils csomagot:

yum install bridge-utils

4. Vegyük le a hoston az eth0-ról az IP címet:

ifconfig eth0 0.0.0.0

5. Hozzuk létre a hidat és adjuk hozzá az interfészeket:

```
brctl addbr br0
brctl addif br0 eth0
brctl addif br0 veth101.0
ifconfig br0 up
brctl showstp br0
#várjunk egy kicsit, amíg a port state learningből forwardingba vált, nézzük újra
dhclient br0
```

6. És most a VE-n belül kérjünk IP-t a külső hálózatról:

dhclient eth0

- 7. Próbáljuk a VE új IP címét pingelni, akár kívülről is!
- 8. Állítsunk valamit a VE-n belüli tűzfalon, pl. tegyük REJECT-re az INPUT láncot, és próbáljuk ki a pingelést. Vegyük észre, hogy a host tűzfala nem változott, és az továbbra is reagál a pingre. (Akár NAT-ot is lehet csinálni az egyes VE-ken belül, de ehhez előbb módosítani kell a */etc/vz/vz.conf*-ban az IPTABLES változó értékét.)
- 9. Csináljunk még VE-ket és bridge-eljük azokat is külső hálózatra vezető br0 hídra, vagy csináljunk belső hálózatot a VE-k között.